Skip to main content

Integration of Membrane Processes for Optimal Wastewater Management

  • Chapter
  • First Online:
Wastewater Reuse and Management
  • 3978 Accesses

Abstract

Wastewater generation poses a serious challenging problem in both industrial and domestic sectors worldwide. As a result, many proposals have been raised from academia and industry to cope with the problem. Recently, the wastewater management focuses on minimization of water consumption, recycle, reuse, and regeneration of wastewater streams as an effective mitigation of the problem. Integrated membrane systems with conventional processes have been shown to be an attractive option for the evaluation of wastewater treatment to achieve desired water quality. This chapter presents optimal integration of membrane processes for wastewater treatment through superstructure optimization. State space representation presents a systematic approach to construct rich flow sheet alternatives of enviable processes in a concise manner. These alternatives accordingly can be evaluated simultaneously by the derivation of a mathematical programming model. Mixed integer nonlinear program (MINLP) models are presented for two cases of integrated membrane processes for the treatment of wastewater streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn RF, El-Halwagi M (2003) Process integration technology review: background and applications in the chemical process industry. J Chem Technol Biotechnol 78:1011–1021

    Article  CAS  Google Scholar 

  2. Schaefer K, Exall K, Marsalek J (2004) Water reuse and recycling in Canada: a status and need assessment. Can Water Resour J 3:195–208

    Article  Google Scholar 

  3. Kuo WJ, Smith R (1997) Effluent treatment system design. Chem Eng Sci 3:4273–4290

    Google Scholar 

  4. Starthmann H (2001) Membrane separation processes, Current relevance and future opportunities. AIChE J 47:1077–1087

    Article  Google Scholar 

  5. Eddy Metcalf (1991) Wastewater engineering treatment, disposal, and reuse. Irwin/McGraw-Hill, New York

    Google Scholar 

  6. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

  7. Wenten IG (2002) Recent development in membrane science and its industrial applications. Songklanakarin J Sci Technol 24:1009–1024

    CAS  Google Scholar 

  8. Grossmann IE, Daichendt MM (1996) New trends in optimization-based approaches to process synthesis. Compt Chem Eng 6:665–683

    Article  Google Scholar 

  9. Westerberg AW (2004) A retrospective on design and process synthesis. Compt Chem Eng 28:447–458

    Article  CAS  Google Scholar 

  10. Viswanathan J, Grossmann IE (1993) Optimal feed locations and number of trays for distillation columns with multiple feeds. Ind Eng Chem Res 32:2942–2949

    Article  CAS  Google Scholar 

  11. Ciric AM, Gu D (1994) Synthesis of nonequilibrium reactive distillation processes by MINLP optimization. AIChE J 9:1479–1487

    Article  Google Scholar 

  12. Kookos IK (2003) Optimal design of membrane/distillation column hybrid processes. Ind Eng Chem Res 8:1731–1738

    Article  Google Scholar 

  13. El-Halwagi MM (1992) Synthesis of reverse osmosis networks for waste reduction. AIChE J 38:1185–1198

    Article  CAS  Google Scholar 

  14. El-Halwagi MM (1993) Optimal design of membrane-hybrid systems for waste reduction. Sep Sci Technol 28:283–307

    Article  CAS  Google Scholar 

  15. Srinivas BK, El-Halwagi MM (1993) Optimal design of pervaporation systems for waste reduction. Compt Chem Eng 17:957–970

    Article  CAS  Google Scholar 

  16. Yeomans H, Grossmann IE (1999) A systematic modeling framework of superstructure optimization in process synthesis. Compt Chem Eng 6:709–731

    Article  Google Scholar 

  17. El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 8:1233–1244

    Article  Google Scholar 

  18. Papalexandri KP, Pistikopoulos EN (1996) Generalized modular representation framework for process synthesis. AIChE J 4:1010–1032

    Article  Google Scholar 

  19. Ismail SR, Pistikopoulos EN, Papalexandri KP (1999) Modular representation synthesis framework for homogeneous azeotropic separation. AIChE J 45:1701–1720

    Article  CAS  Google Scholar 

  20. Proios P, Pistikopoulos EN (2006) Hybrid generalized modular/collocation framework for distillation column synthesis. AIChE J 3:1038–1056

    Article  Google Scholar 

  21. Linke P, Kokossis AC (2004) Advanced process systems design technology for pollution prevention and waste treatment. Adv Environ Res 8(2):229–245

    Article  Google Scholar 

  22. Linke P, Kokossis AC (2003) Attainable reaction and separation processes from a superstructure-based method. AICHE 49(6):1451–1470

    Article  CAS  Google Scholar 

  23. Mehta VL, Kokossis AC (2000) Nonisothermal synthesis of homogeneous and multiphase reactor networks. AIChE J 11:2256–2273

    Article  Google Scholar 

  24. Saif Y, Elkamel A, Pritzker M (2009) Superstructure optimization for the synthesis of chemical process flowsheets: application to optimal hybrid membrane systems. Eng Optim 41:327–350

    Article  Google Scholar 

  25. Vyhmeister E, Saavedra A, Cubillos FA (2004) Optimal synthesis of reverse osmosis systems using genetic algorithms. In: European symposium on computer-aided process engineering-14, Lappeenranta

    Google Scholar 

  26. Maskan F, Wiley DE, Johnston LPM, Clements DJ (2000) Optimal design of reverse osmosis module networks. AIChE J 46:946–954

    Article  CAS  Google Scholar 

  27. Lu YY, Hu YD, Xu DM, Wu LY (2006) Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing. J Membr Sci 282:7–13

    Article  CAS  Google Scholar 

  28. Lu YY, Hu YD, Zhang XL, Wu LY, Liu QZ (2007) Optimum design of reverse osmosis system under different feed concentration and product specification. J Membr Sci 287:219–229

    Article  CAS  Google Scholar 

  29. Evangellsta F (1985) A short cut method for the design of reverse osmosis desalination plants. Ind Eng Chem Process Des Dev 24:211–223

    Article  Google Scholar 

  30. Weber W (1972) Physiochemical processes for water quality. Wiley, New York

    Google Scholar 

  31. Adams JQ, Clark RM (1991) Evaluating the costs of packed-tower aeration and GAC for controlling selected organics. AWWA 1:49–57

    Google Scholar 

  32. Dzombak DA, Roy SB, Fang H (1993) Air-stripper design and costing computer program. AWWA 10:63–72

    Google Scholar 

  33. Shah MR, Noble RD, Clough DE (2004) Pervaporation-air-stripping hybrid process for removal of VOCs from groundwater. J Membr Sci 241:257–263

    Article  CAS  Google Scholar 

  34. Suk DE, Matsuura T (2006) Membrane-based hybrid processes: a review. Sep Sci Technol 41:595–626

    Article  Google Scholar 

  35. Wijmans JG, Kamaruddin HD, Segelke SV, Wessling M, Baker RW (1997) Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system. Sep Sci Technol 14:2267–2287

    Article  Google Scholar 

  36. Hines AL, Maddox RN (1985) Mass transfer, fundamentals and applications. Prentice-Hall, New York

    Google Scholar 

  37. Billet R, Schultes M (1991) Modeling of pressure drop in packed columns. Chem Eng Technol 14:89–95

    Article  CAS  Google Scholar 

  38. Billet R, Schultes M (1993) Predicting mass transfer in packed columns. Chem Eng Technol 16:1–9

    Article  CAS  Google Scholar 

  39. Billet R, Schultes M (1999) Prediction of mass transfer columns with dumped and arranged packing, updated summary of the calculation method of Billets and Schultes. Trans IChemE 77:498–504

    Article  CAS  Google Scholar 

  40. Hickey PJ, Gooding CH (1994) Modeling spiral wound modules for the pervaporative removal of volatile organic compounds from water. J Membr Sci 88:47–68

    Article  CAS  Google Scholar 

  41. Saif Y, Elkamel A, Pritzker M (2008) Optimal design of RO network for wastewater treatment and minimization. Chem Eng Proc 47:2163–2174

    Article  CAS  Google Scholar 

  42. Saif Y, Elkamel A, Pritzker M (2008) Global optimization of reverse osmosis network for wastewater treatment and minimization. Ind Eng Chem Res 47:3060–3070

    Article  CAS  Google Scholar 

  43. Elkamel A, Saif Y, Pritzker M (2009) Optimal design of a hybrid air stripping/pervapouration system for removal of multicomponent VOCs from groundwater. Int J Proc Sys Eng 1:46–65

    Article  Google Scholar 

  44. Bagajewicz MJ, Manousiouthakis V (1992) Mass/heat-exchange network representation of distillation networks. AIChE J 11:1769–1800

    Article  Google Scholar 

  45. Brooke A, Kendrik D, Meeraus A (1992) GAMS user’s guide. Boyd & Fraser Publishing Co, Danvers

    Google Scholar 

  46. Daichendt MM, Grossmann IE (1996) Integration of hierarchical decomposition and mathematical programming for the synthesis of process network. Compt Chem Eng 22:147–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elkamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saif, Y., Elkamel, A. (2013). Integration of Membrane Processes for Optimal Wastewater Management. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_2

Download citation

Publish with us

Policies and ethics