Skip to main content

A Stepwise Approach to Assess the Fate of Nitrogen Species in Agricultural Lowlands

  • Chapter
  • First Online:

Abstract

Nitrate leaching from agricultural lands is a worldwide concern, and in Europe, a large part of farmed areas is affected by nitrate pollution since decades. A comprehensive case study is given by the Pianura Padana lowland (Northern Italy), an intensively exploited area, which partly has been already declared vulnerable to nitrate from agricultural sources (WFD; 2000/60 CE). Although groundwater nitrate contamination is a well-known phenomenon, the key factors governing N transport and transformations, through the vadose zone to the water table, are far from being fully clarified. In order to untangle the complexity of the processes affecting nitrate leaching and define good fertilization practices, dedicated also to groundwater protection, it is crucial to pick a representative case study and apply a clear rationale and a stepwise approach on it. That is, first to perform a well-designed and continuous monitoring of physical and chemical parameters dedicated to properly estimate cumulative infiltration, which is an important parameter, especially in lowlands were the run-off is minimal. Besides, tracer tests have to be used to quantify the field velocity and the dispersion coefficient to determine the conservative mass transfer. As second step, parallel tests on other relevant soil parameters have to be conducted at different scales in a laboratory controlled environment (e.g. batch test leaking, 1D columns elution and 3D tank experiments) in order to gain the necessary flow and transport parameters for the quantification of the reactive mass transfer. Finally, a numerical assessment via forward and inverse modelling, based on the achieved parameters, can be performed to quantify indirectly other biological functions that are involved in the complex fate of nitrogen species and nitrate. The presented results follow the proposed stepwise approach and end up with some practical operative guidelines transferred into agricultural practice for the reduction of nitrate pollution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  2. Mulholland PJ, Helton AM, Poole GC, Hall RO (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205

    Article  CAS  Google Scholar 

  3. Yang J, He Z, Yang Y, Stoffella P, Yang X, Banks DM, Mishra S (2007) Use of amendments to reduce leaching loss of phosphorous and other nutrients from a sandy soil in Florida. Environ Sci Pollut Res 14(4):266–269

    Article  CAS  Google Scholar 

  4. Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39(1):3–16

    Article  CAS  Google Scholar 

  5. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  6. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:421–4232

    Article  Google Scholar 

  7. Nixon S (1995) Coastal marine eutrophication: a definition, social causes and future concerns. Ophelia 41:199–219

    Google Scholar 

  8. Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112

    Google Scholar 

  9. Nolan BT, Hitt KJ, Ruddy BC (2002) Probability of NO3- contamination of recently recharged groundwaters in the conterminous United States. Environ Sci Technol 36(10):2138–2145

    Article  CAS  Google Scholar 

  10. Foster SSD (2000) Assessing and controlling the impacts of agriculture on groundwater – from barley barons to beef bans. Q J Eng Geol Hydrogeol 33(4):263–280

    Article  Google Scholar 

  11. Höring H, Chapman D (2004) NO3-s and nitrites in drinking water. In: World Health Organization drinking water series. IWA Publishing, London

    Google Scholar 

  12. Fan AM, Steinberg VE (1996) Health implications of nitrate and nitrite in drink water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharmacol 23:35–43

    Article  CAS  Google Scholar 

  13. Dorsch MM, Scragg RKR, McMichael AJ, Baghurst PA, Dyer KF (1984) Congenital malformations and maternal drinking water supply in rural South Australia – a case-control study. Am J Epidemiol 119:474–486

    Google Scholar 

  14. Ward MH, Mark SD, Cantor KP, Weisenburger DD, Correa-Villasenor A, Zahm SH (1996) Drinking water nitrate and the risk of non-Hodgkin’s lymphoma. Epidemiology 7(5):465–471

    Article  CAS  Google Scholar 

  15. Thompson RB, Martinez-Gaitan C, Gallardo M, Gimenez C, Fernandez MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manage 89:261–274

    Article  Google Scholar 

  16. Angelopoulos K, Spiliopoulos IC, Mandoulaki A, Theodorakopoulou A, Kouvelas A (2009) Groundwater nitrate pollution in northern part of Achaia Prefecture. Desalination 248:852–858

    Article  CAS  Google Scholar 

  17. Möller A, Altfelder S, Moeller HW, Darwish T, Abdelgawad G (2003) A guide to sustainable nitrogen management in agricultural practices, vol 8. ACSAD, BGR and CNRS/L. 90 p

    Google Scholar 

  18. Mahvi AH, Nouri J, Babaei A, Nabizadeh R (2005) Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol 2(1):41–47

    CAS  Google Scholar 

  19. Ju T, Kou L, Zhang S, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143(1):117–125

    Article  CAS  Google Scholar 

  20. Halwani J, Ouddane B, Baoudi M, Wartel M (1999) Contamination par les nitrates des eaux souterraines de la plaine d’Akkar au Liban du Nord. Cahiers Santé 9:219–223

    CAS  Google Scholar 

  21. Ray C (2001) Managing nitrate problems for domestic wells in irrigated alluvial aquifers. J Irrig Drain Eng 127(1):49–53

    Article  Google Scholar 

  22. Kay P, Edwards AC, Foulger M (2009) A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry. Agr Syst 99(2–3):67–75

    Article  Google Scholar 

  23. Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38(7):10.1–10.26

    Article  Google Scholar 

  24. Wriedt G, Rode M (2006) Modelling nitrate transport and turnover in a lowland catchment system. J Hydrol 328:157–176

    Article  CAS  Google Scholar 

  25. Thayalakumaran T, Bristow KL, Charlesworth PB, Fass T (2008) Geochemical conditions in groundwater systems: implications for the attenuation of agricultural nitrate. Agric Water Manage 95:103–115

    Article  Google Scholar 

  26. Tesoriero AJ, Liebscher H, Cox SE (2000) Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow paths. Water Resour Res 36(6):1545–1559

    Article  CAS  Google Scholar 

  27. Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229

    Article  CAS  Google Scholar 

  28. Coyne MS (2008) Biological denitrification. In: Schepers JS, Raun W (eds) Nitrogen in agricultural systems. ASA-CSSSA-SSSA Agronomy monograph, vol 49. Madison, WI, pp 197–249

    Google Scholar 

  29. Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010) Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecol Eng. doi:10.1016/j.ecoleng.2010.04.008

  30. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090

    Article  CAS  Google Scholar 

  31. Barnes RT, Raymond PA (2010) Land-use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis. Ecol Appl 20(7):1961–1978

    Article  Google Scholar 

  32. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  33. Brye KR, Norman JM, Bundy LG, Gower ST (2001) Nitrogen and carbon leaching in agroecosystems and their role in denitrification potential. J Environ Qual 30:58–70

    Article  CAS  Google Scholar 

  34. Jarvis NJ (1994) MACRO, a model of water movement and solute transport in macroporous soils. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  35. RZWQM Development Team: Hanson JD, Ahuja LR, Shaffer MD, Rojas KW, De Coursey DG, Farahani H, Johnson K (1998) RZWQM: simulating the effects of management on water quality and crop production. Agric Syst 57:161–195

    Google Scholar 

  36. Jasson PE, Karlberg L (2004) Coupled heat and mass transfer model for soil-plant-atmosphere systems. COUP manual, 453 pp. Web site: http://www.lwr.kth.se/vara%20datorprogram/CoupModel/index.htm

  37. Šimunek J, Šejna M, Saito H, Sakai M, van Genuchten MTh (2008) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.0, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, p 315

    Google Scholar 

  38. Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559

    Article  CAS  Google Scholar 

  39. Manos B, Papathanasiou J, Bournaris T, Voudouris K (2010) A DSS for sustainable development and environmental protection of agricultural regions. Environ Monit Assess 164:43–52

    Article  CAS  Google Scholar 

  40. Manos B, Papathanasiou J, Bournaris T, Voudouris K (2010) A multicriteria model for planning agricultural regions within a context of groundwater rational management. J Environ Manage 91:1593–1600

    Article  CAS  Google Scholar 

  41. Voudouris K, Polemio M, Kazakis N, Sifaleras A (2010) An agricultural decision support system for optimal land use regarding groundwater vulnerability. Int J Info Syst Soc Change 1(4):66–79

    Article  Google Scholar 

  42. Aller L, Bennett T, Lehr JH, Petty RJ (1985) Drastic: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. EPA/600/2-85/018. U.S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development

    Google Scholar 

  43. Civita M, De Maio M (1997) SINTACS – Un sistema parametrico per la valutazione e la cartografia della vulnerabilità degli acquiferi all”nquinamento. Quaderni di tecniche di protezione ambientale, n. 60. Pitagora Editrice, Bologna

    Google Scholar 

  44. Petelte-Giraude E, Dorfliger N, Crochet P (2000) RISKE: Methode d’evaluation multicritere de la cartographie de la vulnerabilite des aquiferes karstiques. Applications aux systemes des Fontanilles et Cent-Fonts (Herault, France). Hydrogeologie 4:71–88

    Google Scholar 

  45. Zwahlen F (2003) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Eur Comm Cost Act 620:42

    Google Scholar 

  46. Aveline A, Rousseau ML, Guichard L, Laurent M, Bockstaller C (2009) Evaluating an environmental indicator: case study of MERLIN, a method for assessing the risk of nitrate leaching. Agric Syst 100:22–30

    Article  Google Scholar 

  47. Carey MA, Lloyd JW (1985) Modelling non-point sources of nitrate pollution of groundwater in the Great Ouse Chalk, UK. J Hydrol 78:83–106

    Article  CAS  Google Scholar 

  48. Pierce FJ, Shaffer MJ, Brodhal MK (1991) Spatial distribution of NO3 leaching risk to water supplies under cropland using NLEAP and GRASS GIS. American Society of Agronomy, Madison, p 297

    Google Scholar 

  49. Shaffer MJ, Wylie BK, Hall MD (1995) Identification and mitigation of nitrate leaching hot spots using NLEAP–GIS technology. J Contam Hydrol 20:253–263

    Article  CAS  Google Scholar 

  50. Birkinshaw SJ, Ewen J (2000) Nitrogen transformation component for SHETRAN catchment nitrate transport modelling. J Hydrol 230:1–17

    Article  CAS  Google Scholar 

  51. Lasserre F, Razack M, Banton O (1999) A GIS-linked model for the assessment of nitrate contamination in groundwater. J Hydrol 224(3–4):81–90

    Article  CAS  Google Scholar 

  52. Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (1999) Large scale modeling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140

    Article  CAS  Google Scholar 

  53. De Paz JM, Ramos C (2002) Linkage of a geographical information system with the GLEAMS model to assess nitrate leaching in agricultural areas. Environ Pollut 118:249–258

    Article  Google Scholar 

  54. De Paz JM, Delgado JA, Ramos C, Shaffer MJ, Barbarick KK (2009) Use of a new GIS nitrogen index assessment tool for evaluation of nitrate leaching across a Mediterranean region. J Hydrol 365:183–194

    Article  Google Scholar 

  55. Cinnirella S, Buttafuoco G, Pirronea N (2005) Stochastic analysis to assess the spatial distribution of groundwater NO3- concentrations in the Po catchment (Italy). Environ Pollut 133:569–580

    Article  CAS  Google Scholar 

  56. Onorati G, Di Meo T, Bussettini M, Fabiani C, Farrace MG, Fava A, Ferronato A, Mion F, Marchetti G, Martinelli A, Mazzoni M (2006) Groundwater quality monitoring in Italy for the implementation of the EU water framework directive. Phys Chem Earth 31:1004–1014

    Article  Google Scholar 

  57. Mastrocicco M, Colombani N, Castaldelli G, Jovanovic N (2011) Monitoring and modeling nitrate persistence in a shallow aquifer. Water Air Soil Pollut 217(1–4):83–93

    Article  CAS  Google Scholar 

  58. Mastrocicco M, Colombani N, Palpacelli S, Castaldelli G (2011) Large tank experiment on nitrate fate and transport: the role of permeability distribution. Environ Earth Sci 63(5):903–914

    Article  CAS  Google Scholar 

  59. Mastrocicco M, Colombani N, Salemi E, Castaldelli G (2011) Reactive modeling of denitrification in soils with natural and depleted organic matter. Water Air Soil Pollut 222(1–4):205–215

    Article  CAS  Google Scholar 

  60. Provini A, Crosa G, Marchetti R (1992) Nutrient export from the Po and Adige river basin over the last 20 years. Sci Total Environ 127(Suppl):291–313

    Google Scholar 

  61. Palmieri L, Bendoricchio G, Artioli Y (2005) Modelling nutrient emissions from river systems and loads to the coastal zone: Po River case study, Italy. Ecol Model 184:37–53

    Article  Google Scholar 

  62. Gavilan P, Berengena J, Allen RG (2007) Measuring versus estimating net radiation and soil heat flux: impact on Penman–Monteith reference ET estimates in semiarid regions. Agric Water Manage 89:275–286

    Article  Google Scholar 

  63. Lenka S, Singh AK, Lenka NK (2009) Water and nitrogen interaction on soil profile water extraction and ET in maize–wheat cropping system. Agric Water Manage 96:195–207

    Article  Google Scholar 

  64. Drexler JZ, Snyder RL, Spano D, Paw KT (2005) A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Process 18:2071–2101

    Article  Google Scholar 

  65. Sharma ML (1985) In: Hillel D (ed) Estimating evapotranspiration, vol 3, Advances in irrigation. Academic, New York, pp 213–281

    Google Scholar 

  66. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and drainage paper, 56, FAO, Rome

    Google Scholar 

  67. Berengena J, Gavilàn P (2005) Reference ET estimation in a highly advective semi-arid environment. J Irrig Drain Eng ASCE 131(2):147–163

    Article  Google Scholar 

  68. Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. In: ASCE manual no. 70. ASCE, New York

    Google Scholar 

  69. Passioura JB (2002) Environmental biology and crop improvement Funet. Plant Biol 29:537–546

    Google Scholar 

  70. Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A, Escadafal R, Ezzahar J, Hoedies JCB, Kharrou MH, Khabba S, Mougenot B, Olioso A, Rodriguez JC, Simonneaux V (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manage 79:1–27

    Article  Google Scholar 

  71. Klute A (1986) Methods of soil analysis, vol 9(1), 2nd edn, Agronomy. American Society of Agronomy, Madison

    Google Scholar 

  72. Ryden JL, Lund L, Focht D (1978) Direct in-field measurement of nitrous oxide flux from soils. Soil Sci Soc Am J 42:731–737

    Article  CAS  Google Scholar 

  73. Schjørring JK (1995) Long-term quantification of ammonia exchange between agricultural cropland and the atmosphere – I. Evaluation of a new method based on passive flux samplers in gradient configuration. Atmos Environ 29:885–893

    Article  Google Scholar 

  74. Stanhill G (1969) A simple instrument for the field measurement of turbulent flux. J Appl Meteorol 8:509–513

    Article  Google Scholar 

  75. Mastrocicco M, Colombani N, Salemi E, Vincenzi F, Castaldelli G (2012) The role of the unsaturated zone in determining nitrate leaching to groundwater. In: Zuber A, Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. CRC Press, Leiden. ISBN 9780415698412

    Google Scholar 

  76. Mastrocicco M, Colombani N, Palpacelli S (2009) Fertilizers mobilization in alluvial aquifer: laboratory experiments. Environ Geol 56(7):1371–1381

    Article  CAS  Google Scholar 

  77. Schuwirth N, Hofmann T (2006) Comparability of and alternatives to leaching tests for the assessment of the emission of inorganic soil contamination. J Soils Sediments 6(2):102–112

    Article  CAS  Google Scholar 

  78. Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

    Article  Google Scholar 

  79. Mastrocicco M, Colombani N, Salemi E, Castaldelli G (2010) Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands. Agric Water Manage 97(9):1389–1398

    Article  Google Scholar 

  80. Mastrocicco M, Vignoli G, Colombani N, Abu Zeid N (2010) Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environ Earth Sci 61(2):311–322

    Article  Google Scholar 

  81. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  82. Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Pudoc, Wageningen

    Google Scholar 

  83. Food and Agriculture Organization of the United Nations (1990) Expert consultation on revision of FAO methodologies for crop water requirements, ANNEX V, FAO Penman-Monteith Formula, Rome, Italy

    Google Scholar 

  84. Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of Eto under nonideal conditions. J Irrig Drain 123(5):394–400

    Article  Google Scholar 

  85. Turk L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49

    Google Scholar 

  86. Aschonitis VG, Mastrocicco M, Colombani N, Salemi E, Kazakis N, Voudouris K, Castaldelli G (2012) Assessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses, via deterministic approach and regression analysis. Water Air Soil Pollut 223(4):1605–1614

    Article  CAS  Google Scholar 

  87. Salemi E, Colombani N, Aschonitis V, Mastrocicco M (2011) Assessment of groundwater nitrogen contamination risk using LOS indices in the Ferrara Province, Italy. In: Advances in the research of aquatic environment, vol 2. Springer, Berlin. doi:10.1007/978-3-642-24076-8

    Google Scholar 

  88. Knisel WG, Davis FM (2000) GLEAMS, Groundwater Loading Effects from Agricultural Management Systems V3.0. Publ. No. SEWRL-WGK/FMD-050199, U.S.D.A., Tifton, Georgia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micòl Mastrocicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mastrocicco, M., Colombani, N., Castaldelli, G. (2013). A Stepwise Approach to Assess the Fate of Nitrogen Species in Agricultural Lowlands. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_15

Download citation

Publish with us

Policies and ethics