Skip to main content

Creep-Fatigue-Oxidation Interactions

  • Chapter
  • First Online:
  • 6676 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 191))

Abstract

The fracture maps of Ashby display the various modes of creep fracture. Creep damage results from the nucleation of cavities on grain boundaries. Viscoplastic deformation can be the controlling mechanism. Hull and Rimmer model is at the basis of diffusion controlled nucleation. Viscoplasticity and diffusion can be coupled in the nucleation of creep cavities. Furthermore, overall deformation can constrain this phenomenon. The Monkman-Grant law is a phenomenological expression relating the time to fracture to the strain rate. Time to fracture contours in multiaxial loadings are found to lie between the von Mises and the maximum stress criteria. Continuous damage mechanics was introduced to predict creep fracture. This is exemplified by the cases of copper, Nimonic 80A and austenitic stainless steels. The behaviour of three types of alloys, 9–12 Cr steel, austenitic stainless steel and Ni-base superalloys, is explained by creep-fatigue-oxidation interactions. Various engineering methods allow predicting the creep fatigue life: limit load analysis, crack initiation and propagation related to the stress intensity factor in the case of creep brittle materials and to the C * parameter in the case of creep ductile materials, frequency modified fatigue life prediction, strain range partitioning, linear and nonlinear damage accumulation. Long crack propagation is linked with creep-fatigue interactions. Thermal barriers coatings and ceramic matrix composites are two examples of high temperature materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Nicholas J. Grant (1916–2004) was professor at MIT.

  2. 2.

    Lazar Markovich Kachanov (1914–1993) was a Russian scientist.

  3. 3.

    Yuri Nikolaevich Rabotnov (1914–1985) was a Russian scientist.

  4. 4.

    This surface fraction was denoted previously f b. We prefer to use here another notation, because in the CDM approach, damage defined by D has not necessarily a clear physical meaning.

References

  • Ainsworth RA, Chell GC, Coleman MC, Goodall IW, Gooch DJ, Haigh JR, Kimmins ST, Neate GJ (1987) CEGB assessment procedure for defects in plants operating in the creep ranges. Fatigue Fract Eng Mater Struct 10:115–127

    Article  Google Scholar 

  • Antolovich SD, Pineau A (2010) High temperature fatigue. In: Bathias C, Pineau A (eds) Fatigue of materials and structures – application to damage and design. ISTE-Wiley, Hoboken, pp 1–130

    Google Scholar 

  • Antolovich SD, Liu S, Baur R (1981) Low cycle fatigue behaviour of René 80 at elevated temperature. Metall Trans 12A:473–481

    Google Scholar 

  • Argence D, Pineau A (1996) Prediction metallurgy applied to creep-fatigue damage of austenitic stainless steels. In: Hondros EH, McLean M (eds) Structural materials: engineering application through scientific insight. The Institute of Materials, The University Press, Cambridge, pp 229–257

    Google Scholar 

  • Argon AS (1982) Mechanisms and mechanics of fracture in creeping alloys. In: Wilshire B, Owen DRJ (eds) Recent advances in creep and fracture of engineering materials and structures. Pineridge Press, Swansea, pp 1–52

    Google Scholar 

  • Argon AS, Chen IW, Lau CW (1980) Intergranular cavitation in creep: theory and experiments. In: Pelloux RM, Stoloff NS (eds) Creep-fatigue-environment interactions. Conference proceedings. The Metallurgical Society of AIME, Warrendale, PA, pp 46–83

    Google Scholar 

  • Armas AF, Petersen C, Schmitt R, Avalos M, Alvarez I (2004) Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels. J Nucl Mater 329–333:252–256

    Article  Google Scholar 

  • Ashby MF (1977) Progress in the development of fracture-mechanism maps. In: Taplin DMR (ed) Advances in research on the strength and fracture of materials, vol 1. Pergamon Press, New York, pp 1–14

    Google Scholar 

  • Ashby MF (1983) Mechanisms of deformation and fracture. Advances in Appl Mech 23:117–177

    Google Scholar 

  • Ashby MF, Raj R (1975) Creep fracture: the mechanics and physics of fracture. The Metal Society, London, pp 148–158

    Google Scholar 

  • Ashby MF, Gandhi C, Taplin DMR (1979) Overview N°3. Fracture-mechanism maps and their construction for FCC metals and alloys. Acta Metall 27:699–729

    Article  Google Scholar 

  • ASME (2001) Section III div 1 sub-section NH. ASME, New York

    Google Scholar 

  • ASTM E1457-92 (1992) Standard test method for measurement of creep crack growth rates in metals. ASTM international, Wast Conshohocken, pp 1031–1043

    Google Scholar 

  • Auzoux Q, Allais L, Caes C, Girard B, Tournie I, Gourgues AF, Pineau A (2005) Intergranular damage in AISI 316L(N) austenitic stainless steel at 600°C: prestrain and multiaxial effects. Nucl Eng Des 235:2227–2245

    Article  Google Scholar 

  • Beere W (1981) Cavities and cracks in creep and fatigue. In: Gittus J (ed) Mechanism maps. Applied Science Publisher, New York, pp 29–57

    Google Scholar 

  • Bensussan P (1984) An experimental and theoretical study of creep crack growth in 2219 aluminum alloy. Ph.D. thesis, Massachusetts Institute of Technology, USA

    Google Scholar 

  • Bensussan P, Maas E, Pelloux R, Pineau A (1988) Creep crack initiation and propagation: fracture mechanics and local approach. J Press Vessel Technol 110:42–50

    Article  Google Scholar 

  • Boitier G, Chermant J-L, Vicens J (1999) Bridging at the nanometric scale in 2.5D Cf-SiC composites. Appl Compos Mater 6:279–287

    Article  Google Scholar 

  • Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Hopkins HG, Sewell MJ (eds) Mechanics of solids. The Rodney Hill 60th anniversary volume. Pergamon, Oxford, pp 13–45

    Google Scholar 

  • Busso EP, Qian ZQ (2006) A mechanistic study of microcracking in transversally isotropic ceramic-metal systems. Acta Mater 54:325–338

    Article  Google Scholar 

  • Busso EP, Evans HE, Wright L, McCartney LN, Nunn J, Osgerby S (2008) A software tool for lifetime prediction of thermal barrier coating systems. Mater Corros 59:556–565

    Article  Google Scholar 

  • Cane BJ (1982) Damage accumulation and failure criteria in creep brittle ferritic weldment structures, In: David SA, Slaughter GM (eds) Proceedings of the international conference on welding technology for energy applications, Gatlinburg, Tennessee. American Welding Society/Oak Ridge National Laboratory, Oak Ridge, pp 623–639

    Google Scholar 

  • Chabaud-Reytier M, Allais L, Poquillon D, Caes-Hogrel C, Mottot M, Pineau A (2001) Modelling creep damage in heat affected zone in 321 stainless steel. Part I: Quantitative study of intergranular damage. Mater High Temp 18:71–80

    Article  Google Scholar 

  • Chaboche J-L (2011) Cumulative damage. In: Bathias C, Pineau A (eds) Fatigue of materials and structures: application to design ISTE London. Wiley, New York, pp 47–110

    Google Scholar 

  • Chen IW, Argon AS (1979) Grain boundary and interphase boundary sliding in power law creep. Acta Metall 27:749–754

    Article  Google Scholar 

  • Chen IW, Argon AS (1981) Diffusive growth of grain-boundary cavities. Acta Metall 29:1759–1768

    Article  Google Scholar 

  • Chermant J-L, Boitier G, Darzens S, Farizy G, Vicens J, Sangleboeuf J-C (2002) The creep mechanism of ceramic matrix composites at low temperature and stress by a material science approach. J Eur Ceram Soc 22:2443–2460

    Article  Google Scholar 

  • Chuang TJ, Kagawa KI, Rice JR, Sills LB (1979) Non equilibrium models for diffusive cavitation of grain interfaces. Acta Metall 27:265–284

    Article  Google Scholar 

  • Cocks ACF, Ashby MF (1980) Intergranular fracture during power-law creep under multiaxial stress. Metal Sci J 14:395–402

    Article  Google Scholar 

  • Cocks ACF, Ashby MF (1982a) Creep fracture by coupled power-law creep and diffusion under multiaxial stress. Metal Sci J 16:465–474

    Article  Google Scholar 

  • Cocks ACF, Ashby MF (1982b) On creep fracture by void growth. Prog Mater Sci 27:189–244

    Article  Google Scholar 

  • Coffin LF (1972) Fatigue. In: Huggins RA (ed) Fatigue annual review of materials science, vol 2. Annual Reviews Inc, Palo Alto, pp 313–348

    Google Scholar 

  • Dyson BF (1976) Constraints on diffusional cavity growth rates. Metal Sci 10:349–353

    Article  Google Scholar 

  • Dyson BF (1979) Constrained cavity growth, its use in quantifying recent creep fracture results. Can Metal Quart 18:31–38

    Article  Google Scholar 

  • Dyson BF, McLean D (1977) Creep of Nimonic 80A in torsion and tension. Metal Sci J 11:37–45

    Article  Google Scholar 

  • Dyson BF, Rodgers MJ (1977) Intergranular creep fracture in Nimonic 80A under conditions of constant cavity density. In: Taplin DMR (ed) Fracture 1977, vol 2. University of Waterloo Press, Waterloo, pp 621–626

    Google Scholar 

  • Eggeler G (1991) Microstructural parameters for creep damage quantification. Acta Metal Mater 39:221–231

    Article  Google Scholar 

  • Evans RW, Wilshire B (1985) Creep of metals and alloys. Institute of Metals, London

    Google Scholar 

  • Fields RJ, Weerasooriya T, Ashby MF (1980) Fracture mechanisms in pure iron, two austenitic steels, and on one ferritic steel. Metall Trans 11A:333–347

    Google Scholar 

  • Fournier B (2007) Fatigue-fluage des aciers martensitiques à 9–12%Cr: Comportement et endommagement. Ph.D. thesis, Ecole des Mines de Paris, France

    Google Scholar 

  • Fournier B, Sauzay M, Caes C, Noblecourt M, Mottot M (2006) Analysis of the hysteresis loops of a martensitic steel. Part I: Study of the influence of strain amplitude and temperature under fatigue loadings using an enhanced stress partitioning method. Mater Sci Eng A437:183–196

    Google Scholar 

  • Fournier B, Sauzay M, Caes C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Pineau A (2008a) Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensite steels. Part I: Effect of tensile hold period on fatigue lifetime. Int J Fatigue 30:649–662

    Article  Google Scholar 

  • Fournier B, Sauzay M, Caes C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Pineau A (2008b) Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part II: Effect of compressive holding period on fatigue lifetime. Int J Fatigue 30:663–676

    Article  Google Scholar 

  • Fournier B, Sauzay M, Caes C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Man J, Gillia O, Lemoine P, Pineau A (2008c) Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction. Int J Fatigue 30:1797–1812

    Article  Google Scholar 

  • Fournier B, Sauzay M, Caes C, Noblecourt M, Mottot M, Allais L, Tournie I, Pineau A (2009a) Creep fatigue interactions in a 9%Cr-1Mo martensitic steel – Part I: Mechanical test results. Metall Mater Trans A 40A:321–329

    Article  Google Scholar 

  • Fournier B, Sauzay M, Barcelo F, Rauch E, Renault A, Cozzika T, Dupuy L, Pineau A (2009b) Creep-fatigue interactions in a 9%Cr-1Mo martensitic steel – Part II: Microstructural observations. Metall Mater Trans A 40A:330–341

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  • Hales R (1980) A quantitative metallographical assessment of structural degradation of type 316 stainless steel during creep-fatigue. Fatigue Fract Eng Mater Struct 3:339–356

    Article  Google Scholar 

  • Hanna MD, Greenwood GW (1982) Cavity growth and creep in copper at low stresses. Acta Metall 30:719–724

    Article  Google Scholar 

  • Hayhurst DR, Trampazynski WA, Leckie FA (1983) On the role of cavity nucleation in creep deformation and fracture. Acta Metall 31:1537–1542

    Article  Google Scholar 

  • Huang Y (1991) Accurate dilatation rates for spherical voids in triaxial stress fields. J Appl Mech 58:1084–1085

    Article  Google Scholar 

  • Hull D, Rimmer DE (1959) The growth of grain boundary voids under stress. Philos Mag 4:673–687

    Article  Google Scholar 

  • Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31

    Google Scholar 

  • Laiarinandrasana L (1994) Amorçage de fissure à haute température dans un acier inoxydable austénitique. Ph.D. thesis, Ecole des Mines de Paris, France

    Google Scholar 

  • Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metall 25:1059–1070

    Article  Google Scholar 

  • Lemaitre J, Chaboche J-L (1985) Mécanique des matériaux solides. Dunod, Paris

    Google Scholar 

  • Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lerch BA, Jayaraman N, Antolovich SD (1984) A study of fatigue damage mechanisms in Waspaloy from 25 to 800°C. Mater Sci Eng 66:151–166

    Article  Google Scholar 

  • Levaillant C, Pineau A (1982) Assessment of high-temperature low-cycle fatigue of austenitic stainless steels by using intergranular damage as correlating parameter. In: Amzallag C, Leis BN, Rabbe P (eds) Low-cycle fatigue and life prediction. ASTM STP 770. American Society for Testing and Materials, Philadelphia, pp 169–193

    Google Scholar 

  • Levaillant C, Grattier J, Mottot M, Pineau A (1988) Creep and creep-fatigue intergranular damage in austenitic stainless steels: discussion of the creep-dominated regime. In: Salomon HD, Halford GR, Kaisant LR, Leis BN (eds) Low-cycle fatigue. ASTM STP 942. American Society for Testing and Materials, Philadelphia, pp 414–437

    Google Scholar 

  • Maiya PS, Majumdar S (1977) Elevated temperature low cycle fatigue behaviour of different heats of type 304 stainless steel. Metall Trans 8A:1651–1660

    Google Scholar 

  • Manson SS (1965) Fatigue: a complex subject – some simple approximations. Exp Mech 5:193–226

    Article  Google Scholar 

  • Manson SS, Halford GR, Hirschberg MH (1971) Creep-fatigue analysis by strain-range partitioning. Symposium on design for elevated temperature environment. ASME, New York, pp 12–28

    Google Scholar 

  • Miller DA, Langdon TC (1979) Creep fracture maps for 316 stainless steel. Metall Trans 10A:1635–1641

    Google Scholar 

  • Monkman FC, Grant NJ (1956) Empirical relation between rupture life and minimum creep rate in creep-rupture tests. Proc ASTM 56:955–967

    Google Scholar 

  • Motto M, Petrequin P, Amzallag C, Rabbe P, Grattier J, Masson SH (1982) Behavior in fatigue relaxation of a high creep resistant type 316L stainless steel. In: Low cycle fatigue and life prediction. ASTM STP 770. ASTM, Philadelphia, pp 152–168

    Google Scholar 

  • Mura T (1994) A theory of fatigue crack initiation. Mater Sci Eng A 176:61–70

    Article  Google Scholar 

  • Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170

    Article  Google Scholar 

  • Naslain R, Rossignol JY, Hagenmuller P, Christin F, Héraud L, Choury JJ (1981) Synthesis and properties of new composite materials for high temperature applications based on carbon fibers and C-SiC or C-TiC hybrid matrices. Revue Chim Minérale 18:544–564

    Google Scholar 

  • Needham NG, Cane BJ (1983) Creep strain and rupture prediction by cavitational assessments in 2 1/4Cr-1Mo steel weldments In: Woodford DA (ed) Conference on advances in life prediction methods, Albany, NY. American Society of Mechanical Engineers, New York, pp 65–73

    Google Scholar 

  • Pédron J-P, Pineau A (1982) The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650°C under fatigue, creep and combined loading. Mater Sci Eng 56:143–156

    Article  Google Scholar 

  • Pineau A (1982) High temperature behaviour of engineering materials in relation to microstructure. In: Skelton RP (ed) Fatigue at high temperature. Applied Science Publishers, New York, pp 305–364

    Google Scholar 

  • Pineau A (1983a) Intergranular creep-fatigue crack growth in Ni-base alloys. Chapter 10. In: Flow and fracture at elevated temperature. ASME, Metals Park, pp 317–348

    Google Scholar 

  • Pineau A (1983b) High temperature fatigue creep-fatigue-oxidation interaction in relation to microstructure. Chapter 16. In: Larsson LH (ed) Subcritical crack growth due to fatigue, stress corrosion and creep. Elsevier Applied Science Publishers, London/New York, pp 483–530

    Google Scholar 

  • Pineau A (1992) Assessment procedures for defects in the creep range. In: Larsson LH (ed) High temperature structural design. ESIS 12. Mechanical Engineering Publications, pp 355–396

    Google Scholar 

  • Pineau A (1996a) Defect assessment procedures in the creep range. In: Moura-Branco C, Ritchie JR, Sklenicka V (eds) Mechanical behaviour of materials at high temperature. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 59–82

    Chapter  Google Scholar 

  • Pineau A (1996b) Fatigue and creep-fatigue behaviour of Ni-base superalloys: microstructural and environmental effects. In: Moura-Branco C, Ritchie JR, Sklenicka V (eds) Mechanical behaviour of materials at high temperature. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 135–154

    Chapter  Google Scholar 

  • Pineau A, Antolovich SD (2009) High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation. Eng Fail Anal 16:2668–2697

    Article  Google Scholar 

  • Poquillon D, Chabaud-Reytier M, Allais L, Pineau A (2001) Modelling creep damage in heat affected zone in 321 stainless steel. Part II: Application to creep crack initiation simulations. Mater High Temp 18:82–90

    Article  Google Scholar 

  • Rabotnov YN (1969) Creep problem in structural members. North Holland, Amsterdam

    Google Scholar 

  • Raj R (1978) Intergranular fracture in bicrystals. Acta Metall 26:341–349

    Article  Google Scholar 

  • Raj R, Ashby MF (1975) Intergranular fracture at elevated temperature. Acta Metall 23:653–666

    Article  Google Scholar 

  • RCC-MR (2002) Design and construction rules for mechanical components of FBR nuclear islands. AFCEN, Paris

    Google Scholar 

  • Remy L, Rezai-Aria F, Danzer R, Hoffelner W (1987) Evaluation of life prediction methods in high temperature fatigue low cycle fatigue. ASTM STP 942. ASTM, Philadelphia, pp 1115–1132

    Google Scholar 

  • Reuchet J, Remy L (1983a) Fatigue oxidation interaction in a superalloy – I: Application to life prediction in high temperature low cycle fatigue. Metall Trans 14A:141–149

    Google Scholar 

  • Reuchet J, Remy L (1983b) High temperature low cycle fatigue of Mar-M509 superalloy – II: The influence of oxidation at high temperature. Mater Sci Eng 58:32–43

    Google Scholar 

  • Rezgui B (1982) Interaction fatigue-fluage. Effet d’un temps de maintien de traction sur la résistance à la fatigue oligocyclique à 600°C d’un acier Z2CND 17-13 (AISI 316L). Ph.D. thesis, University of Paris XI, Paris, France

    Google Scholar 

  • Rice JR (1981) Constraints on the diffuse cavitation of isolated grain-boundary facts in creeping polycrystal. Acta Metall 29:675–681

    Article  Google Scholar 

  • Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  • Riedel H (1987) Fracture at high temperatures. In: Illschner B, Grant NJ (eds) MRE materials research and engineering. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Robinson EL (1952) Effect of temperature variation on the long time. Strength of steels. Trans ASME 74:777–781

    Google Scholar 

  • Saltsman JF, Halford GR (1988) An update of the total strain version of SRP. In: Salomon HD, Halford GR, Kaisand LR, Leiss BN (eds) Low cycle fatigue – directions for the future. ASTM STP 942. ASTM, Philadelphia, pp 329–341

    Google Scholar 

  • Skelton RP (1993) Damage factors during high temperature fatigue crack growth. In: Ainsworth RA, Skelton RP (eds) Behavior of defects at high temperatures. Mechanical Engineering Publications, London, pp 191–218

    Google Scholar 

  • Skelton RP (2008) Damage factors and upper bounds for interactive creep-fatigue crack growth. Mater High Temp 25:231–245

    Article  Google Scholar 

  • Speight MV, Beere W (1975) Vacancy potential and void growth on grain boundaries. Metall Sci 9:190–191

    Article  Google Scholar 

  • Spera DA (1973) Comparison of experimental and theoretical thermal fatigue lives for five nickel-base alloys. Fatigue at elevated temperature. ASTM STP 520. American Society for Testing and Materials, Philadelphia, pp 648–657

    Google Scholar 

  • Spindler MW (2004) The multiaxial creep ductility of austenitic stainless steels. Fatigue Fract Eng Mater Struct 27:273–281

    Article  Google Scholar 

  • Spindler MW (2007) An improved method for calculation of creep damage during creep-fatigue cycling. Mater Sci Technol 23:1461–1470

    Article  Google Scholar 

  • Taira S (1962) Lifetime of structures subjected to varying load and temperature. In: Hoff NJ (ed) Creep in structures. Springer, Berlin, pp 96–119

    Chapter  Google Scholar 

  • Tanaka K, Mura T (1981) A dislocation model for fatigue crack initiation. J Appl Mech 48:97–103

    Article  MATH  Google Scholar 

  • Tawancy HM, Al-Hadhrami LM (2011) Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing γ-γ′ platinum bond coats. J Eng Gas Turb Power Trans ASME 133:1–6

    Google Scholar 

  • Tawancy HM, Al-Hadhrami LM (2012) Comparative performance of a thermal barrier coating system utilizing platinum aluminide bond coat on alloys CMSX-4® and MARM® 002DS. J Eng Gas Turb Power Trans ASME 134:1–8

    Google Scholar 

  • Taylor MP, Evans HE, Busso EP, Qian ZQ (2006) Creep properties of a Pt-aluminide coating. Acta Mater 54:3241–3252

    Article  Google Scholar 

  • Tomkins B (1968) Fatigue crack propagation – an analysis. Philos Mag 18:1041–1066

    Article  Google Scholar 

  • Wareing J (1981) Creep-fatigue behaviour of four casts of type 316 stainless steel. Fatigue Fract Eng Mater Struct 4:131–145

    Article  Google Scholar 

  • Weiss J, Pineau A (1993) Fatigue and creep fatigue damage of austenitic stainless steels under multiaxial loadings. Metall Trans A 24A:2247–2261

    Google Scholar 

  • Wray PJ (1969) Strain-rate dependence of the tensile failure of a polycrystalline material of elevated temperatures. J Appl Phys 40:4018–4029

    Article  Google Scholar 

  • Yamaguchi K, Kanazawa K (1980) Influence of grain size on the low-cycle fatigue lives of austenitic stainless steels at high temperatures. Metall Trans A 11A:1692–1699

    Google Scholar 

  • Yoshida M, Levaillant C, Pineau A (1986) Metallographic measurement of creep intergranular damage and creep strain. Influence of stress state on critical damage at failure in an austenitic stainless steel. International conference on creep, Tokyo, Japan, April 14–18, pp 327–332

    Google Scholar 

  • Yoshida M, Levaillant C, Piques R, Pineau A (1990) Quantitative study of intergranular damage in an austenitic stainless steel on smooth and notched bars. In: Bensussan P (ed) High temperature fracture mechanisms and mechanics. Mechanical Engineering Publications, London, pp 3–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

François, D., Pineau, A., Zaoui, A. (2013). Creep-Fatigue-Oxidation Interactions. In: Mechanical Behaviour of Materials. Solid Mechanics and Its Applications, vol 191. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4930-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4930-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4929-0

  • Online ISBN: 978-94-007-4930-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics