Skip to main content

Targeting Cancer by Betulin and Betulinic Acid

  • Chapter
  • First Online:
Novel Apoptotic Regulators in Carcinogenesis
  • 679 Accesses

Abstract

Because of their selective cytotoxicity against many different tumor cell and their favorable therapeutic index, betuline, betulinic acid and many of their derivatives are very promising chemotherapeutic agents for the treatment and prevention of several diseases especially of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    PubMed  CAS  Google Scholar 

  • Aguirre MC, Delporte C, Backhouse N, Erazo S, Letelier ME, Cassels BK, Silva X, Alegria S, Negrete R (2006) Topical anti-inflammatory activity of 2 alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg Med Chem 14:5673–5677

    PubMed  CAS  Google Scholar 

  • Ahmad FB, Moghaddam MG, Basri M, Abdul Rahman MB (2010a) Enzymatic synthesis of betulinic acid ester as an anticancer agent: optimization study. Biocatal Biotransfor 28:192–200

    CAS  Google Scholar 

  • Ahmad FBH, Ghaffari M, Basri M, Rahman MBA (2010b) Spectroscopic data of 3-O-acetyl-betulinic acid: an antitumor reagent. Asian J Chem 22:3186–3192

    CAS  Google Scholar 

  • Ahmad FBH, Moghaddam MG, Basri M, Rahman MBA (2010c) Anticancer activity of 3-O-acylated betulinic acid derivatives obtained by enzymatic synthesis. Biosci Biotechnol Biochem 74:1025–1029

    PubMed  CAS  Google Scholar 

  • Aiken C, Chen CH (2005) Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med 11:31–36

    PubMed  CAS  Google Scholar 

  • Ammann JU, Haag C, Kasperczyk H, Debatin KM, Fulda S (2009) Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappa B inhibition. Int J Cancer 124:1301–1311

    PubMed  CAS  Google Scholar 

  • Andre N, Rome A, Carre M (2006) Antimitochondrial agents: a new class of anticancer agents. Arch Pediatr 13:69–75

    PubMed  CAS  Google Scholar 

  • Antimonova AN, Uzenkova NV, Petrenko NI, Shakirov MM, Shul’ts EE, Tolstikov GA (2011) Synthetic transformations of higher terpenoids: XXIV. Synthesis of cyanoethyl derivatives of lupane triterpenoids and their transformation into 1,2,4-oxadiazoles. Russ J Org Chem 47:589–601

    CAS  Google Scholar 

  • Bache M, Zschornak MP, Passin S, Kessler J, Wichmann H, Kappler M, Paschke R, Kaluderovic GN, Kommera H, Taubert H, Vordermark D (2011) Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 6:111

    PubMed  CAS  Google Scholar 

  • Ban HS, Minegishi H, Shimizu K, Maruyama M, Yasui Y, Nakamura H (2010) Discovery of carboranes as inducers of 20S proteasome activity. ChemMedChem 5:1236–1241

    PubMed  CAS  Google Scholar 

  • Bar FMA, Khanfar MA, Elnagar AY, Liu H, Zaghloul AM, Badria FA, Sylvester PW, Ahmad KF, Raisch KP, El Sayed KA (2009) Rational design and semisynthesis of betulinic acid analogues as potent topoisomerase inhibitors. J Nat Prod 72:1643–1650

    PubMed  CAS  Google Scholar 

  • Barthel A, Stark S, Csuk R (2008) Oxidative transformations of betulinol. Tetrahedron 64:9225–9229

    CAS  Google Scholar 

  • Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B, Basu M, Banerjee S (2003) Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of colo-205 and SKBR3 cells with: cis-platin, tamoxifen, melphalan, betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj J 20:563–577

    Google Scholar 

  • Bi Y, Xu JY, Wu XM, Ye WC, Yuan ST, Zhang LY (2007) Synthesis and cytotoxic activity of 17-carboxylic acid modified 23-hydroxy betulinic acid ester derivatives. Bioorg Med Chem Lett 17:1475–1478

    PubMed  CAS  Google Scholar 

  • Bishayee A, Ahmed S, Brankov N, Perloff M (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci 16:980–996

    PubMed  CAS  Google Scholar 

  • Boyle PJ, Ma R, Tuteja N, Banerjee S, Basu S (2006) Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP: IV. Modulation of replication complexes and glycolipid: glycosyltransferases. Glycoconj J 23:175–187

    PubMed  CAS  Google Scholar 

  • Braca A, Dal Piaz F, Marzocco S, Autore G, Vassallo A, De Tommasi N (2011) Triterpene derivatives as inhibitors of protein involved in the inflammatory process: molecules interfering with phospholipase A(2), cycloxygenase, and lipoxygenase. Curr Drug Targets 12:302–321

    PubMed  CAS  Google Scholar 

  • Brenner DE, Gescher AJ (2005) Cancer chemoprevention: lessons learned and future directions. Br J Cancer 93:735–739

    PubMed  CAS  Google Scholar 

  • Bringmann G, Saeb W, Assi LA, Francois G, Narayanan ASS, Peters K, Peters EM (1997) Betulinic acid: isolation from triphyophyllum peltatum and ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester. Planta Med 63:255–257

    PubMed  CAS  Google Scholar 

  • Chatterjee P, Pezzuto JM, Kouzi SA (1999) Glucosidation of betulinic acid by Cunninghamella species. J Nat Prod 62:761–763

    PubMed  CAS  Google Scholar 

  • Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT (2000) Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368. Appl Environ Microbiol 66:3850–3855

    PubMed  CAS  Google Scholar 

  • Chen LG, Willis SN, Wei A, Smith BJ et al (2005) Differential targeting of prosurvival BCl-2 proteins by their BH3-only ligands allow complementary apoptotic function. Mol Cell 17:393–403

    PubMed  CAS  Google Scholar 

  • Chintharlapalli S, Papineni S, Liu SX, Jutooru I, Chadalapaka G, Cho SD, Murthy RS, You YJ, Safe S (2007a) 2-Cyano-lup-1-en-3-oxo-20-oic acid, a cyano derivative of betulinic acid, activates peroxisome proliferator-activated receptor gamma in colon and pancreatic cancer cells. Carcinogenesis 28:2337–2346

    PubMed  CAS  Google Scholar 

  • Chintharlapalli S, Papineni S, Ramaiah SK, Safe S (2007b) Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res 67:2816–2823

    PubMed  CAS  Google Scholar 

  • Chintharlapalli S, Papineni S, Lei P, Pathi S, Safe S (2011) Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 11:371

    PubMed  CAS  Google Scholar 

  • Choi JY, Na M, Hwang IH, Lee SH, Bae EY, Kim BY, Ahn JS (2009) Isolation of betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory activity from the roots of saussurea lappa CBClarke. Molecules 14:266–272

    PubMed  CAS  Google Scholar 

  • Chou KJ, Fang HC, Chung HM, Cheng JS, Lee KC, Tseng LL, Tang KY, Jan CR (2000) Effect of betulinic acid on intracellular-free Ca2 levels in Madin Darby canine kidney cells. Eur J Pharmacol 408:99–106

    PubMed  CAS  Google Scholar 

  • Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L, Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S, Bandyopadhyay S, Majumder HK (2003) Dihydrobetulinic acid, induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med 9:26–36

    PubMed  CAS  Google Scholar 

  • Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114

    PubMed  CAS  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053

    PubMed  CAS  Google Scholar 

  • Csuk R, Schmuck K, Schäfer R (2006) A practical synthesis of betulinic acid. Tetrahedron Lett 47:8769–8770

    CAS  Google Scholar 

  • Csuk R, Barthel A, Kluge R, Ströhl D (2010a) Synthesis, cytotoxicity and liposome preparation of 28-acetylenic betulin derivatives. Bioorg Med Chem 18:7252–7259

    PubMed  CAS  Google Scholar 

  • Csuk R, Barthel A, Kluge R, Ströhl D, Kommera H, Paschke R (2010b) Synthesis and biological evaluation of antitumour-active betulin derivatives. Bioorg Med Chem 18:1344–1355

    PubMed  CAS  Google Scholar 

  • Csuk R, Barthel A, Schwarz S, Kommera H, Paschke R (2010c) Synthesis and biological evaluation of antitumor-active gamma-butyrolactone substituted betulin derivatives. Bioorg Med Chem 18:2549–2558

    PubMed  CAS  Google Scholar 

  • Csuk R, Barthel A, Sczepek R, Siewert B, Schwarz S (2011) Synthesis, encapsulation and antitumor activity of new betulin derivatives. Arch Pharm 344:37–49

    CAS  Google Scholar 

  • D’Souza GGM, Wagle MA, Saxena V, Shah A (2011) Approaches for targeting mitochondria in cancer therapy. Biochim Biophys Acta 1807:689–696

    PubMed  Google Scholar 

  • da Silva LLD, Nascimento MS, Cavalheiro AJ, Silva DHS, Castro-Gamboa I, Furlan M, Bolzani VD (2008) Antibacterial activity of labdane diterpenoids from Stemodia foliosa. J Nat Prod 71:1291–1293

    PubMed  Google Scholar 

  • Dathe S, Paasch U, Grunewald S, Glander HJ (2005) Mitochondrial damage in sperm caused by betulinic acid. Hautarzt 56:768–772

    PubMed  CAS  Google Scholar 

  • De Clercq E (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349

    PubMed  Google Scholar 

  • de Sa MS, Costa JFO, Krettli AU, Zalis MG, Maia GLD, Sette IMF, Camara CD, Barbosa JM, Giulietti-Harley AM, dos Santos RR, Soares MBP (2009) Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P-berghei-infected mice. Parasitol Res 105:275–279

    PubMed  Google Scholar 

  • Dehelean CA, Soica C, Peev C, Gruia AT, Seclaman E (2008) Physico-chemical and molecular analysis of antitumoral pentacyclic triterpenes in complexation with gamma-cyclodextrin. Rev Chim-Bucharest 59:887–890

    CAS  Google Scholar 

  • Dehelean CA, Soica C, Peev C, Ciurlea S, Feflea S, Kasa P (2011) A pharmaco-toxicological evaluation of betulinic acid mixed with hydroxipropilgamma cyclodextrin on in vitro and in vivo models. Farmacia 59:51–59

    CAS  Google Scholar 

  • Djoukeng JD, Abou-Mansour E, Tabacchi R, Tapondjou AL, Bouda H, Lontsi D (2005) Antibacterial triterpenes from Syzygium guineense (Myrtaceae). J Ethnopharmacol 101:283–286

    PubMed  CAS  Google Scholar 

  • Dominguez-Carmona DB, Escalante-Erosa F, Garcia-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, Gimenez-Turba A, Pena-Rodriguez LM (2010) Antiprotozoal activity of Betulinic acid derivatives. Phytomedicine 17:379–382

    PubMed  CAS  Google Scholar 

  • Drag-Zalesinska M, Kulbacka J, Saczko J, Wysocka T, Zabel M, Surowiak P, Drag M (2009) Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett 19:4814–4817

    PubMed  CAS  Google Scholar 

  • Eder-Czembirek C, Czembirek C, Erovic BM, Selzer E, Turhani D, Vormittag L, Thurnher D (2005) Combination of betulinic acid with cisplatin – different cytotoxic effects in two head and neck cancer cell lines. Oncol Rep 14:667–671

    PubMed  CAS  Google Scholar 

  • Eder-Czembirek C, Erovic BM, Czembirek C, Brunner M, Selzer E, Potter R, Thurnher D (2010) Betulinic acid a radiosensitizer in head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 186:143–148

    PubMed  Google Scholar 

  • Ehrhardt H, Fulda S, Fuhrer M, Debatin KM, Jeremias I (2004) Betulinic acid-induced apoptosis in leukemia cells. Leukemia 18:1406–1412

    PubMed  CAS  Google Scholar 

  • Ehrhardt H, Hofig I, Jeremias I (2009) Synergistic apoptosis induction by betulinic acid and established cytotoxic drugs in leukemia cells. Blood 114:1204–1204

    Google Scholar 

  • Eiznhamer DA, Xu ZQ (2004) Betulinic acid: a promising anticancer candidate. IDrugs 7:359–373

    PubMed  CAS  Google Scholar 

  • Ekman R (1983) The submarin monomers and triterpenoids from the outer bark of betula verrucosa EHRH. Holzforschung 37:205–211

    CAS  Google Scholar 

  • Espinoza JA, Paasch U, Villegas JV (2009) Mitochondrial membrane potential disruption pattern in human sperm. Hum Reprod 24:2079–2085

    PubMed  CAS  Google Scholar 

  • Falamas A, Pinzaru SC, Dehelean CA, Peev CI, Soica C (2011) Betulin and its natural resource as potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy. J Raman Spectrosc 42:97–107

    CAS  Google Scholar 

  • Flekhter OB, Karachurina LT, Poroikov VV, Nigmatullina LP, Baltina LA, Zarudii FS, Davydova VA, Spirikhin LV, Baikova IP, Galin FZ, Tolstikov GA (2000) Synthesis and hepatoprotective activity of esters of the lupane group triterpenoids. Bioorg Khim 26:215–223

    PubMed  CAS  Google Scholar 

  • Flekhter OB, Boreko EI, Nigmatullina LR, Pavlova NI, Nikolaeva SN, Savinova OV, Eremin VF, Baltina LA, Galin FZ, Tolstikov GA (2003a) Synthesis and antiviral activity of hydrazides and substituted benzalhydrazides of betulinic acid and its derivatives. Russ J Bioorg Chem 29:296–301

    CAS  Google Scholar 

  • Flekhter OB, Boreko EI, Nigmatullina LR, Tret’yakova EV, Pavlova NI, Baltina LA, Nikolaeva SN, Savinova OV, Galin FZ, Tolstikov GA (2003b) Synthesis and antiviral activity of ureides and carbamates of betulinic acid and its derivatives. Russ J Bioorg Chem 29:594–600

    CAS  Google Scholar 

  • Flekhter OB, Ashavina OY, Smirnova IE, Baltina LA, Galin FZ, Kabal’nova NN, Tolstikov GA (2004a) Selective oxidation of triterpene alcohols by sodium hypochlorite. Chem Nat Compd 40:141–143

    CAS  Google Scholar 

  • Flekhter OB, Boreko EI, Nigmatullina LR, Tret’yakova EV, Pavlova NI, Baltina LA, Nikolaeva SN, Savinova OV, Eremin VF, Galin FZ, Tolstikov GA (2004b) Synthesis and antiviral activity of betulonic acid amides and conjugates with amino acids. Russ J Bioorg Chem 30:80–88

    CAS  Google Scholar 

  • Flekhter OB, Medvedeva NI, Tret’yakova EV, Galin FZ, Tolstikov GA (2006) Synthesis of methyl esters of betulinic acid 2-deoxy-alpha-glycosides and 28-oxo-19,28-epoxyoleanane. Chem Nat Compd 42:706–709

    CAS  Google Scholar 

  • Fontanay S, Grare M, Mayer J, Finance C, Duval RE (2008) Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J Ethnopharmacol 120:272–276

    PubMed  CAS  Google Scholar 

  • Forstermann U, Li HG (2011) Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Brit J Pharmacol 164:213–223

    Google Scholar 

  • Fotie J, Bohle DS, Leimanis ML, Georges E, Rukunga G, Nkengfack AE (2006) Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J Nat Prod 69:62–67

    PubMed  CAS  Google Scholar 

  • Franke JC, Plotz M, Prokop A, Geilen CC, Schmalz HG, Eberle J (2010) New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem Pharmacol 79:575–586

    PubMed  CAS  Google Scholar 

  • Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9:1096–1107

    PubMed  CAS  Google Scholar 

  • Fulda S (2009) Betulinic acid: a natural product with anticancer activity. Mol Nutr Food Res 53:140–146

    PubMed  CAS  Google Scholar 

  • Fulda S (2010a) Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion 10:598–603

    PubMed  CAS  Google Scholar 

  • Fulda S (2010b) Modulation of apoptosis by natural products for cancer therapy. Planta Med 76:1075–1079

    PubMed  CAS  Google Scholar 

  • Fulda S, Debatin KM (2005) Sensitization for anticancer drug-induced apoptosis by betulinic acid. Neoplasia 7:162–170

    PubMed  CAS  Google Scholar 

  • Fulda S, Kroemer G (2009) Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 14:885–890

    PubMed  CAS  Google Scholar 

  • Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM (1997) Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 57:4956–4964

    PubMed  CAS  Google Scholar 

  • Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM (1998) Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem 273:33942–33948

    PubMed  CAS  Google Scholar 

  • Fulda S, Jeremias I, Pietsch T, Debatin KM (1999a) Betulinic acid: a new chemotherapeutic agent in the treatment of neuroectodermal tumors. Klin Padiatr 211:319–322

    PubMed  CAS  Google Scholar 

  • Fulda S, Jeremias I, Steiner HH, Pietsch T, Debatin KM (1999b) Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells. Int J Cancer 82:435–441

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Mitochondria as therapeutic targets for cancer therapy. Oncogene 25:4812–4830

    PubMed  CAS  Google Scholar 

  • Ganguly A, Das B, Roy A, Sen N, Dasgupta SB, Mukhopadhayay S, Majumder HK (2007) Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topolsomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer Res 67:11848–11858

    PubMed  CAS  Google Scholar 

  • Gao HY, Wu LJ, Kuroyanagi M, Harada K, Kawahara N, Nakane T, Umehara K, Hirasawa A, Nakamura Y (2003) Antitumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chem Pharm Bull 51:1318–1321

    PubMed  CAS  Google Scholar 

  • Gao Y, Jia ZL, Kong XY, Li Q, Chang DZ, Wei DY, Le XD, Huang SD, Huang SY, Wang LW, Xie KP (2011) Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res 71:5182–5193

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  CAS  Google Scholar 

  • Gupta PK, Kaskar B (2005) Novel synthetic analogs of betulinic acid and their biological activity. Abstr Pap Am Chem Soc 229:U185–U185

    Google Scholar 

  • Habila JD, Ndukwe GI, Amupitan JO, Nok AJ, Mikhail SA, Ladan Z (2010) 3 Beta-hydroxyllup-20(29)-en-28-oic acid: structural elucidation, candidosis and mold inhibition evaluation. J Med Plants Res 4:1933–1947

    CAS  Google Scholar 

  • Hänsel R, Keller K, Rimpler H, Schneider G (1992) Drogen A-D: Betula. Springer, Berlin

    Google Scholar 

  • Harmand PO, Duval R, Delage C, Simon A (2005) Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int J Cancer 114:1–11

    PubMed  CAS  Google Scholar 

  • Hata K, Hori K, Takahashi S (2002) Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line. J Nat Prod 65:645–648

    PubMed  CAS  Google Scholar 

  • Hata K, Hori K, Ogasawara H, Takahashi S (2003) Anti-leukemia activities of Lup-28-al-20(29)-en-3-one, a lupane triterpene. Toxicol Lett 143:1–7

    PubMed  CAS  Google Scholar 

  • Hess SC, Brum RL, Honda NK, Cruz AB, Moretto E, Cruz RB, Messana I, Ferrari F, Cechinel V, Yunes RA (1995) Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae). J Ethnopharmacol 47:97–100

    PubMed  CAS  Google Scholar 

  • Holy J, Lamont G, Perkins E (2006) Disruption of nucleocytoplasmic trafficking of cyclin D1 and topoisomerase II by sanguinarine. BMC Cell Biol 7:13

    PubMed  Google Scholar 

  • Holy J, Kolomitsyna O, Krasutsky D, Oliveira PJ, Perkins E, Krasutsky PA (2010) Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorg Med Chem 18:6080–6088

    PubMed  CAS  Google Scholar 

  • Huang L, Chen CH (2009) Proteasome regulators: activators and inhibitors. Curr Med Chem 16:931–939

    PubMed  CAS  Google Scholar 

  • Huang L, Ho P, Chen CH (2007) Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett 581:4955–4959

    PubMed  CAS  Google Scholar 

  • Hubner J, Spahn G (2009) Secondary plant products. Onkologe 15:1144

    Google Scholar 

  • Huyke C, Reuter J, Rodig M, Kersten A, Laszczyk M, Scheffler A, Nashan D, Schempp C (2009) Treatment of actinic keratoses with a novel betulin-based oleogel. A prospective, randomized, comparative pilot study. J Dtsch Dermatol Ges 7:128–133

    PubMed  Google Scholar 

  • Jager S, Winkler K, Pfuller U, Scheffler A (2007) Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med 73:157–162

    PubMed  Google Scholar 

  • Jager S, Trojan H, Kopp T, Laszczyk MN, Scheffler A (2009) Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts. Molecules 14:2016–2031

    PubMed  Google Scholar 

  • Jaggi M, Praveen R, Singh AT, Srivastava S, Singh M, Sanna V, Vardhan A, Siddiqui MJ, Agarwal SK, Mukherjee R (2006) Preclinical development of novel betulinic acid derivatives as potent anticancer and antiangiogenic agents for systemic administration. Eur J Cancer Suppl 4:157–157

    Google Scholar 

  • Jeong HJ, Chai HB, Park SY, Kim DSHL (1999) Preparation of amino acid conjugates of betulinic acid with activity against human melanoma. Bioorg Med Chem Lett 9:1201–1204

    PubMed  CAS  Google Scholar 

  • Jeremias I, Steiner HH, Benner A, Debatin KM, Herold-Mende C (2004) Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells. Acta Neurochir 146:721–729

    CAS  Google Scholar 

  • Ji ZN, Ye WC, Liu GG, Hsiao WLW (2002) 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sci 72:1–9

    PubMed  CAS  Google Scholar 

  • Jung GR, Kim KJ, Choi CH, Lee TB, Han SI, Han HK, Lim SC (2007) Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin Pharmacol Toxicol 101:277–285

    PubMed  CAS  Google Scholar 

  • Kanamoto T, Kashiwada Y, Kanbara K, Gotoh K, Yoshimori M, Goto T, Sano K, Nakashima H (2001) Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother 45:1225–1230

    PubMed  CAS  Google Scholar 

  • Karna E, Szoka L, Palka JA (2010) Betulinic acid inhibits the expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor in human endometrial adenocarcinoma cells. Mol Cell Biochem 340:15–20

    PubMed  CAS  Google Scholar 

  • Kim DSHL, Pezzuto JM, Pisha E (1998) Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg Med Chem Lett 8:1707–1712

    PubMed  CAS  Google Scholar 

  • Kim JY, Koo HM, Kim DSHL (2001) Development of C-20 modified betulinic acid derivatives as antitumor agents. Bioorg Med Chem Lett 11:2405–2408

    PubMed  CAS  Google Scholar 

  • Komissarova NG, Belenkova NG, Shitikova OV, Spirikhin LV, Yunusov MS (2005) Cyclopropanation of betulonic acid and its methyl ester with dichlorocarbene generated under phase transfer catalysis conditions. Russ Chem Bull 54:2659–2663

    CAS  Google Scholar 

  • Kommera H, Kaluderovic GN, Bette M, Kalbitz J, Fuchs P, Fulda S, Mier W, Paschke R (2010a) In vitro anticancer studies of alpha- and beta-D-glucopyranose betulin anomers. Chem Biol Interact 185:128–136

    PubMed  CAS  Google Scholar 

  • Kommera H, Kaluderovic GN, Dittrich S, Kalbitz J, Dräger B, Mueller T, Paschke R (2010b) Carbamate derivatives of betulinic acid and betulin with selective cytotoxic activity. Bioorg Med Chem Lett 20:3409–3412

    PubMed  CAS  Google Scholar 

  • Kommera H, Kaluderovic GN, Kalbitz J, Dräger B, Paschke R (2010c) Small structural changes of pentacyclic lupane type triterpenoid derivatives lead to significant differences in their anticancer properties. Eur J Med Chem 45:3346–3353

    PubMed  CAS  Google Scholar 

  • Kommera H, Kaluderovic GN, Kalbitz J, Paschke R (2010d) Synthesis and anticancer activity of novel betulinic acid and betulin derivatives. Arch Pharm 343:449–457

    CAS  Google Scholar 

  • Kommera H, Kaluderovic GN, Kalbitz J, Paschke R (2011) Lupane Triterpenoids-Betulin and Betulinic acid derivatives induce apoptosis in tumor cells. Invest New Drugs 29:266–272

    PubMed  CAS  Google Scholar 

  • Kouzi SA, Chatterjee P, Pezzuto JM, Hamann MT (2000) Microbial transformations of the antimelanoma agent betulinic acid. J Nat Prod 63:1653–1657

    PubMed  CAS  Google Scholar 

  • Kramer MP, Baumgartner RR, Atanasov AG, Dirsch VM, Heiss EH (2011) Betulinic acid enhances glucose uptake in 3T3L1 adipocytes after long term treatment. Planta Med 77:1434–1434

    Google Scholar 

  • Krasutsky PA (2006) Birch bark research and development. Nat Prod Rep 23:919–942

    PubMed  CAS  Google Scholar 

  • Kumar V, Rani N, Aggarwal P, Sanna VK, Singh AT, Jaggi M, Joshi N, Sharma PK, Irchhaiya R, Burman AC (2008) Synthesis and cytotoxic activity of heterocyclic ring-substituted betulinic acid derivatives. Bioorg Med Chem Lett 18:5058–5062

    PubMed  CAS  Google Scholar 

  • Kvasnica M, Sarek J, Klinotova E, Dzubak P, Hajduch M (2005) Synthesis of phthalates of betulinic acid and betulin with cytotoxic activity. Bioorg Med Chem 13:3447–3454

    PubMed  CAS  Google Scholar 

  • Kwon HJ, Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Yu J (2002) Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn J Cancer Res 93:417–425

    PubMed  CAS  Google Scholar 

  • La Ferla-Bruhl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, Fulda S (2007) NF-kappa B-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene 26:571–582

    PubMed  Google Scholar 

  • Lan P, Chen WN, Huang ZJ, Sun PH, Chen WM (2011a) Understanding the structure-activity relationship of betulinic acid derivatives as anti-HIV-1 agents by using 3D-QSAR and docking. J Mol Model 17:1643–1659

    PubMed  CAS  Google Scholar 

  • Lan P, Chen WN, Sun PH, Chen WM (2011b) 3D-QSAR studies on betulinic acid and betulin derivatives as anti-HIV-1 agents using CoMFA and CoMSIA. Med Chem Res 20:1247–1259

    CAS  Google Scholar 

  • Lan P, Wang J, Zhang DM, Shu C, Cao HH, Sun PH, Wu XM, Ye WC, Chen WM (2011c) Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives. Eur J Med Chem 46:2490–2502

    PubMed  CAS  Google Scholar 

  • Laszczyk MN (2009) Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 75:1549–1560

    PubMed  CAS  Google Scholar 

  • Laszczyk M, Jager S, Simon-Haarhaus B, Scheffler A, Schempp CM (2006) Physical, chemical and pharmacological characterization of a new oleogel-forming triterpene extract from the outer bark of birch (Betulae Cortex). Planta Med 72:1389–1395

    PubMed  CAS  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD et al (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    PubMed  CAS  Google Scholar 

  • Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A 100:13555–13560

    PubMed  CAS  Google Scholar 

  • Li Y, Shen JT, Gao C, Li Q, Jin YH (2010) Caspase-9 activation-critical for betulin-induced apoptosis of human hepatoma cells. Chem Res Chin Univ 26:792–797

    CAS  Google Scholar 

  • Li ZY, Zhu F, Hu JL, Peng G, Chen J, Zhang S, Chen X, Zhang RG, Chen LJ, Liu P, Luo M, Sun ZH, Ren JH, Huang LL, Wu G (2011) Sp1 inhibition-mediated upregulation of VEGF(165)b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549. Tumour Biol 32:677–687

    PubMed  CAS  Google Scholar 

  • Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan C, Gribble GW, Sporn MB (2007a) Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol Cancer Ther 6:2113–2119

    PubMed  CAS  Google Scholar 

  • Liby K, Royce DB, Williams CR, Risingsong R, Yore MM, Honda T, Gribble GW, Dmitrovsky E, Sporn TA, Sporn MB (2007b) The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res 67:2414–2419

    PubMed  CAS  Google Scholar 

  • Liu WK, Ho JCK, Cheung FWK, Liu BPL, Ye WC, Che CT (2004) Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line. Eur J Pharmacol 498:71–78

    PubMed  CAS  Google Scholar 

  • Liu EH, Qi LW, Wu Q, Peng YB, Li P (2009) Anticancer agents derived from natural products. Mini Rev Med Chem 9:1547–1555

    PubMed  CAS  Google Scholar 

  • Lu Q, Xia N, Xu H, Guo LJ, Wenzel P, Daiber A, Munzel T, Forstermann U, Li HG (2011) Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide 24:132–138

    PubMed  CAS  Google Scholar 

  • Ma CY, Musoke SF, Tan GT, Sydara K, Bouamanivong S, Southavong B, Soejarto DD, Fong HHS, Zhang HJ (2008) Study of antimalarial activity of chemical constituents from Diospyros quaesita. Chem Biodivers 5:2442–2448

    PubMed  CAS  Google Scholar 

  • Mafezoli J, Santos RHA, Gambardela MTP, Silveira ER (2003) Fatty acids and terpenoids from Trigonia fasciculata. J Brazil Chem Soc 14:406–410

    CAS  Google Scholar 

  • Martin DE, Blum R, Doto J, Galbraith H, Ballow C (2007) Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin Pharmacokinet 46:589–598

    PubMed  CAS  Google Scholar 

  • Mazimba O, Majinda RRT, Motlhanka D (2011) Antioxidant and antibacterial constituents from Morus nigra. Afr J Pharm Pharmacol 5:751–754

    CAS  Google Scholar 

  • Melzig MF, Bormann H (1998) Betulinic acid inhibits aminopeptidase N activity. Planta Med 64:655–657

    PubMed  CAS  Google Scholar 

  • Mikhailova LR, Khudobko MV, Baltina LA, Spirikhin LV, Kondratenko RM, Baltina LA (2009) Synthesis of new derivatives of 3 beta-hydroxy18 beta H-olean-9,12-dien-30-oic acid. Chem Nat Compd 45:393–397

    CAS  Google Scholar 

  • Mthembu XS, Van Heerden FR, Fouche G (2010) Antimalarial compounds from Schefflera umbellifera. S Afr J Bot 76:82–85

    CAS  Google Scholar 

  • Mukherjee R, Jaggi M, Rajendran P, Siddiqui MJA, Srivastava SK, Vardhan A, Burman AC (2004a) Betulinic acid and its derivatives as anti-angiogenic agents. Bioorg Med Chem Lett 14:2181–2184

    PubMed  CAS  Google Scholar 

  • Mukherjee R, Jaggi M, Rajendran P, Srivastava SK, Siddiqui MJA, Vardhan A, Burman AC (2004b) Synthesis of 3-O-acyl/3-benzylidene/3-hydrazone/3-hydrazine/17-carboxyacryloyl ester derivatives of betulinic acid as anti-angiogenic agents. Bioorg Med Chem Lett 14:3169–3172

    PubMed  CAS  Google Scholar 

  • Mukherjee R, Jaggi M, Siddiqui MJA, Srivastava SK, Rajendran P, Vardhan A, Burman AC (2004c) Synthesis and cytotoxic activity of 3-O-acyl/3-hydrazine/2-bromo/20,29-dibromo betulinic acid derivatives. Bioorg Med Chem Lett 14:4087–4091

    PubMed  CAS  Google Scholar 

  • Mullauer FB, Kessler JH, Medema JP (2010) Betulinic acid, a natural compound with potent anticancer effects. Anti-Cancer Drugs 21:215–227

    PubMed  CAS  Google Scholar 

  • Mullauer FB, van Bloois L, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kessler JH (2011) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-Cancer Drugs 22:223–233

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    PubMed  CAS  Google Scholar 

  • Nick A, Wright AD, Rali T, Sticher O (1995) Antibacterial triterpenoids from Dillenia-papuana and their structure-activity-relationships. Phytochemistry 40:1691–1695

    PubMed  CAS  Google Scholar 

  • Nobili S, Lippi D, Witort E, Donnini M, Bausi I, Mini E, Capaccioli S (2009) Natural compounds for cancer treatment and prevention. Pharmacol Res 59:365–378

    PubMed  CAS  Google Scholar 

  • Noungoue DT, Chaabi M, Ngouela S, Antheaume C, Boyom FF, Gut J, Rosenthal PJ, Lobstein A, Tsamo E (2009) Antimalarial compounds from the stem bark of Vismia laurentii. Z Naturforsch C 64:210–214

    PubMed  CAS  Google Scholar 

  • Ovesna Z, Vachalkova A, Horvathova K, Tothova D (2004) Pentacyclic triterpenoic acids: new chemoprotective compounds. Minireview. Neoplasma 51:327–333

    PubMed  CAS  Google Scholar 

  • Paffhausen T, Schwab M, Westermann F (2007) Targeted MYCN expression affects cytotoxic potential of chemotherapeutic drugs in neuroblastoma cells. Cancer Lett 250:17–24

    PubMed  CAS  Google Scholar 

  • Petrenko NI, Elantseva NV, Petukhova VZ, Shakirov MM, Shul’ts EE, Tolstikov GA (2002) Synthesis of betulonic acid derivatives containing amino-acid fragments. Chem Nat Compd 38:331–339

    CAS  Google Scholar 

  • Petronelli A, Pannitteri G, Testa U (2009) Triterpenoids as new promising anticancer drugs. Anti-Cancer Drugs 20:880–892

    PubMed  CAS  Google Scholar 

  • Pirnia F, Schneider E, Betticher DC, Borner MM (2002) Mitomycin C induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 9:905–914

    PubMed  CAS  Google Scholar 

  • Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CWW, Fong HHS, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Dasgupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human-melanoma that functions by induction of apoptosis. Nat Med 1:1046–1051

    PubMed  CAS  Google Scholar 

  • Pyo JS, Roh SH, Kim DK, Lee JG, Lee YY, Hong SS, Kwon SW, Park JH (2009) Anticancer effect of betulin on a human lung cancer cell line: a pharmacoproteomic approach using 2D SDS PAGE coupled with nano-HPLC tandem mass spectrometry. Planta Med 75:127–131

    PubMed  CAS  Google Scholar 

  • Qian LW, Zhang J, Liu JH, Yu BY (2009) Direct microbial-catalyzed asymmetric alpha-hydroxylation of betulonic acid by Nocardia sp NRRL 5646. Tetrahedron Lett 50:2193–2195

    CAS  Google Scholar 

  • Qian KD, Kim SY, Hung HY, Huang L, Chen CH, Lee KH (2011) New betulinic acid derivatives as potent proteasome inhibitors. Bioorg Med Chem Lett 21:5944–5947

    PubMed  CAS  Google Scholar 

  • Rabi T, Shukla S, Gupta S (2008) Betulinic acid suppresses constitutive and TNF alpha-induced NF-kappa B activation and induces apoptosis in human prostate carcinoma PC-3 cells. Mol Carcinog 47:964–973

    PubMed  CAS  Google Scholar 

  • Rajendran P, Jaggi M, Singh MK, Mukherjee R, Burman AC (2008) Pharmacological evaluation of C-3 modified Betulinic acid derivatives with potent anticancer activity. Invest New Drugs 26:25–34

    PubMed  CAS  Google Scholar 

  • Rieber M, Rieber MS (1998) Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol 17:399–406

    PubMed  CAS  Google Scholar 

  • Rieber M, Rieber MS (2006) Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 status. Int J Cancer 118:1135–1143

    PubMed  CAS  Google Scholar 

  • Saelens X, Festjens N, Vande Walle L, van Gurp M et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874

    PubMed  CAS  Google Scholar 

  • Sami A, Taru M, Salme K, Jari Y-K (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13

    Google Scholar 

  • Santos RC, Salvador JAR, Marin S, Cascante M (2009) Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem 17:6241–6250

    PubMed  CAS  Google Scholar 

  • Santos RC, Salvador JAR, Marin S, Cascante M, Moreira JN, Dinis TCP (2010) Synthesis and structure-activity relationship study of novel cytotoxic carbamate and N-acylheterocyclic bearing derivatives of betulin and betulinic acid. Bioorg Med Chem 18:4385–4396

    PubMed  CAS  Google Scholar 

  • Sarek J, Klinot J, Dzubak P, Klinotiva E, Noskova V, Krecek V, Korinkova G, Thomson JP, Janost’akova A, Wang SD, Parsons S, Fischer PM, Zhelev NZ, Hajduch M (2003) New lupane derived compounds with pro-apoptotic activity in cancer cells: synthesis and structure – activity relationships. J Med Chem 46:5402–5415

    PubMed  CAS  Google Scholar 

  • Sawada N, Kataoka K, Kondo K, Arimochi H, Fujino H, Takahashi Y, Miyoshi T, Kuwahara T, Monden Y, Ohnishi Y (2004) Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice. Brit J Cancer 90:1672–1678

    PubMed  CAS  Google Scholar 

  • Schmidt ML, Kuzmanoff KL, Ling-Indeck L, Pezzuto JM (1997) Betulinic acid induces apoptosis in human neuroblastoma cell lines. Eur J Cancer 33:2007–2010

    PubMed  CAS  Google Scholar 

  • Schuhly W, Heilmann J, Calis I, Sticher O (1999) New triterpenoids with antibacterial activity from Zizyphus joazeiro. Planta Med 65:740–743

    PubMed  CAS  Google Scholar 

  • Selzer E, Pimentel E, Wacheck W, Schlegel W, Pehamberger H, Jansen B, Kodym R (2000) Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. J Invest Dermatol 114:935–940

    PubMed  CAS  Google Scholar 

  • Selzer E, Thallinger C, Hoeller C, Oberkleiner P, Wacheck V, Pehamberger H, Jansen B (2002) Betulinic acid-induced Mcl-1 expression in human melanoma mode of action and functional significance. Mol Med 8:877–884

    PubMed  CAS  Google Scholar 

  • Shai LJ, Mcgaw LJ, Aderogba MA, Mdee LK, Eloff JN (2008) Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) CA Sm. leaves. J Ethnopharmacol 119:238–244

    PubMed  CAS  Google Scholar 

  • Shikov AN, Djachuk GI, Sergeev DV, Pozharitskaya ON, Esaulenko EV, Kosman VM, Makarov VG (2011) Birch bark extract as therapy for chronic hepatitis C – a pilot study. Phytomedicine 18:807–810

    PubMed  CAS  Google Scholar 

  • Soica CM, Peev CI, Ciurlea S, Ambrus R, Dehelean C (2010) Physico-chemical and toxicological evaluations of betulin and betulinic acid interactions with hydrophilic cyclodextrins. Farmacia 58:611–619

    CAS  Google Scholar 

  • Soler F, Poujade C, Evers M, Carry JC, Henin Y, Bousseau A, Huet T, Pauwels R, DeClercq E, Mayaux JF, LePecq JB, Dereu N (1996) Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry. J Med Chem 39:1069–1083

    PubMed  CAS  Google Scholar 

  • Son LB, Kaplun AP, Shpilevskii AA, Andiya-Pravdivyi YE, Alekseeva SG, Grigor’ev VB, Shvets VI (1998) The synthesis of betulinic acid from betulin and its solubilization with liposomes. Bioorg Khim 24:787–793

    PubMed  CAS  Google Scholar 

  • Steele JCP, Warhurst DC, Kirby GC, Simmonds MSJ (1999) In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res 13:115–119

    PubMed  CAS  Google Scholar 

  • Surowiak P, Drag M, Materna V, Dietel M, Lage H (2009) Betulinic acid exhibits stronger cytotoxic activity on the normal melanocyte NHEM-neo cell line than on drug-resistant and drug-sensitive MeWo melanoma cell lines. Mol Med Report 2:543–548

    PubMed  CAS  Google Scholar 

  • Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszen M (2011) Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS), cytokine (TNF-alpha, TGF-beta) production and by influencing intracellular signaling. Toxicology 280:152–163

    PubMed  CAS  Google Scholar 

  • Takada Y, Aggarwal BB (2003) Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol 171:3278–3286

    PubMed  CAS  Google Scholar 

  • Tan YM, Yu R, Pezzuto JM (2003) Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin Cancer Res 9:2866–2875

    PubMed  CAS  Google Scholar 

  • Thurnher D, Turhani D, Pelzmann M, Wannemacher B, Knerer B, Formanek M, Wacheck V, Selzer E (2003) Betulinic acid: a new cytotoxic compound against malignant head and neck cancer cells. Head Neck 25:732–740

    PubMed  Google Scholar 

  • Trosko JE (2005) The role of stem cells and gap junctions as targets for cancer chemoprevention and chemotherapy. Biomed Pharmacother 59:326–331

    Google Scholar 

  • Urban M, Sarek J, Klinot J, Korinkova G, Hajduch M (2004) Synthesis of A-seco derivatives of betulinic acid with cytotoxic activity. J Nat Prod 67:1100–1105

    PubMed  CAS  Google Scholar 

  • Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229

    PubMed  CAS  Google Scholar 

  • Van Loc T, Van Sung T, Kamperdick C, Adam G (2000) Synthesis of amino acid conjugates and further derivatives of 3 alpha-hydroxylup-20(29)ene-23,28-dioic acid. J Prak Chem-Chem Ztg 342:63–71

    Google Scholar 

  • Vasilevsky SF, Govdi AI, Shults EE, Shakirov MM, Sorokina IV, Tolstikova TG, Baev DS, Tolstikov GA, Alabugin IV (2009) Efficient synthesis of the first betulonic acid-acetylene hybrids and their hepatoprotective and anti-inflammatory activity. Bioorg Med Chem 17:5164–5169

    PubMed  CAS  Google Scholar 

  • Wada S, Tanaka R (2005) Betulinic acid and its derivatives, potent DNA topoisomerase II inhibitors, from the bark of Bischofia javanica. Chem Biodivers 2:689–694

    PubMed  CAS  Google Scholar 

  • Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M (1999) Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. J Pharmacol Exp Ther 289:1306–1312

    PubMed  CAS  Google Scholar 

  • Willis SN, Chen LG, Dewson G, Wei A et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bxl-xL not Bcl-2 until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    PubMed  CAS  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    PubMed  CAS  Google Scholar 

  • Woldemichael GM, Singh MP, Maiese WM, Timmermann BN (2003) Constituents of antibacterial extract of Caesalpinia paraguariensis Burk. Z Naturforsch C 58:70–75

    PubMed  CAS  Google Scholar 

  • Yamai H, Sawada N, Yoshida T, Seike J, Takizawa H, Kenzaki K, Miyoshi T, Kondo K, Bando Y, Ohnishi Y, Tangoku A (2009) Triterpenes augment the inhibitory effects of anticancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer 125:952–960

    PubMed  CAS  Google Scholar 

  • Yang M, Wang GJ, Wang SJ, Li XT, Xu YP, Wang SP, De Xiang J, Pan SR, Cao GX, Ye WC (2005) Quantitative analysis of 23-hydroxybetulinic acid in mouse plasma using electrospray liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 19:1619–1623

    PubMed  CAS  Google Scholar 

  • Yogeeswari P, Sriram D (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 12:657–666

    PubMed  CAS  Google Scholar 

  • You YJ, Kim Y, Nam NH, Ahn BZ (2003) Synthesis and cytotoxic activity of A-ring modified betulinic acid derivatives. Bioorg Med Chem Lett 13:3137–3140

    PubMed  CAS  Google Scholar 

  • Zanon M, Piris A, Bersani I, Vegetti C, Molla A, Scarito A, Anichini A (2004) Apoptosis protease activator protein-1 expression is dispensable for response of human melanoma cells to distinct proapoptotic agents. Cancer Res 64:7386–7394

    PubMed  CAS  Google Scholar 

  • Zhao GL, Yan WD (2009) Synthesis of Betulin-3-yl-beta-D-Glucopyranoside. J Carbohydr Chem 28:234–243

    CAS  Google Scholar 

  • Zheng ZW, Song SZ, Wu YL, Lian LH, Wan Y, Nan JX (2011) Betulinic acid prevention of D-galactosamine/lipopolysaccharide liver toxicity is triggered by activation of Bcl-2 and antioxidant mechanisms. J Pharm Pharmacol 63:572–578

    PubMed  CAS  Google Scholar 

  • Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VPK (2011) Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. Malar J 10:167

    PubMed  CAS  Google Scholar 

  • Zschornak MP, Passin S, Kessler J, Kappler M, Paschke R, Taubert H, Vordermark D, Bache M (2011) Effects of betulinic acid and radiotherapy in malignant glioma cell lines under normoxic and hypoxic conditions. Strahlenther Onkol 187:127–127

    Google Scholar 

  • Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 175:17–25

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Csuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Csuk, R. (2012). Targeting Cancer by Betulin and Betulinic Acid. In: Chen, G., Lai, P. (eds) Novel Apoptotic Regulators in Carcinogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4917-7_11

Download citation

Publish with us

Policies and ethics