Skip to main content

Mechanics and Multidisciplinary Study for Creating Graphene-Based van der Waals Nano/Microscale Devices

  • Conference paper
  • First Online:
  • 1077 Accesses

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 31))

Abstract

Elastic resonators are the core elements for various types of nano/micro scale instruments and devices (e.g. gyroscopes, mass and acceleration sensors, AFM, SNOM). However due to the inevitable thermal dissipation in the elastic deforming modes their quality factor dramatically reduces as size shrinks, which is the bottleneck challenge for the application in nano devices. Van der Waals (vdW) oscillators recently invented (Zheng QS, Jiang Q, Phys Rev Lett, 88:045503, 2002) have two orders of magnitude higher in both motion speed and quality factor, that are the two major factors determining the performance of various nano/microscale devices, for example nano/micromechanical gyroscopes. Based on the vdW oscillators a completely new class of nano/micro devices is proposed. Furthermore the recently discovered self-retraction motion between two large scale sheared graphite flakes (Zheng QS, et al, Phys Rev Lett, 100:067205, 2008) has greatly promoted the graphene based vdW devices. By combining with the mature microfabrication technology for mass production, the graphene-based vdW sliding devices offer a great candidate for a new type of nano/micro devices, as well as high-density/high-speed hard diskettes. In this paper we report new experimental and theoretical advances in these fields, including self-retraction motion and dissipation mechanisms, challenges in surface physics and chemistry, novel stripe/kink structures arising from instabilities, transferring, self-assembling, and ultrahigh-speed record technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zheng, Q.S., Jiang, Q.: Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 045503 (2002)

    Article  Google Scholar 

  2. Zheng, Q.S., et al.: Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008)

    Article  Google Scholar 

  3. Célarié, F., et al.: Glass breaks like metal, but at the nanometer scale. Phys. Rev. Lett. 90, 75504 (2003)

    Article  Google Scholar 

  4. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  5. Zhao, J., Buldum, A., Han, J., Lu, J.P.: Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002)

    Article  Google Scholar 

  6. Raffaini, G., Ganazzoli, F.: Surface ordering of proteins adsorbed on graphite. J. Phys. Chem. B 108, 13850–13854 (2004)

    Article  Google Scholar 

  7. Dai, H.J.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)

    Article  Google Scholar 

  8. Sasaki, S., et al.: Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 (2000)

    Article  Google Scholar 

  9. Zhou, Z.Y., Wang, Z.L., Lin, L.W.: Microsystem and Nanotechnology. Science Press, Beijing (2007)

    Google Scholar 

  10. Ilic, B., et al.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95, 3694–3703 (2004)

    Article  Google Scholar 

  11. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533–537 (2008)

    Article  Google Scholar 

  12. Li, J.M.: Micro capacitive mechanical gyroscope.design. China national defense industry press (2006)

    Google Scholar 

  13. Liu, K., et al.: The development of micro-gyroscope technology. J. Micromech. Microeng. 19(11), 113001 (2009)

    Article  Google Scholar 

  14. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998)

    Article  Google Scholar 

  15. Paoletti, F., Gretillat, M.-A., de Rooij, N.F.: A silicon micromachined vibrating gyroscope with piezoresistive detection and electromagnetic excitation. In: Proceedings of IEEE Micro Electromechanical Systems Conference, San Diego, CA, USA, February 1996, pp. 162–167

    Google Scholar 

  16. Huang, H., Xue, M., Zorman, C.A., Mehregany, M., Roukes, M.L.: Nanoelectromechanical systems: nanodevice motion at microwave frequencies. Nature 421, 496 (2003)

    Article  Google Scholar 

  17. Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical system. Rev. Sci. Instrum. 76, 061101 (2005)

    Article  Google Scholar 

  18. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  19. Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004)

    Article  Google Scholar 

  20. Buser, R.A., Derooij, N.F.: Very high Q-factor resonators in monocrystalline silicon. Sens. Actuator. A-Phys. 21, 323–327 (1990)

    Article  Google Scholar 

  21. Klitsner, T., Pohl, R.O.: Phonon-scattering at silicon crystal-surfaces. Phys. Rev. B 36, 6551–6565 (1987)

    Article  Google Scholar 

  22. Mohanty, P., et al.: Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 085416 (2002)

    Article  Google Scholar 

  23. Yang, J.L., Ono, T., Esashi, M.: Mechanical behavior of ultrathin microcantilever. Sens. Actuator. A-Phys. 82, 102–107 (2000)

    Article  Google Scholar 

  24. Kleiman, R.N., Agnolet, G., Bishop, D.J.: 2-Level systems observed in the mechanical-properties of single-crystal silicon at Low-temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987)

    Article  Google Scholar 

  25. Tittonen, I., et al.: Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999)

    Article  Google Scholar 

  26. Rivera, J.L., McCabe, C., Cummings, P.T.: Oscillatory behavior of double-walled nanotubes under extension: a simple nanoscale damped spring. Nano Lett. 3, 1001–1005 (2003)

    Article  Google Scholar 

  27. Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M., Roukes, M.L.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7 (2005)

    Google Scholar 

  28. Purcell, S.T., Vincent, P., Journet, C., Binh, V.T.: Tuning of nanotube mechanical resonances by electric field pulling. Phys. Rev. Lett. 89, 276103 (2002)

    Article  Google Scholar 

  29. Wada, H., et al.: Photoreflectance characterization of the plasma-induced damage in Si substrate. J. Appl. Phys. 88, 2336–2341 (2000)

    Article  Google Scholar 

  30. Liu, X., et al.: A loss mechanism study of a very high Q silicon micromechanical oscillator. J. Appl. Phys. 97(2), 023524 (2005)

    Article  Google Scholar 

  31. Jiang, H., Yu, M.F., Liu, B., Huang, Y.: Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. Phys. Rev. Lett. 93(18), 185501 (2004)

    Article  Google Scholar 

  32. Zhang, C., Xu, G., Jiang, Q.: Analysis of the air-damping effect on a micromachined beam resonator. Math. Mech. Solids 8, 315–325 (2003)

    Article  MATH  Google Scholar 

  33. Zhang, C., Xu, G., Jiang, Q.: Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator. J. Micromech. Microeng. 14, 1302–1306 (2004)

    Article  Google Scholar 

  34. Cumings, J., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  35. Zheng, Q.S., Liu, J.Z., Jiang, Q.: Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Phys. Rev. B 65, 245409 (2002)

    Article  Google Scholar 

  36. Tangney, P., Louie, S.G., Cohen, M.L.: Dynamic sliding friction between concentric carbon nanotubes. Phys. Rev. Lett. 93, 065503 (2004)

    Article  Google Scholar 

  37. Kis, A., Jensen, K., Aloni, S., Mickelson, W., Zettl, A.: Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006)

    Article  Google Scholar 

  38. Dong, L., Nelson, B.J.: Robotics in the small: tutorial part II: nanorobotics. IEEE Robot. Autom. Mag. 14, 111 (2007)

    Article  MATH  Google Scholar 

  39. Dienwiebel, M., et al.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  40. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)

    Google Scholar 

  41. Guo, Y.J., Karasawa, N., Goddard, W.A.: Prediction of fullerene packing in C60 and C70 crystals. Nature 351, 464–467 (1991)

    Article  Google Scholar 

  42. Liu, Z., Zheng, Q.S., Liu, J.Z.: Stripe/kink microstructures formed in mechanical peeling of highly orientated pyrolytic graphite. Appl. Phys. Lett. 96(20), 201909 (2010)

    Article  Google Scholar 

  43. Liu, J.Z., Zheng, Q.S., Jiang, Q.: Effect of a rippling mode on resonances of carbon nanotubes. Phys. Rev. Lett. 86, 4843–4846 (2001)

    Article  Google Scholar 

  44. Madsen, D.N., et al.: Soldering of nanotubes onto microelectrodes. Nano Lett. 3, 47–49 (2003)

    Article  Google Scholar 

  45. van Dorp, W.F., Hagen, C.W.: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanshui Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Liu, Y., Yang, J., Liu, Z., Cheng, Y., Grey, F., Zheng, Q. (2013). Mechanics and Multidisciplinary Study for Creating Graphene-Based van der Waals Nano/Microscale Devices. In: Cocks, A., Wang, J. (eds) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4911-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4911-5_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4910-8

  • Online ISBN: 978-94-007-4911-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics