Skip to main content

Size and Surface Effects on Stress-Diffusion Coupling in Silicon Nanowire Electrodes

  • Conference paper
  • First Online:
IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 31))

  • 980 Accesses

Abstract

The development of diffusion-induced stresses (DIS) in amorphous alloy nanowire-based Li-ion battery electrodes is analyzed using a finite deformation model with full diffusion/stress coupling. The analyses reveal significant contributions to the driving force for diffusion by stress gradients, an effect much stronger than those seen in cathode lattices, but so far neglected for alloy-based anodes. A significant contribution of surface to overall stresses is also found. The long-term DIS is determined by charging rate, nanowire radius, and Li mobility modulated by stress effects. Stress-enhanced diffusion (SED) is negligible when lithium concentration is low, leading to significantly higher DIS levels in the early stage of a charging cycle. This finding points out the need to use lower charging rates in the initial stages of charging cycles of amorphous lithium alloy anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J.C., Tarascon, J.M.: Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17(36), 3759–3772 (2007). doi:10.1039/B705421c

    Article  Google Scholar 

  2. Chevrier, V.L., Dahn, J.R.: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156(6), A454–A458 (2009). doi:10.1149/1.3111037

    Article  Google Scholar 

  3. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4(9), A137–A140 (2001)

    Article  Google Scholar 

  4. Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  Google Scholar 

  5. Cui, L.F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2009). doi:10.1021/Nl8036323

    Article  Google Scholar 

  6. Song, T., Xia, J.L., Lee, J.H., Lee, D.H., Kwon, M.S., Choi, J.M., Wu, J., Doo, S.K., Chang, H., Park, W.I., Zang, D.S., Kim, H., Huang, Y.G., Hwang, K.C., Rogers, J.A., Paik, U.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10(5), 1710–1716 (2010). doi:10.1021/Nl100086e

    Article  Google Scholar 

  7. Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010). doi:10.1038/Nmat2725

    Article  Google Scholar 

  8. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006)

    Article  Google Scholar 

  9. Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power. Sources 195(15), 5081–5088 (2010)

    Article  Google Scholar 

  10. Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508–A516 (2010). doi:10.1149/1.3298892

    Article  Google Scholar 

  11. Haftbaradaran, H., Gao, H.J., Curtin, W.A.: A surface locking instability for atomic intercalation into a solid electrode. Appl. Phys. Lett. 96(9), 091909 (2010)

    Article  Google Scholar 

  12. Wu, C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49(8), 1771–1794 (2001)

    Article  MATH  Google Scholar 

  13. Zhou, H.G., Qu, J.M., Cherkaoui, M.: Stress-oxidation interaction in selective oxidation of Cr-Fe alloys. Mech. Mater. 42(1), 63–71 (2010). doi:10.1016/j.mechmat.2009.09.007

    Article  Google Scholar 

  14. Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory. Philos. Mag. 87(11), 1705–1721 (2007)

    Article  Google Scholar 

  15. Beaulieu, L.Y., Hatchard, T.D., Bonakdarpour, A., Fleischauer, M.D., Dahn, J.R.: Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150(11), A1457–A1464 (2003). doi:10.1149/1.1613668

    Article  Google Scholar 

  16. Cheng, Y.T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008). doi:10.1063/1.3000442

    Article  Google Scholar 

  17. Timoshenko, S.: Theory of Elasticity. Engineering Societies Monographs, 2nd edn. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  18. Newman, J.S., Thomas-Alyea, K.E.: Electrochemical Systems, 3rd edn. Wiley, Hoboken (2004)

    Google Scholar 

  19. Szabadi, M., Hess, P., Kellock, A.J., Coufal, H., Baglin, J.E.E.: Elastic and mechanical properties of ion-implanted silicon determined by surface-acoustic-wave spectrometry. Phys. Rev. Ser. B 58(14), 8941–8948 (1998)

    Article  Google Scholar 

  20. Ding, N., Xu, J., Yao, Y.X., Wegner, G., Fang, X., Chen, C.H., Lieberwirth, I.: Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180(2–3), 222–225 (2009). doi:10.1016/j.ssi.2008.12.015

    Article  Google Scholar 

  21. Shenoy, V.B., Johari, P., Qi, Y.: Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: a first-principles study. J. Power Sources 195(19), 6825–6830 (2010). doi:10.1016/j.jpowsour.2010.04.044

    Article  Google Scholar 

  22. Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007). doi:10.1149/1.2759840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gao, Y.F., Zhou, M. (2013). Size and Surface Effects on Stress-Diffusion Coupling in Silicon Nanowire Electrodes. In: Cocks, A., Wang, J. (eds) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4911-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4911-5_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4910-8

  • Online ISBN: 978-94-007-4911-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics