Skip to main content

Computational Modeling of Surface Effects: Distinctions from Classical Surface Elasticity Theory

  • Conference paper
  • First Online:
IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 31))

  • 946 Accesses

Abstract

We present a brief overview and comparison of two different approaches to capturing surface effects on nanoscale materials. The first is a recently proposed computational model, the surface Cauchy-Born (SCB) model, which is a nonlinear, finite deformation continuum theory based upon Cauchy-Born kinematics. The second is classical linear surface elasticity based upon the framework proposed by Gurtin and Murdoch. Key distinctions that are discussed include the importance of linear versus nonlinear kinematics, and the dimensionality of the surface stress tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, H.S., Cai, W., Espinosa, H.D., Huang, H.: Mechanics of crystalline nanowires. MRS Bull. 34(3), 178–183 (2009)

    Article  Google Scholar 

  2. Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  3. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)

    Article  Google Scholar 

  4. Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000)

    Article  Google Scholar 

  5. Sun, C.Q., Tay, B.K., Zeng, X.T., Li, S., Chen, T.P., Zhou, J., Bai, H.L., Jiang, E.Y.: Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys. Condens. Matter 14, 7781–7795 (2002)

    Article  Google Scholar 

  6. Han, X., Zheng, K., Zhang, Y.F., Zhang, X., Zhang, Z., Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007)

    Article  Google Scholar 

  7. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of the Young’s modulus of ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  8. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  9. He, L.H., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)

    Article  MATH  Google Scholar 

  10. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  11. Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, C.T., Zhang, H.: Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 92, 1212–1218 (2003)

    Article  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effects of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976)

    Article  Google Scholar 

  16. Yvonnet, J., Quang, H.L., He, Q.C.: An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42, 119–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wei, G., Shouwen, Y., Ganyun, H.: Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17, 1118–1122 (2006)

    Article  Google Scholar 

  18. He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009)

    Article  MATH  Google Scholar 

  19. She, H., Wang, B.: A geometrically nonlinear finite element model of nanomaterials with consideration of surface effects. Finite Elem. Anal. Des. 45, 463–467 (2009)

    Article  MathSciNet  Google Scholar 

  20. Park, H.S., Klein, P.A., Wagner, G.J.: A surface cauchy-born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Park, H.S., Klein, P.A.: Surface cauchy-born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75, 085408 (2007)

    Article  Google Scholar 

  22. Park, H.S., Klein, P.A.: A surface cauchy-born model for silicon nanostructures. Comput. Method Appl. Mech. 197, 3249–3260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Park, H.S., Gall, K., Zimmerman, J.A.: Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95, 255504 (2005)

    Article  Google Scholar 

  24. Liang, W., Zhou, M., Ke, F.: Shape memory effect in Cu nanowires. Nano Lett. 5, 2039–2043 (2005)

    Article  Google Scholar 

  25. Liang, H.Y., Upmanyu, M., Huang, H.C.: Size-dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71 (2005)

    Google Scholar 

  26. Balamane, H., Halicioglu, T., Tiller, W.A.: Comparative study of silicon empirical interatomic potentials. Phys. Rev. B 46, 2250–2279 (1992)

    Article  Google Scholar 

  27. Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007)

    Article  Google Scholar 

  28. Lu, P., Lee, H.P., Lu, C., O’Shea, S.J.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405 (2005)

    Article  Google Scholar 

  29. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  30. Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  31. Huang, Z.P., Sun, L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190, 151–163 (2007)

    Article  MATH  Google Scholar 

  32. Park, H.S., Klein, P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)

    Article  MATH  Google Scholar 

  33. Park, H.S.: Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnology 20, 115701 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

HSP gratefully acknowledges NSF grant CMMI 0750395 in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold S. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Park, H.S. (2013). Computational Modeling of Surface Effects: Distinctions from Classical Surface Elasticity Theory. In: Cocks, A., Wang, J. (eds) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4911-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4911-5_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4910-8

  • Online ISBN: 978-94-007-4911-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics