Skip to main content

Overview Regarding Construction and Demolition Waste in Several Countries

  • Chapter
  • First Online:
Progress of Recycling in the Built Environment

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 8))

Abstract

The objective of this chapter is to collect the data of advancements, achievements, problems and solutions most representative of the various countries. Thereby, each country can learn from examples and underpin a pedagogy for the effective implementation of recycling. A short review of the history of recycling of construction and demolition waste is presented. Market situation, applications, standards and characteristics of the production in countries are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.mbcrusher.com

References

  1. Mueller, A.: Closed loop of concrete rubble. In: Bauhaus Universität Weimar. Available at: http://www.uni-weimar.de/Bauing/aufber/Lehre/Gastvorlesung/Barcelona/Lecture07.pdf. Accessed 2007

  2. Conselho Nacional Do Meio Ambiente (Conama): Resolução nº 307. Brasília (2002)

    Google Scholar 

  3. NBR 15.116 (ABNT): NBR 15.116: agregados de resíduos sólidos da construção civil: utilização em pavimentação e preparo de concreto sem função estrutural – requisitos. Standard, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), Rio de Janeiro (2004a)

    Google Scholar 

  4. NBR 15.113 (ABNT): NBR 15.113: resíduos sólidos da construção civil e resíduos inertes: aterros: diretrizes para projeto, implantação e operação. Standard, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), Rio de Janeiro (2004b)

    Google Scholar 

  5. Pinto, T.P., Rodrigo, J.L.: Manejo e gestão de resíduos da construção civil: como implantar um sistema de manejo e gestão nos municípios 1. Ministério Das Cidades - Ministério Do Meio Ambiente – Caixa Econômica Federal, Brasília (2005)

    Google Scholar 

  6. Pinto, T.: Gestão ambiental de resíduos da construção civil: a experiência do SINDUSCON-SP. SINDICATO DA INDÚSTRIA DA CONSTRUÇÃO DO ESTADO DE SÃO PAULO (SINDUSCON-SP), São Paulo (2005)

    Google Scholar 

  7. Marques, J.: Estudo da gestão municipal de resíduos de construção e demolição na bacia hidrográfica do Turvo Grande (UGRHI-15). Dissertation, Escola de Engenharia de São Carlos, São Carlos (2009)

    Google Scholar 

  8. Miranda, L., Angulo, S.C., Careli, E.D.: A reciclagem de resíduos de construção e demolição no Brasil: 1986–2008. Ambiente Construído 9(1), 57–71 (2009)

    Google Scholar 

  9. Angulo, S.C., et al.: On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Mater. Struct. 43, 519–528 (2010)

    Article  Google Scholar 

  10. ASTM C 33–82: ASTM C 33-82-Standard Specification for Concrete Aggregates. Standard, ASTM-American Standards for Testing and Materials, Philadelphia (1982)

    Google Scholar 

  11. ASTM 125-79a: ASTM 125-79a-Standard Definitions of Terms Relating to Concrete and Concrete Aggregates. Standard, ASTM-American Standards for Testing and Materials, Philadelphia (1979)

    Google Scholar 

  12. FHWA-Federal Highway Administration: Transportation Applications of Recycled Concrete Aggregate: FHWA State of the Practice National Review September 2004. National Review. US Department of Transportation and Federal Highway Administration, Washington, DC (2004)

    Google Scholar 

  13. Li, S., Nantung, T., Jiang, Y.: Assessing issues, technologies and data needs to meet traffic input requirements by mechanistic-empirical pavement design guides: implementation initiatives. Transportation research record. J. Transp Res. Board 1917, 141–148 (2005)

    Article  Google Scholar 

  14. Mishulovich, A.: Used concrete/construction debris in Portland cement manufacturing. Portland Cement Association Research and Development Report Serial No. 2635 (2003)

    Google Scholar 

  15. Taschereau, D.: Moving mountains. Solid Waste and Recycling. 3–6 December/January(2001)

    Google Scholar 

  16. Wilson, A.: Concrete: even smarter than you think. Available at www.cement.ca/cement.nsf/e/5707B2CB7E10E24585256E1C007D7C9D? (2003). Accessed 2003

  17. Ontario Ministry of Natural Resources: The state of the aggregate resource in Ontario study. Consolidated report, Government of Ontario, Ministry of Natural Resources, Ontario (2010)

    Google Scholar 

  18. Lamond, J., Campbell Sr., R., Campbell, T., Cazares, J., Giraldi, A., Halczak, W., Hale Jr., H.C., Jenkins, N.J.T., Miller, R., Seabrook, P.: Removal and reuse of hardened concrete. ACI Mater. J. 99(3), 300–325 (2002)

    Google Scholar 

  19. Fathifazl, G., Abbas, A., Razaqpur, A.G., Isgor, O.B., Fournier, B., Foo, S.: New mixture proportioning method for concrete made with coarse recycled concrete aggregate. ASCE-J. Mater. Civ. Eng. 21(10), 601–611 (2009)

    Article  Google Scholar 

  20. Abbas, A., Fathifazl, G., Isgor, O.B., Razaqpur, A.G., Fournier, B., Foo, S.: Proposed method for determining the residual mortar content of recycled concrete aggregates. J. ASTM Int. 5(1), 12 (2008)

    Google Scholar 

  21. Abbas, A., Fathifazl, G., Fournier, B., Isgor, O.B., Zavadil, R., Razaqpur, A.G., Foo, S.: Quantification of the residual mortar content in recycled concrete aggregates by image analysis. J. Mater. Charact. 60(7), 716–772 (2009)

    Article  Google Scholar 

  22. Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B., Foo, S.: Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate (RCA). Cem. Concr. Compos. 33(10), 1026–1037 (2011)

    Google Scholar 

  23. Banthia, N., Chan, C.: Use of recycled aggregate in plain and fiber-reinforced shotcrete. ACI Concr. Int. 22(6), 41–45 (2000)

    Google Scholar 

  24. Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B., Foo, S.: Flexural performance of steel reinforced recycled concrete (RRC) beams. ACI Struct. J. 106(6), 858–867 (2009)

    Google Scholar 

  25. CSA A23.3-04: A23.3-04-Design of Concrete Structures. Standard, Canadian Standard Association (CSA), Rexdale, Ontario (2004)

    Google Scholar 

  26. ACI 318–05: ACI 318–05 – Building Code Requirements for Structural Concrete. Standard, American Concrete Institute, Farmington Hills (2005)

    Google Scholar 

  27. Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B., Foo, S.: Shear strength of steel reinforced recycled concrete beams with stirrups. Mag. Concr. Res. 62(10), 685–699 (2010)

    Article  Google Scholar 

  28. Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B., Foo, S.: Shear strength of steel reinforced recycled concrete beams without stirrups. Mag. Concr. Res. 61(7), 387–400 (2009)

    Article  Google Scholar 

  29. Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B., Foo, S.: Shear capacity evaluation of steel reinforced recycled concrete (RRC) beams. Eng. Struct. J. 33(3), 1025–1033 (2011)

    Article  Google Scholar 

  30. ASTM A 944–99: ASTM A 944-99-Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens. Standard, ASTM-American Standards for Testing and Materials (1999 (Reapproved 2004))

    Google Scholar 

  31. Fathifazl, G.: Structural performance of steel reinforced recycled concrete members. Dissertation, Department of Civil and Environmental Engineering, Carleton University, Carleton, Canada (2008)

    Google Scholar 

  32. Butler, L., West, J.S., Tighe, S.L.: The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. J. Cem. Concr. Res. 41(10), 1037–1049 (2011). doi:10.1016/j.cemconres.2011.06.004

    Article  Google Scholar 

  33. Abbas, A., Fathifazl, G., Isgor, O.B., Razaqpur, A.G., Fournier, B., Foo, S.: Durability of recycled aggregate concrete designed with equivalent mortar volume method. Special issue of the journal of cement and concrete composites on sustainability of civil engineering structures – durability of concrete. J. Cem. Concr. Compos. 31(8), 555–563 (2009)

    Article  Google Scholar 

  34. ASTM: Concrete and Concrete Aggregates. Annual Book of American Society for Testing and Materials, vol. 4.02. Annual Book, American Society for Testing and Materials, Philadelphia (2003)

    Google Scholar 

  35. ACI 222R- 96: ACI 222R- 96 – Corrosion of Metal in Concrete. Standard, ACI-American Concrete Institute, Farmington Hills (1996)

    Google Scholar 

  36. RILEM Recommendations CPC-18: Measurement of hardened concrete carbonation depth. Mater. Struct. 21(6), 453–455 (1988)

    Article  Google Scholar 

  37. Salem, R.M., Burdette, E.G., Jackson, N.M.: Resistance to freeze and tawing of recycled aggregate concrete. ACI Mater. J. 100(3), 216–221 (2003)

    Google Scholar 

  38. Salem, R.M., Burdette, E.G.: Role of chemical and mineral admixtures on physical properties and frost resistance of recycled aggregate concrete. ACI Mater. J. 95(5), 558–563 (1998)

    Google Scholar 

  39. Shehata, M.H., Christidis, C., Mikhaiel, W., Rogers, C., Lachemi, M.: Reactivity of reclaimed concrete aggregate produced from concrete affected by alkali–silica reaction. Cem. Concr. Res. 40(4), 575–582 (2010)

    Article  Google Scholar 

  40. Shehata, M., Mikhaiel, W., Lachemi, M., Rogers, C.: Mitigating the expansion in concrete containing reclaimed aggregate produced from demolished concrete affected by alkali-silica reaction EM-039. In: Engineering, C. (ed.) 2nd International Engineering Mechanics and Materials Specialty Conference, Ottawa, ON, pp. 01–08, 14–18 June 2011

    Google Scholar 

  41. Adams, M.P., Gray, B., Ideker, J.H., Tanner, J.E., Jones, A., Fournier, B., Beauchemin, S., Shehata, M., Johnson, R.: Applicability of standard alkali-silica reactivity testing methods for recycled concrete aggregate. Paper submitted for the 14th International Conference on AAR in Concrete, Austin, TX, 2012

    Google Scholar 

  42. Beauchemin, S., Fournier, B.: Influence of the nature and composition of recycled aggregate material on their performance in the accelerated mortar bar testing. In: Concrete, I. (ed.) 14th International Conference on AAR in Concrete, Austin, TX, 2011

    Google Scholar 

  43. Smith, J., Tighe, S.: Moving towards an environmental sustainable concrete pavement using recycled concrete aggregate. In: Transportation Association of Canada – Conference Proceedings, Toronto, ON, 2008

    Google Scholar 

  44. Smith, J., Tighe, S.: Recycled concrete aggregate coefficient of thermal expansion: characterization, variability, and impacts on pavement performance. Natl. Acad. Sci. Transp. Res. Rec. 2113, 53–61 (2009)

    Google Scholar 

  45. Rizvi, R., Henderson, V., Tighe, S., Norris, J.: Evaluating the use of recycled concrete aggregate in pervious concrete pavement. Transp. Res. Board 2164, 132–140 (Accepted for Publication in the Transportation Research Record) (2010)

    Google Scholar 

  46. Chan, P., Tighe, S.: Quantifying Pavement Sustainability. Final Report. Ministry of Transportation, Toronto (2010)

    Google Scholar 

  47. Xiao, J.: Recycled Concrete. Chinese Building Construction Publishing Press, Beijing (2008)

    Google Scholar 

  48. Deng, X.: Study on effect of compressive strength of recycled aggregate concrete with water cement ratio (only available in Chinese). Chin. Concr. J. 2, 46–48 (2005)

    Google Scholar 

  49. Li, J.: Study on mechanical behavior of recycled aggregate concrete. Dissertation, Tongji University (2004)

    Google Scholar 

  50. Liu, Y.P., Chen, Z.F.: Research of application and basic mechanical properties on recycled concrete (only available in Chinese). Chin. Concr. J. 12, 43–45 (2009)

    Google Scholar 

  51. Xiao, J.Z., Li, J.B., Huang, J.: Influence of recycled coarse aggregate replacement percentage on compressive strength of concrete (only available in Chinese. J. Build. Mater. 9(3), 297–301 (2006)

    Google Scholar 

  52. Tang, J.: Preliminary study on compressive strength of recycled aggregate concrete (only available in Chinese). Sichuan Build. Sci. 33(4), 183–186 (2007)

    Google Scholar 

  53. Jin, C., Wang, X.P., Akinkurolere, O.O., Jiang, C.R.: Experimental research on the conversion relationships between the mechanical performance indexes of recycled concrete (only available in Chinese. Chin. Concr. J. 49(11), 37 (2008)

    Google Scholar 

  54. Xiao, J.Z., Liu, Q., Li, W.G., Tam, V.: On the micro- and meso-structure and failure mechanism of recycled concrete (only available in Chinese). J. Qingdao Technol. Univ. 30(2), 24–30 (2009)

    Google Scholar 

  55. Xiao, J.Z., Li, J.B., Sun, Z.P., Hao, X.M.: Study on compressive strength of recycled aggregate concrete (only available in Chinese). J. Tongji Univ. (Nat. Sci.) 32(12), 1558–1561 (2004)

    Google Scholar 

  56. Buck, A.D.: Recycled concrete as a source of aggregate. ACI J. 74, 212–219 (1977)

    Google Scholar 

  57. Xiao, J.Z., Li, J.B., Zhang, C.Z.: On relationships between the mechanical properties of recycled aggregate concrete: an overview. Mater. Struct. 39, 655–664 (2006)

    Article  Google Scholar 

  58. Li, W.X., Zhang, X., Liu, X.: Mechanical properties of recycled aggregate concrete study of the impact of factors (only available in Chinese). Chin. Concr. J. 10, 60–63 (2009)

    Google Scholar 

  59. Li, J.B., Xiao, J.Z., Sun, Z.P.: Properties of recycled coarse aggregate and its influence on recycled concrete (only available in Chinese). Chin. J. Build. Mater. 7(4), 390–395 (2004)

    Google Scholar 

  60. Zhang, Y.M., Qin, H.G., Sun, W., Hao, D.M., Ning, Z.: Preliminary study on the proportion design of recycled aggregate concrete (only available in Chinese). China Concr. Cem. Prod. 1, 7–9 (2002)

    Google Scholar 

  61. Poon, C.S., Shui, Z., Lam, L.: Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build Mater. 18(6), 46–468 (2004)

    Article  Google Scholar 

  62. Du, T.: Experimental study on the microstructure and basic behaviors of recycled high performance concrete. Dissertation, Huazhong University of Science and Technology. (only available in Chinese) Huazhong China (2006)

    Google Scholar 

  63. Shui, Z.H., Pan, Z.S., Zhu, W.Q., Zhan, B.H.: Microscopic structural features of the recycled aggregate concrete (only available in Chinese). J. Wuhan Univ. Technol. 25(12), 99–102 (2003)

    Google Scholar 

  64. Xiao, J.Z., Liu, Q., Du, J.T., Zhang, C.Z.: Micro-damage mechanisms and property fluctuation of recycled aggregate concrete. Key Eng. Mater. 348–349, 61–64 (2007)

    Article  Google Scholar 

  65. Xiao, J.Z., Lan, Y.: Investigation on the tensile behavior of recycled aggregate concrete (only available in Chinese). Chin. J. Build. Mater. 8(2), 154–158 (2006)

    Google Scholar 

  66. Yang, X., Wu, J., Liang, J.G.: Experimental study on relationship between tensile strength and compressive strength of recycled aggregate concrete (only available in Chinese). Sichuan Build. Sci. 35(5), 190–192 (2009)

    Google Scholar 

  67. Cheng, G.Y.: Experimental study on the basic performance of recycled aggregate concrete with different displacement ratio (only available in Chinese). Chin. Concr. J. 11, 67–70 (2005)

    Google Scholar 

  68. Ge, X.L., Zeng, L.: Study on influence of recycled coarse aggregate on the strength of recycled concrete (only available in Chinese). J. Shaanxi Architect. Build. Mater. 114, 36–38 (2004)

    Google Scholar 

  69. Xiao, J.Z., Lei, B., Yuan, B.: Splitting tensile strength distribution of concrete with different recycled coarse aggregates (only available in Chinese). Chin. J. Build. Mater. 11(2), 223–229 (2008)

    Google Scholar 

  70. Xiao, J.Z., Li, J.B.: Study on relationships between strength indexes of recycled concrete (only available in Chinese). Chin. J. Build. Mater. 9, 197–201 (2005)

    Google Scholar 

  71. Zhou, H., Liu, B.K., Lu, G.: Experimental research on the basic mechanical properties of recycled aggregate concrete (only available in Chinese). J. Anhui Inst. Architect. Ind. 16(6), 4–8 (2008)

    Google Scholar 

  72. Hu, M.P.: Mechanical properties of concrete prepared with different recycled coarse aggregates replacement rate (only available in Chinese). Concr. J. 2, 52–54 (2007)

    Google Scholar 

  73. Huang, Y., Deng, Z.H., Luo, Y.M., Yang, H.F.: Experimental study on shear strength of recycled aggregate concrete (only available in Chinese). Chin. Concr. J. 2(31), 14–17 (2010)

    Google Scholar 

  74. Guo, Z.H., Shi, X.D.: Reinforced Concrete Theory and Analysis. Tsinghua University Publishing Press, Beijing (only available in Chinese) (2003)

    Google Scholar 

  75. Wu, F.Y., Yang, Y.F.: Preliminary research on behaviors of recycled concrete-filled stub columns (only available in Chinese). J. Fuzhou Univ. 33(315), 305–308 (2005)

    Google Scholar 

  76. Yang, Y.F.: Theoretical research on load-deformation of recycled aggregate-filled steel tubular members (only available in Chinese). Chin. J. Ind. Constr. 37(12), 1–6 (2007)

    Google Scholar 

  77. Xiao, J.Z., Yang, J.: On recycled concrete confined by GFRP tube under axial compression (only available in Chinese). J. Tongji Univ. (Nat. Sci.) 37(12), 1586 (2009)

    Google Scholar 

  78. Xiao, J.Z., Li, P.S., Qin, W.: Study on bond-slip between recycled concrete and rebars (only available in Chinese). J. Tongji Univ. (Nat. Sci.) 34(1), 13–16 (2006)

    Google Scholar 

  79. Xiao, J.Z., Huang, Y.B.: Residual compressive strength of recycled concrete after high temperature (only available in Chinese). Chin. J. Build. Mater. 9(3), 255–259 (2006)

    Google Scholar 

  80. GB50010: Code for Design of Concrete Structures. Beijing (2002) only available in Chinese

    Google Scholar 

  81. Xiao, J.Z., Huang, Y.B., Zheng, Y.C.: Residual flexural strength of recycled concrete after elevated-temperatures (only available in Chinese). Chin. J. Build. Mater. 26(3), 32–36 (2009)

    MATH  Google Scholar 

  82. Xiao, J.Z.: Experimental investigation on complete stress-strain curve of recycled concrete under uniaxial loading (only available in Chinese). J. Tongji Univ. 35(11), 1445–1449 (2007)

    Google Scholar 

  83. Hu, Q., Song, C., Zou, C.Y.: Experimental research on the mechanical properties of recycled concrete (only available in Chinese). J. Harbin Inst. Technol. 41(4), 33–36 (2009)

    Google Scholar 

  84. Xiao, J.Z., Du, J.T.: Complete stress-strain curve of concrete with different recycled coarse aggregates under uniaxial compression (only available in Chinese). Chin. J. Build. Mater. 11(1), 111–115 (2008)

    Google Scholar 

  85. Ravindrarajah, R.S., Tam, C.T.: Properties of concrete made with crushed concrete as coarse aggregate. Mag. Concr. Res. 37(130), 29–38 (1985)

    Article  Google Scholar 

  86. Song, C.: Analysis on mechanical properties and microstructure of recycled concrete. Dissertation, Harbin Institute of Technology. (only available in Chinese), Harbin-China (2003)

    Google Scholar 

  87. Xiao, J.Z., Li, J.B., Zhang, C.Z.: Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35(6), 1187–1194 (2005)

    Article  Google Scholar 

  88. Xu, W.: Properties of recycled aggregate concrete under uniaxial loading (only available in Chinese). Chin. Concr. J. 10, 21–23 (2006)

    Google Scholar 

  89. Deng, Z.H., Yang, H.F., Lin, J., Wen, S.H.: Experimental study on the stress-strain curve of recycled concrete (only available in Chinese). Chin. Concr. J. 11, 22–24 (2008)

    Google Scholar 

  90. Xing, Z.X., Zhou, Y.N.: Study on the main performance of regenerated concrete. J. North China Inst. Water Conserv. Hydroelectr Power 19(2), 30–32 (1998)

    Google Scholar 

  91. Xiao, J.-Z., Lan, Y.: Experimental study on flexural performance of recycled concrete beams (only available in Chinese). Spec. Struct. 9(1), 9–12 (2006)

    Google Scholar 

  92. Xiao, J.Z., Li, J.B., Lan, Y.: Research on recycled aggregate concrete-a review (only available in Chinese. Chin. Concr. J. 10(57), 17–20 (2003)

    Google Scholar 

  93. Xu, Y.Z., Shi, J.G.: Analyses and evaluation of the behaviour of recycled aggregate and recycled concrete (only available in Chinese). Chin. Concr. J. 7, 41–46 (2006)

    MATH  Google Scholar 

  94. RILEM: Specifications for concrete with recycled aggregate. Mater. Struct. 27(9), 557–559 (1994)

    Article  Google Scholar 

  95. Ding, S., Sun, W.M., Guo, Z.-G., Dai, W.Y., Ni, T.Y., Shen, D.: Experiment on deformation behaviour of recycled concrete beams (only available in Chinese). Ind. Constr. 39(Supplement), 864–867 (2009)

    Google Scholar 

  96. Li PX, S.: Research on serviceable properties of reinforced recycled concrete beams. (only available in Chinese). J. Build. Struct. S1(Supplementary Issue), 27–31 (2008)

    Google Scholar 

  97. Hu, Q., Huang, Q., Zou, C.-Y.: Experimental study on partial recycled concrete beams (only available in Chinese). J. Herbin Inst. Technol. 41(6), 38–42 (2009)

    Google Scholar 

  98. EN 1992-1-1: Eurocode 2-Design of Concrete Structures. (2004)

    Google Scholar 

  99. GB50068: Unified Standard for Reliability Design of Building Structures Beijing (only available in Chinese) (2001)

    Google Scholar 

  100. Xiao, J.-Z., Lan, Y.: Experimental study on shear behaviour of recycled concrete beams (only available in Chinese). Struct. Eng. 20(6), 54–58 (2004)

    Google Scholar 

  101. Zhou, J.H., Jiang, H.: Shear behaviour of recycled coarse aggregate concrete beam (only available in Chinese). J. Shenyang Jianzhu Univ. (Nat. Sci. Ed.) 24(5), 683–688 (2009)

    Google Scholar 

  102. Zhang, L., Zhang, X., Yan, G.: Experimental research on the shearing capacity of recycled aggregate concrete beams without stirrups (only available in Chinese). J. Zhengzhou Univ. (Eng. Sci.) 27, 18–23 (2006)

    MathSciNet  Google Scholar 

  103. DG/TJ08-2018-2007: Technical Code for Application of Recycled Aggregate Concrete (only available in Chinese) (2007)

    Google Scholar 

  104. Zhou, J.H., Yang, Y.-S., Jiao, X.: Experimental study on axial pressure bearing capacity of recycled concrete column (only available in Chinese). J. Shenyang Jianzhu Univ. (Nat. Sci. Ed.) 24(4), 572–576 (2008)

    Google Scholar 

  105. Xiao, J.-Z., Shen, H.B., Huang, Y.B.: Test on compression performance of recycled concrete columns (only available in Chinese). Struct. Eng. 22(6), 73–77 (2006)

    Google Scholar 

  106. Yang, Y.F., Han, L.H.: Experimental behaviour of recycled aggregate concrete filled steel tubular columns. J. Constr. Steel Res. 62(12), 1310–1324 (2006)

    Article  Google Scholar 

  107. Yang, Y. F.: Performance of recycled aggregate concrete-filled steel tubular members under various loadings. In: Proceedings of the 2nd International Conference on Waste Engineering and Management, Shanghai, China, pp. 475–484 (2010)

    Google Scholar 

  108. ACI Committee 318: Building Code Requirements for Structural Concrete and Commentary. Detroit (1999)

    Google Scholar 

  109. AIJ: Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures. Architectural Institute of Japan, Tokyo (1997)

    Google Scholar 

  110. Zhou, J.H., Wang, X.B., Yu, T.H.: Mechanic behaviour test on recycled concrete simply-supported rectangular slabs (only available in Chinese). J. Shenyang Jianzhu Univ. (Nat. Sci. Ed.) 24(3), 411–415 (2008)

    MathSciNet  Google Scholar 

  111. Xiao, J.-Z., Li, H., Jin, S.C., Li, B.: Longitudinal shear test on steel deck recycled aggregate concrete composite slabs (only available in Chinese). Struct. Eng. 26(4), 91–95 (2010)

    Google Scholar 

  112. Xiao, J.-Z., Zhu, X.H.: Study on seismic behaviour of recycled concrete frame joints (only available in Chinese). J. Tongji Univ. (Nat. Sci.) 33(4), 436–440 (2005)

    MathSciNet  Google Scholar 

  113. Xiao, J.-Z., Tawana, M.M., Wang, P.J.: Test on the seismic performance of frame joints with pre-cast recycled concrete beams and columns. In: Proceedings of the 2nd International Conference on Waste Engineering and Management, Shanghai, China, pp. 773–786 (2010)

    Google Scholar 

  114. Li, J.B., Xiao, J.Z., Huang, J.: Influence of recycled coarse aggregate replacement percentage on compressive strength of concrete (only available in Chinese). Chin. J. Build. Mater. 9(3), 297–301 (2006)

    Google Scholar 

  115. Cao, W.L., Xu, T.G., Liu, Q., Zhang, J.W., Zhang, Y.Q.: Experimental study on seismic performance of high-rise recycled aggregate concrete shear wall (only available in Chinese). World Earthq. Eng. 25(2), 18–23 (2009)

    Google Scholar 

  116. Cao, W.L., Dong, H.Y., Zhang, J.W.: Study on seismic performance of RAC shear wall with different shear-span ratio. In: Proceedings of the 2nd International Conference on Waste Engineering and Management, Shanghai, China, pp. 652–660 (2010)

    Google Scholar 

  117. Xiao, J.-Z., Huang, J.D., Yao, Y.: Experimental study on seismic behaviour of recycled concrete small-sized block walls (only available in Chinese). China Civ. Eng. J. (2010)

    Google Scholar 

  118. Xiao, J.-Z., Sun, Y.D., Falkner, H.: Seismic performance of frame structures with recycled aggregate concrete. Eng. Struct. 28(1), 1–8 (2006)

    Article  Google Scholar 

  119. GB50011: Code for Seismic Design of Buildings, Beijing (only available in Chinese) (2001)

    Google Scholar 

  120. Sun, Y.D., Xiao, J.-Z., Zhou, D.Y.: Experimental research on seismic behaviour of recycled concrete frame filled with recycled lightweight masonry blocks (only available in Chinese). Earthq. Eng. Eng. Vib. 25, 124–131 (2005)

    Google Scholar 

  121. Xiao, J.-Z., Wang, C.-Q., Zhu, B.R., Huang, J.D.: Shake table test on recycled concrete block masonry buildings (only available in Chinese). J. Sichuan Univ. (Nat. Sci.) 42(5), 120–126 (2010)

    Google Scholar 

  122. Xiao, J.-Z., Wang, C.-Q., Li, J., Tawana, M.M.: Shaking table model tests on recycled aggregate concrete frame structure. ACI Struct. J. (2010)

    Google Scholar 

  123. Arbeitsgemeinschaft Kreislaufwirtschaftsträger Bau (KWTB): Monitoring-Bericht Bauabfälle., Berlin/ Düsseldorf/ Duisburg (2000, 2001, 2003, 2005, 2007)

    Google Scholar 

  124. Arbeitsgemeinschaft Kreislaufwirtschaftsträger Bau (KWTB): Monitoring-Bericht Bauabfälle. Erhebung 2006, Berlin (2008) unveröffentlicht

    Google Scholar 

  125. VDI-Richtlinie 2095: VDI-Richtlinie 2095: Emission control. Treatment of mineral construction-site and demolition waste. Stationary and mobile demolition waste recycling facilities. Part 1. Richtlinie, VEREIN DEUTSCHER INGEINEURE (2011)

    Google Scholar 

  126. Umweltstatistische Erhebnungen, Abfallwirtschaft. In: Statistisches Bundesamt Deutschland. Available at www.destatis.de (2011). Accessed 2011

  127. TL Gestein-StB 04: Technische Lieferbedingungen für Gesteinskörnungen im Straßenbau. FGSVNr. 613, FGSV Verlag GmbH, Köln (2007) Ausgabe 2004, Fassung 2007

    Google Scholar 

  128. DIN EN 13043:2002–12: Gesteinskörnungen für Asphalte und Oberflächenbehandlungen für Straßen, Flugplätze und andere Verkehrsflächen. Standard, Berlin (2002)

    Google Scholar 

  129. DIN EN 206–1:2001:07/A1:2004-10/A2:2005–09: Beton – Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität. Standard, Berlin (2001)

    Google Scholar 

  130. DIN 1045–2:2008–08: Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 2: Beton – Festlegung, Eigenschaften, Herstellung und Konformität – Anwendungsregeln zu DIN EN 2206–1. Standard, Berlin (2008)

    Google Scholar 

  131. DIN EN 12620:2008–07: Gesteinskörnungen für Beton. Standard, Berlin (2008)

    Google Scholar 

  132. DIN EN 13055–1:2002-08/Berichtigung1:2004–12: Leichte Gesteinskörnungen für Beton, Mörtel und Einpressmörtel. Standard, Berlin (2002)

    Google Scholar 

  133. DIN 4226–100:2002–02: Gesteinskörnungen für Beton und Mörtel. Teil 100: Rezyklierte Gesteinskörnungen. Aggregates for Mortar and Concrete, Part 100: Recycled Aggregates. Germany. Standard, Berlin (2002)

    Google Scholar 

  134. Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie: Beton nach DIN EN 206–1 und DIN 1045–2 mit rezyklierten Gesteinskörnungen nach DIN 4226–100 - Teil 1: Anforderungen an den Beton für die Bemessung nach DIN 1045–1. Standard, Berlin (2004)

    Google Scholar 

  135. Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie: Vorbeugende Maßnahmen gegen schädigende Alkalireaktionen im Beton (Alkali-Richtlinie), Berlin (2007)

    Google Scholar 

  136. LAGA-Mitteilung 20: Anforderungen an die stoffliche Verwertung von mineralischen Abfällen – Technische Regeln, in der jeweils aktuellen Fassung. Available at: http://www.bafg.de/nn_161560/Baggergut/DE/04__Richtlinien/LAGA__TR__Boden,templateId=raw,property=publicationFile.pdf. Accessed 2012

  137. Deutsches Institut für Bautechnik (DIBt): Zulassungsgrundsätze für die Bewertung der Auswirkungen von Bauprodukten auf Boden und Grundwasser. Teile 1 bis 3, Berlin (2009)

    Google Scholar 

  138. Pawel, A.: Nachweis der Umweltverträglichkeit von Bauprodukten im Rahmen von allgemeinen bauaufsichtlichen Zulassungen. In: Neue Entwicklungen im Betonbau, Fachtagung des Deutschen Ausschuss für Stahlbeton, Berlin (2007)

    Google Scholar 

  139. Susset, B., Leuchs, W.: Ableitung von Materialwerten im Eluat und Einbaumöglichkeiten mineralischer Ersatzbaustoffe. Umsetzung der Ergebnisse des BMBF-Verbundes “Sickerwasserprognose” in konkrete Vorschläge zur Harmonisierung von Methoden. Abschlussbericht, Auftrag des Umweltbundesamtes. Forschungsprojekt im Auftrag des Umweltbundesamtes. FuE-Vorhaben Förderkennzeichen 205 74 251 (2008)

    Google Scholar 

  140. Gäth, S., Luckner, L.: Wissenschaftliche Bewertung des UBA-Abschlussberichtes “Ableitung von Materialwerten im Eluat und Einbaumöglichkeiten mineralischer Ersatzbaustoffe” von Susset&Leuchs. Justus-Liebig-Universität Gießen, Berlin (2008)

    Google Scholar 

  141. Ifeu-Institut Heidelberg: Hochwertige Verwertung von Bauschutt als Zuschlag für die Betonherstellung, im Auftrag des Ministeriums für Umwelt, Naturschutz und Verkehr Baden-Württemberg, Zwischenbericht. Zwischenbericht, Ministeriums für Umwelt, Naturschutz und Verkehr. http://www.rc-beton.de/rc-beton-projekte/stuttgart-ost/stuttgart-ost-download.html (2010)

  142. Mettke, A.: RC-Beton – Qualität und Qualitätssicherung. Aufbereitung von Baustoffen und Wiederverwertung. In: Fachtagung Recycling R′10, Weimar (2010)

    Google Scholar 

  143. Vyncke, J.: Use of recycled materials as aggregates in the construction industrie. Half-yearly publication Combined Volume 2 Issue 3 and 4. European Thematic Network on Recycling in Construction – DG XII (March/September 2000)

    Google Scholar 

  144. Wöhnl, U.: Recyclingbeton für Bauteile im Hochbau. Sonderdruck aus Beton 44(9), 499–503 (1994)

    Google Scholar 

  145. In: BiM-Online Homepage. Available at http://www.b-i-m.de/projekte/projframe.htm (2011). Accessed 2011

  146. Haase, R., Dahms, J.: Baustoffkreislauf am besonderem Beispiel von Beton im norddeutschen Raum. Beton 48(6), 350–355 (1998)

    Google Scholar 

  147. Grübl, P., Rühl, M.: Beton unter Verwendung von rezyklierter Gesteinskörnung. Beton 52(5), 250–254 (2002)

    Google Scholar 

  148. Philipp Holzmann A.G.: Haus komplett aus Recyclingbeton – Recyclingbeton für eine Autobahnbrücke. Tiefbau 112(4), 234–235 (Haus komplett aus Recyclingbeton – 1999)

    Google Scholar 

  149. Mettke, A.: Der Einsatz von Recycling-Beton in der Praxis, Fallbeispiel Ludwigshafen. Berlin (November 2010)

    Google Scholar 

  150. AA. VV.: Gli impianti per il trattamento dei rifiuti in Italia. Rapporto, FISE Assoambiente (2009)

    Google Scholar 

  151. AA. VV.: L’Italia del recupero. rapporto FISE UNIRE sul riciclo dei rifiuti. rapporto, FISE UNIRE (2010)

    Google Scholar 

  152. AA. VV.: Rapporto rifiuti. Istituto Superiore per la Protezione e la Ricerca Ambientale (2008)

    Google Scholar 

  153. PORTUGAL-Ministério da Ambiente, do Ordenamento do Território e do Desenvolvimento Regional.: Decreto-Lei 46/2008, de 12 de Março (2008)

    Google Scholar 

  154. LNEC-E471: Guia para a utilização de agregados reciclados grossos em betões de ligantes hidráulicos. Laboratório Nacional de Engenharia Civil (2009)

    Google Scholar 

  155. LNEC-E472: Guia para a reciclagem de misturas betuminosas a quente em central. Laboratório Nacional de Engenharia Civil (2009)

    Google Scholar 

  156. LNEC-E473: Guia para a utilização de agregados reciclados em camadas não ligadas de pavimentos. Laboratório Nacional de Engenharia Civil (2009)

    Google Scholar 

  157. LNEC-E474: Guia para a utilização de materiais reciclados provenientes de resíduos de construção e demolição em aterro e camada de leito de infra-estruturas de transporte. Laboratório Nacional de Engenharia Civil (2009)

    Google Scholar 

  158. Böhmer, S., Moser, M., Neubauer, C., Peltoniemi, M., Schachermayer, E., Tesar, M., Walter, B., Winter, B.: Aggregates case study. Final Report referring to contract n° 150787–2007 f1sc-at‚ aggregates case study – data gathering’ (2008)

    Google Scholar 

  159. CEN. EN 12620: 2002 + A1: Aggregates for Concrete. Comité Européen de Normalisation (2008)

    Google Scholar 

  160. CEN. EN 13108–8: 2005.: Bituminous Mixtures – Material Specifications – Part 8: Reclaimed asphalt. Comité Européen de Normalisation (2005)

    Google Scholar 

  161. CEN. EN 13242:2002 + A1:2007.: Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. Comité Européen de Normalisation, (2007) Incorporating corrigendum May 2004

    Google Scholar 

  162. CEN. EN 13285:2003.: Unbound mixtures – Specification., Comité Européen de Normalisation (2003)

    Google Scholar 

  163. Braz de Melo, A.B.., Gonçalves, A.F., Martins, I.M.: Construction and demolition waste generation and management in Lisbon (Portugal). Res. Conserv. Recycl. 55(12), 1252–1264 (2011)

    Article  Google Scholar 

  164. PORTUGAL-Ministério da Ambiente e do Ordenamento do Território.: Decreto-Lei 73/2011, de 17 de Junho. Ministério da Ambiente e do Ordenamento do Território (2011)

    Google Scholar 

  165. OJEU. 2008/98/CE.: Directive 2008/98/EC of the European Parliament and the Council of 19 November 2008 on Waste and Repealing certain Directives (Text with EEA relevance) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enric Vázquez or Jeroen Vrijders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 RILEM

About this chapter

Cite this chapter

Vázquez, E. (2013). Overview Regarding Construction and Demolition Waste in Several Countries. In: Vázquez, E. (eds) Progress of Recycling in the Built Environment. RILEM State-of-the-Art Reports, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4908-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4908-5_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4907-8

  • Online ISBN: 978-94-007-4908-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics