Skip to main content

Ab Initio and Density Functional Calculations of Electronic g-Tensors for Organic Radicals

  • Chapter
  • First Online:
EPR of Free Radicals in Solids I

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 24))

  • 1169 Accesses

Abstract

Recent development and validation of quantum chemical methods for the calculation of electronic g-tensors is reviewed. The emphasis is on ab initio and density functional methods, whereas semi-empirical methods are covered only briefly. Methodological differences and the relative performance of various approaches are discussed critically, in particular regarding the treatment of spin-orbit coupling and of electron correlation. First applications to biologically relevant radicals are reviewed. Examples range from phenoxyl radicals via semiquinone radical anions to more demanding amino acid radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. See, e.g.: Weil JA, Bolton JR (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York; Weltner W Jr (1983) Magnetic atoms and molecules. Van Nostrand, New York

    Google Scholar 

  2. Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic, New York

    Google Scholar 

  3. Möbius K (1993) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 13. Plenum Press, New York, pp 253–274

    Google Scholar 

  4. Prisner TF (1997) In: Warren W (ed) Advances in magnetic and optical resonance, vol 20. Academic, New York, pp 245–299

    Chapter  Google Scholar 

  5. Un S, Dorlet P, Rutherford AW (2001) A high-field EPR tour of radicals in photosystems I and II. Appl Magn Reson 21:341–361

    Article  CAS  Google Scholar 

  6. Cf., e.g.: Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford; Symons MCR (1978) Chemical and biochemical aspects of electron-spin resonance spectroscopy. Van Nostrand, New York; Atherton NM (1993) Principles of electron spin resonance. Prentice Hall, New York

    Google Scholar 

  7. Stone AJ (1963) Gauge invariance of the g tensor. Proc R Soc A 271:424–434

    Article  Google Scholar 

  8. Stone AJ (a) (1963) g Factors of aromatic free radicals. Mol Phys 6:509–515; (b) (1964) g tensors of aromatic hydrocarbons. Mol Phys 7:311–316

    Google Scholar 

  9. Kaupp M, Bühl M, Malkin VG (eds) (2004) Calculation of NMR and EPR parameters. Theory and application. Wiley-VCH, Weinheim

    Google Scholar 

  10. Lushington GH (2004) Ab initio calculations of g-tensors. In Ref. [9], Ch. 33, pp 533–540; Patchkovskii S, Schreckenbach G (2004) Calculation of EPR g-tensors with density functional theory. In Ref. [9], Ch. 32, pp 505–532

    Google Scholar 

  11. Cimino P, Neese F, Barone V (2010) Computational spectroscopy. In: Grunenberg J (ed) Methods, experiments and applications. Wiley-VCH, Weinheim, pp 63–104

    Google Scholar 

  12. Vahtras O, Engstroem M, Agren H (2003) Quantum chemical calculations of molecular g-tensors of biological radicals. In Braendas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol 2, pp 483–524. Kluwer, Dordrecht

    Google Scholar 

  13. McWeeny R (1992) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  14. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610

    Article  Google Scholar 

  15. Samzow R, Hess BA, Jansen G (1992) The two-electron terms of the no-pair Hamiltonian. J Chem Phys 96:1227–1231

    Article  CAS  Google Scholar 

  16. van Lenthe E, Wormer PES, van der Avoird A (1997) Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. J Chem Phys 107:2488–2498

    Article  Google Scholar 

  17. Neyman KM, Ganyushin DI, Matveev AV, Nasluzov VA (2002) Calculation of electronic g-tensors using a relativistic density functional Douglas-Kroll method. J Phys Chem A 106:5022–5030

    Article  CAS  Google Scholar 

  18. Malkin I, Malkina OL, Malkin VG, Kaupp M (2005) Relativistic two-component calculations of electronic g-tensors that include spin polarization. J Chem Phys 123:244103/1-16

    Article  CAS  Google Scholar 

  19. Komorovský S, Repiský M, Malkina OL, Malkin VG, Malkin I, Kaupp M (2006) Resolution of identity Dirac-Kohn-Sham method using the large component only: calculations of g-tensor and hyperfine tensor. J Chem Phys 124:084108/1-8

    Article  CAS  Google Scholar 

  20. Hrobárik P, Repiský M, Komorovský S, Hrobáriková V, Kaupp M (2011) Assessment of higher-order spin-orbit effects on electronic g-tensors of d1 transition-metal complexes by relativistic two- and four-component methods. Theor Chem Acc 129:715–725

    Article  CAS  Google Scholar 

  21. Pryce MH (1950) A modified perturbation procedure for a problem in paramagnetism. Proc Phys Soc 63:25–29

    Google Scholar 

  22. Lushington GH (1996) PhD thesis, The University of New Brunswick, Canada

    Google Scholar 

  23. Patchkovskii S, Ziegler T (2001) Calculation of the EPR g-tensors of high-spin radicals with density functional theory. J Phys Chem A 105:5490

    Article  CAS  Google Scholar 

  24. Engström M, Minaev B, Vahtras O, Ågren H (1998) Linear response calculations of electronic g-factors and spin-rotational coupling constants for diatomic molecules with a triplet ground state. Chem Phys 237:149–158

    Article  Google Scholar 

  25. Patchkovskii S, Strong RT, Pickard CJ, Un Gauge S (2005) Invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance. J Chem Phys 122:214101/1-9

    Article  CAS  Google Scholar 

  26. Angstl R (1989) Contribution of the relativistic mass correction to the g tensor of molecules. Chem Phys 132:435–442

    Article  CAS  Google Scholar 

  27. See, e.g.: Engels B, Eriksson LA, Lunell S (1996) Recent developments in conzuration interaction and density functional theory calculations of radical hyperfine structure. Adv Quantum Chem 27:297–369

    Google Scholar 

  28. See, e.g.: Geurts PJ, Bouten PCP, van der Avoird AJ (1997) Hartree–Fock–Slater–LCAO calculations on the Cu(II) bis(dithiocarbamate) complex; Magnetic coupling parameters and optical spectrum. J Chem Phys 73:1306–1312; Belanzoni P, Baerends EJ, van Asselt S, Langewen PB (1995) Density functional study of magnetic coupling parameters. Reconciling theory and experiment for the TiF3 complex. J Phys Chem 99:13094–13102; Swann J, Westmoreland TD (1997) density functional calculations of g values and molybdenum hyperfine coupling constants for a series of molybdenum(V) oxyhalide anions. Inorg Chem 36:5348–5357

    Google Scholar 

  29. Moores WH, McWeeny R (1973) The calculation of spin-orbit splitting and g tensors for small molecules and radicals. Proc R Soc A 332:365–384. See also: Ishii M, Morihashi K, Kikuchi O (1991) Ab initio calculations of g values of free radicals by finite perturbation theory. J Mol Struct Theochem 235:39–49

    Google Scholar 

  30. See, e.g.: Keijzers CP, de Vries HHM, van der Avoird A (1972) Extended Hueckel calculation of the electron paramagnetic resonance parameters of copper(II) bis(dithiocarbamate). Inorg Chem 11:1338–1343; Dalgård E, Linderberg J (1975) Energy weighted maximum overlap in magnetic fields, applications to electron spin resonance problems. Int J Quantum Chem S9:269–277; Mishra KC, Mishra SK, Roy JN, Ahmad S, Das TP (1985) g-Tensor in a low-spin heme system using molecular orbital theory – ferricytochrome c and nitrosylhemoglobin. J Am Chem Soc 107:7898–7904; Roy JN, Mishra KC, Mishra SK, Das TP (1989) Variational theory for g tensor in electron paramagnetic resonance experiments: application to ferricytochrome c and azidomyoglobin. J Phys Chem 93:194–200

    Google Scholar 

  31. Chuvylkin ND, Zhidomirov GM (1973) CNDO/SP calculation of g-tensors of free radicals. Mol Phys 25:1233–1235

    Article  CAS  Google Scholar 

  32. Angstl R (1990) Calculation of molecular g tensors. Comparison of Rayleigh-Schroedinger and Hartree-Fock perturbation theory. Chem Phys 145:413–426

    Article  CAS  Google Scholar 

  33. Morikawa T, Kikuchi O (1971) SCF MO INDO calculation of g-tensors of some σ-type radicals. Theor Chim Acta 22:224–228; McCain DC, Hayden DW (1973) Theory of electron spin g-values for carbonyl radicals. J Magn Reson 12:312–330

    Google Scholar 

  34. Plato M, Möbius K, Lubitz W (1991) Molecular orbital calculations on chlorophyll radical ions. In Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 1015–1046; Hales BJ (1975) Immobilized radicals. I. Principal electron spin resonance parameters of the benzosemiquinone radical benzosemiquinone radical. J Am Chem Soc 97:5993–5997

    Google Scholar 

  35. Hsiao Y-W, Zerner MC (1999) Calculating ESR g tensors of doublet radicals by the semiempirical INDO/S method. Int J Quantum Chem 75:577–584

    Article  CAS  Google Scholar 

  36. Plakhutin BN, Zhidomirov GM, Zamaraev KI (1983) INDO calculations of spin Hamiltonian constants in transition metal complexes. Effect of structural distortions and adduct formation on the g-tensor of copper(II) bis(acetylacetonate.). J Struct Chem 24:3–11

    Article  CAS  Google Scholar 

  37. For an INDO-CI approach, see: Neese F (2001) Configuration interaction calculation of electronic g tensors in transition metal complexes. Int J Quantum Chem 83:104–114; Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568–6582

    Google Scholar 

  38. Mustafaev SA, Malkin VG, Schastnev PV (1987) Application of finite perturbation method in calculating g-factors of free-radicals. J Struct Chem 28:667–673

    Article  Google Scholar 

  39. Un S, Atta M, Fontcave M, Rutherford AW (1995) g-Values as a probe of the local protein environment: high-field EPR of tyrosyl radicals in ribonucleotide reductase and photosystem II environment: high-field EPR of tyrosyl radicals in ribonucleotide reductase and photosystem II. J Am Chem Soc 117:10713–10719

    Article  CAS  Google Scholar 

  40. Knüpling M, Törring JT, Un S (1996) The relationship between the molecular structure of semiquinone radicals and their g-values. Chem Phys 219:291–304

    Article  Google Scholar 

  41. Törring JT, Un S, Knüpling M, Plato M, Möbius K (1997) On the calculation of G tensors of organic radicals. J Chem Phys 107:3905–3913

    Article  Google Scholar 

  42. Lushington GH, Grein F (1996) Complete to second-order ab initio level calculations of electronic g-tensors. Theor Chim Acta 93:259–267

    CAS  Google Scholar 

  43. Bruna P, Lushington GH, Grein F (1997) Stability, properties and electronic g-tensors of H2CO- as stabilized in H2CO·Na complexes. Chem Phys 225:1–15

    Article  CAS  Google Scholar 

  44. Brownridge S, Grein F, Tatchen J, Kleinschmidt M, Marian CM (2003) Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin-orbit method. J Chem Phys 118:9552–9562

    Article  CAS  Google Scholar 

  45. Vahtras O, Minaev B, Ågren H (1997) Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett 281:186–192

    Article  CAS  Google Scholar 

  46. Vahtras O, Engström M, Schimmelpfennig B (2002) Electronic g-tensors obtained with the mean-field spin–orbit Hamiltonian. Chem Phys Lett 351:424–430

    Article  CAS  Google Scholar 

  47. Bolvin H (2006) An alternative approach to the g-matrix: theory and applications. ChemPhysChem 7:1575–1589

    Article  CAS  Google Scholar 

  48. Tatchen J, Kleinschmidt M, Marian CM (2009) Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions. J Chem Phys 130:154106/1-17

    Google Scholar 

  49. Neese F (2007) Analytic derivative calculation of electronic g-tensors based on multireference configuration interaction wavefunctions. Mol Phys 105:2507–2514

    Article  CAS  Google Scholar 

  50. Gauss J, Kallay M, Neese F (2009) Calculation of electronic g-tensors using coupled cluster theory. J Phys Chem A 113:11541–11549

    Article  CAS  Google Scholar 

  51. See, e.g.: Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  52. See, e.g.: van Wüllen C (1995) Density functional calculation of nuclear magnetic resonance chemical shifts. J Chem Phys 102:2806–2811; Lee AM, Handy NC, Colwell SM (1995) The density functional calculation of nuclear shielding constants using London atomic orbitals. J Chem Phys 103:10095–10109, and references therein

    Google Scholar 

  53. See, e.g.: Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967, and references therein

    Google Scholar 

  54. Schreckenbach G, Ziegler T (1997) Calculation of the g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399

    Article  CAS  Google Scholar 

  55. Malkina OL, Vaara J, Schimmelpfennig B, Munzarová ML, Malkin VG, Kaupp M (2000) Density functional calculations of electronic g-tensors using spin-orbit pseudopotentials and mean-field all-electron spin-orbit operators. J Am Chem Soc 122:9206–9218

    Article  CAS  Google Scholar 

  56. Kaupp M, Reviakine R, Malkina OL, Arbuznikov A, Schimmelpfennig B, Malkin VG (2002) Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic meanfield spin-orbit operators. J Comput Chem 23:794–803

    Article  CAS  Google Scholar 

  57. Neese F (2001) Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096

    Article  CAS  Google Scholar 

  58. Autschbach J, Pritchard B (2011) Calculation of molecular g-tensors using the zeroth-order regular approximation and density functional theory: expectation value versus linear response approaches. Theor Chem Acc 129:453–466

    Article  CAS  Google Scholar 

  59. Manninen P, Vaara J, Ruud K (2004) Perturbational relativistic theory of electron spin resonance g-tensor. J Chem Phys 121:1258–1265; Rinkevicius Z, de Almeida KJ, Oprea CI, Vahtras O, Ågren H (2008) Degenerate perturbation theory for electronic g-tensors: leading-order relativistic effects. J Chem Theory Comput 4:1810–1828

    Google Scholar 

  60. See, e.g.: Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO method for NMR chemical shifts. Mol Phys 27:789–807; Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Google Scholar 

  61. Kutzelnigg W, Fleischer U, Schindler M (1990) The IGLO-Method: Ab-initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. In: NMR-basic principles and progress, vol 23. Springer, Heidelberg, pp 165–262

    Google Scholar 

  62. Pickard CJ, Mauri F (2002) First-principles theory of the EPR g-tensor in solids: defects in quartz. Phys Rev Lett 88:086403/1-4

    Article  CAS  Google Scholar 

  63. Canning A et al. (2003) Paratec, PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec

  64. Sebastiani D, Parrinello M (2001) A new ab-initio approach for NMR chemical shifts in periodic systems. J Phys Chem A 105:1951–1958

    Article  CAS  Google Scholar 

  65. Declerck R, Van Speybroeck V, Waroquier M (2006) First-principles calculation of the EPR g tensor in extended periodic systems. Phys Rev B 73:115113/1-8

    Article  CAS  Google Scholar 

  66. CPMD V3.11, Copyright IBM Corp 1990–2006. Copyright MPI für Festkörperforschung Stuttgart 1997–2001

    Google Scholar 

  67. Lippert G, Hutter J, Parrinello M (1999) The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor Chem Acc 103:124–140

    Article  CAS  Google Scholar 

  68. Weber V, Iannuzzi M, Giani S, Hutter J, Declerck R, Waroquier M (2009) Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method. J Chem Phys 131:014106/1-11

    Article  CAS  Google Scholar 

  69. CP2K. http://cp2k.berlios.de

  70. Kadantsev ES, Ziegler T (2009) Implementation of a DFT-based method for the calculation of the Zeeman g-tensor in periodic systems with the use of numerical and Slater-type atomic orbitals. J Phys Chem A 113:1327–1334

    Article  CAS  Google Scholar 

  71. Kacprzak S, Reviakine R, Kaupp M (2007) Understanding the EPR parameters of glycine-derived radicals: the case of N-Acetylglycyl in the N-Acetylglycine single-crystal environment. J Phys Chem B 111:811–819

    Article  CAS  Google Scholar 

  72. Kacprzak S, Reviakine R, Kaupp M (2007) Understanding the electron paramagnetic resonance parameters of protein-bound glycyl radicals. J Phys Chem B 111:820–831

    Article  CAS  Google Scholar 

  73. Hess BA, Marian C, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371

    Article  CAS  Google Scholar 

  74. Schimmelpfennig B (1996) Atomic spin-orbit meanfield integral program. Stockholms Universitet, Sweden

    Google Scholar 

  75. Malkina OL, Schimmelpfennig B, Kaupp M, Hess BA, Chandra P, Wahlgren U, Malkin VG (1998) Spin-orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? Chem Phys Lett 296:93–104

    Article  CAS  Google Scholar 

  76. Ruud K, Schimmelpfennig B, Ågren H (1990) Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett 310:215–221

    Article  Google Scholar 

  77. Vaara J, Malkina OL, Stoll H, Malkin VG, Kaupp M (2001) Study of relativistic effects on nuclear shieldings using density-functional theory and spin-orbit pseudopotentials. J Chem Phys 114:61–71

    Article  CAS  Google Scholar 

  78. Koseki S, Schmidt MW, Gordon MS (1992) MCSCF/6–31 G(D, P) Calculations of one-electron spin-orbit-coupling constants in diatomic-molecules. J Chem Phys 96:10768–10772

    Article  CAS  Google Scholar 

  79. Neese F (2005) Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 122:034107/1-13

    Google Scholar 

  80. See, e.g.: Malkin VG, Malkina OL, Casida ME, Salahub DR (1994) Nuclear magnetic resonance shielding tensors calculated with a sum-over-states density functional perturbation theory. J Am Chem Soc 116:5898–5908

    Google Scholar 

  81. Malkin VG, Malkina OL, Eriksson LA, Salahub DR (1995) The calculation of NMR and ESR spectroscopy parameters using density functional theory. In: Seminario JM, Politzer P (eds) Modern density functional theory: a tool for chemistry; theoretical and computational chemistry, vol 2. Elsevier, Amsterdam, pp 273–347

    Chapter  Google Scholar 

  82. Arbuznikov AV, Kaupp M (2009) Coupled-perturbed scheme for the calculation of electronic g-tensors with local hybrid functionals. J Chem Theory Comput 5:2985–2995

    Article  CAS  Google Scholar 

  83. Arbuznikov A, Kaupp M, Reviakine R, Malkina OL, Malkin VG (2002) Validation study of meta-GGA functionals and of a model exchange-correlation potential in density functional calculations of EPR parameters. Phys Chem Chem Phys 4:5467–5474

    Article  CAS  Google Scholar 

  84. Asher JR, Kaupp M (2008) Car-Parrinello molecular dynamics simulations and EPR property calculations on aqueous ubisemiquinone radical anion. Theor Chem Acc 119:477–487; Asher JR, Kaupp M (2007) Hyperfine coupling tensors of the benzosemiquinone radical anion from Car-Parrinello molecular dynamics. ChemPhysChem 8:69–79; Asher JR, Doltsinis NL, Kaupp M (2005) Extended Car-Parrinello molecular dynamics and electronic g-tensors study of benzosemiquinone radical anion. Magn Reson Chem 43:237–247; Asher JR, Doltsinis NL, Kaupp M (2004) Ab initio molecular dynamics simulations and g-tensor calculations of aqueous benzosemiquinone radical anion: effects of regular and “T-Stacked” hydrogen bonds. J Am Chem Soc 126:9854–9861

    Google Scholar 

  85. Pavone M, Cimino P, De Angelis F, Barone V (2006) Interplay of stereoelectronic and environmental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach. J Am Chem Soc 128:4338–4347; Brancato G, Regia N, Barone V (2007) Unraveling the role of stereo-electronic, dynamical, and environmental effects in tuning the structure and magnetic properties of glycine radical in aqueous solution at different pH values. J Am Chem Soc 129:15380–15390; Barone V, Carbonniere P, Pouchan C (2005) Accurate vibrational spectra and magnetic properties of organic free radicals: the case of H2CN. J Chem Phys 122:224308/1-8; Pavone M, Silllanpaa A, Cimino P, Crescenzi O, Barone V (2006) Evidence of variable H-bond network for nitroxide radicals in protic solvents. J Phys Chem B 110:16189–16192; Pavone M, Biczysko M, Rega N, Barone V (2010) Magnetic properties of nitroxide spin probes: reliable account of molecular motions and nonspecific solvent effects by time-dependent and time-independent approaches. J Phys Chem B 114:11509–11514

    Google Scholar 

  86. Pauwels E, Asher J, Kaupp M, Waroquier M (2011) Cluster or periodic, static or dynamic – the challenge of calculating the g tensor of the solid-state glycine radical. Phys Chem Chem Phys 13:18638–18646. doi:10.1039/C1CP21452G

    Google Scholar 

  87. Barone V, Polimeno A (2006) Toward an integrated computational approach to CW-ESR spectra of free radicals. Phys Chem Chem Phys 8:4609–4629

    Article  CAS  Google Scholar 

  88. Pavone M, Biczysko M, Rega N, Barone V (2010) Magnetic properties of nitroxide spin probes: reliable account of molecular motions and nonspecific solvent effects by time-dependent and time-independent approaches. J Phys Chem B 114:11509–11514; Barone V, Cimino P, Pedone A (2010) An integrated computational protocol for the accurate prediction of EPR and PNMR parameters of aminoxyl radicals in solution. Magn Res Chem S1:11–22

    Google Scholar 

  89. Ciofini I, Reviakine R, Arbuznikov A, Kaupp M (2004) Solvent effects on g-tensors of semiquinone radical anions: polarizable continuum versus cluster models. Theor Chem Acc 111:132–140

    Article  CAS  Google Scholar 

  90. Rinkevicius Z, Telyatnyk L, Vahtras O, Ruud K (2004) Electronic g-tensors of solvated molecules using the polarizable continuum model. J Chem Phys 121:5051–5060

    Article  CAS  Google Scholar 

  91. Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F (2006) Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS). J Phys Chem A 110:2235–2245

    Article  CAS  Google Scholar 

  92. Klamt A, Jonas V, Bürger T, Lohrenz JC (1998) Refinement and parametrization of COSMO-RS. J Phys Chem A 102:5074–5085

    Article  CAS  Google Scholar 

  93. Sinnecker S, Neese F (2006) QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study. J Comput Chem 27:1463–1475

    Article  CAS  Google Scholar 

  94. Rinkevicius Z, Murugan NA, Kongsted J, Aidas K, Steindal AH, Agren H (2011) Density functional theory/molecular mechanics approach for electronic g-tensors of solvated molecules. J Phys Chem B 115:4350–4358

    Article  CAS  Google Scholar 

  95. Curl RF (1965) Relation between electron spin rotation coupling constants and g-tensor components. Mol Phys 9:585–597; Knight LB, Weltner WJ (1970) Spin-coupling constant, γ, and g tensor in 2Σ molecules. J Chem Phys 53:4111–4112

    Google Scholar 

  96. Bruna PJ, Grein F (2000) Comparing electron-spin g-tensor results of first-row radicals with those of higher rows. Int J Quantum Chem 77:324–335; Bruna PJ, Grein F (2001) Electron-spin magnetic moment (g Factor) of X2Σ+ diatomic radicals MX(±) with nine valence electrons (M = Be, B, Mg, Al; X = N, O, F, P, S, Cl), An ab initio study. J Phys Chem A 105:3328–3339

    Google Scholar 

  97. Kaupp M, Remenyi C, Vaara J, Malkina OL, Malkin VG (2002) Density functional calculations of electronic g-tensors for semiquinone radical anions, the role of hydrogen bonding and substituent effects. J Am Chem Soc 124:2709–2722

    Article  CAS  Google Scholar 

  98. Engström M, Vahtras O, Ågren H (1999) Hartree-Fock linear response calculations of g-tensors of substituted benzene radicals. Chem Phys 243:263–271

    Article  Google Scholar 

  99. Engström M, Himo F, Gräslund A, Minaev B, Vahtras O, Ågren H (2000) Hydrogen bonding to tyrosyl radical analyzed by ab initio g-tensor calculations. J Phys Chem A 104:5149–5153

    Article  CAS  Google Scholar 

  100. Engström M, Himo F, Ågren H (2000) Ab initio g-tensor calculations of the thioether substituted tyrosyl radical in galactose oxidase. Chem Phys Lett 319:191–196

    Article  Google Scholar 

  101. Kaupp M, Gress T, Reviakine R, Malkina OL, Malkin VG (2003) g-Tensor and spin density of the modified tyrosyl radical in galactose oxidase: a density functional study. J Phys Chem B 107:331–337

    Article  CAS  Google Scholar 

  102. van Gastel M, Lubitz W, Lassmann G, Neese F (2004) Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. J Am Chem Soc 126:2237–2246

    Article  CAS  Google Scholar 

  103. See, e.g.: Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762

    Google Scholar 

  104. See, e.g.: Allard P, Barra AL, Andersson KK, Schmidt PP, Atta M, Gräslund A (1996) Characterization of a new tyrosyl free radical in salmonella typhimurium ribonucleotide reductase with EPR at 9.45 and 245 GHz. J Am Chem Soc 118:895–896; van Dam PJ, Willems J-P, Schmidt PP, Pötsch S, Barra A-L, Hagen WR, Hoffman BM, Andersson KK, Gräslund A (1998) High-frequency EPR and pulsed Q-Band ENDOR studies on the origin of the hydrogen bond in tyrosyl radicals of ribonucleotide reductase R2 proteins from mouse and herpes simplex virus type 1. J Am Chem Soc 120:5080–5085; Un S, Gerez C, Elleingard E, Fontecave M (2001) Sensitivity of tyrosyl radical g-values to changes in protein structure: a high-field EPR study of mutants of ribonucleotide reductase. J Am Chem Soc 123:3048–3054; Ivancich A, Dorlet P, Goodin DB, Un S (2001) Multifrequency high-field EPR study of the tryptophanyl and tyrosyl radical intermediates in wild-type and the W191G mutant of cytochrome c peroxidase. J Am Chem Soc 123:5050–5058, and references cited in these works

    Google Scholar 

  105. Ivancich A, Mattioli TA, Un S (1999) Effect of protein microenvironment on tyrosyl radicals. A high-field (285 GHz) EPR, resonance Raman, and hybrid density functional study. J Am Chem Soc 121:5743–5753

    Article  CAS  Google Scholar 

  106. Benisvy L, Bittl R, Bothe E, Garner CD, McMaster J, Ross S, Teutloff C, Neese F (2005) Phenoxyl radicals hydrogen-bonded to imidazolium: analogues of tyrosyl D of photosystem II: High-field EPR and DFT studies. Angew Chem Int Ed Engl 44:5314–5317; Brynda M, Britt RD (2007) Density functional theory calculations on the magnetic properties of the model tyrosine radical-histidine complex mimicking tyrosyl radical YD .bul. In Photosystem II. Res Chem Intermed 33:863–883

    Google Scholar 

  107. Benisvy L, Hammond D, Parker DJ, Davies ES, Garner CD, McMaster J, Wilson C, Neese F, Bothe E, Bittl R, Teutloff C (2007) Insights into the nature of the hydrogen bonding of Tyr272 in apo-galactose oxidase. J Inorg Biochem 101:1859–1864

    Article  CAS  Google Scholar 

  108. Svistunenko DA, Jones TGA (2009) Radicals in proteins: a comparison of empirical and density functional calculated EPR parameters. Phys Chem Chem Phys 11:6600–6613

    Article  CAS  Google Scholar 

  109. Klinman JP (1996) Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev 96:2541–2561

    Article  CAS  Google Scholar 

  110. Ito N, Phillips SEV, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadaf KDS, Knowles PF (1991) Novel thioether bond revealed by a 1.7 Angstrom label crystal structure of galactose oxidase. Nature 350:87–90

    Article  CAS  Google Scholar 

  111. Babcock GT, El-Deeb MK, Sandusky PO, Whittaker MM, Whittaker JW (1992) Electron paramagnetic resonance and electron nuclear double resonance spectroscopies of the radical site in galactose oxidase and of thioether-substituted phenol model compounds. J Am Chem Soc 114:3727–3734

    Article  CAS  Google Scholar 

  112. Gerfen GJ, Bellew BF, Griffin RG, Singel DJ, Ekberg CA, Whittaker JW (1996) High-frequency electron paramagnetic resonance spectroscopy of the apogalactose oxidase radical. J Phys Chem 100:16739–16748

    Article  CAS  Google Scholar 

  113. Un S, Boussac A, Sugiura M (2007) Characterization of the tyrosine-Z radical and its environment in the spin-coupled S2TyrZ ·bul. State of photosystem II from thermosynechococcus elongates. Biochemistry 46:3138–3150

    Article  CAS  Google Scholar 

  114. Bernini C, Pogni R, Ruiz-Duenas FJ, Martinez AT, Basosi R, Sinicropi A (2011) EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 13:5078–5098

    Article  CAS  Google Scholar 

  115. Un S (2005) The g-values and hyperfine coupling of amino acid radicals in proteins: comparison of experimental measurements with ab initio calculations. Magn Reson Chem 43:229–236

    Article  CAS  Google Scholar 

  116. Schoenberger F, Kerres J, Dilger H, Roduner E (2009) EPR spectroscopic investigation of radical-induced degradation of partially fluorinated aromatic model compounds for fuel cell membranes. Phys Chem Chem Phys 11:5782–5795

    Article  CAS  Google Scholar 

  117. See, e.g.: Patai S (1974) Chemistry of quinoid compounds. Interscience, New York; Trumpower BL (ed) (1982) Function of quinones in energy conserving systems. Academic Press, New York; Morton RA (1965) Biochemistry of quinones. Academic Press, New York

    Google Scholar 

  118. See, e.g.: Pedersen JA (1985) EPR spectra from natural and synthetic quinones and quinoids. CRC Press, Boca Raton

    Google Scholar 

  119. See, e.g.: Lubitz W, Feher G (1999) The primary and secondary acceptors in bacterial photosynthesis. Part 3. Characterization of the quinone radicals QA . and QB . by EPR and ENDOR. Appl Magn Reson 17:1–48; Levanon H, Möbius K (1997) Advanced EPR spectroscopy on electron transfer processes in photosynthesis and biomimetic model systems. Annu Rev Biophys Biomol Struct 26:495–540

    Google Scholar 

  120. Burghaus O, Plato M, Rohrer M, Möbius K, MacMillan F, Lubitz W (1993) 3-mm high-field EPR on semiquinone radical anions Q·– related to photosynthesis and on the primary donor P· + and acceptor QA ·– in reaction centers of Rhodobacter sphaeroides R-26. J Phys Chem 97:7639–7647; Rohrer M, Plato M, MacMillan F, Grishin Y, Lubitz W, Möbius K (1995) Orientation-selected 95 GHz high-field ENDOR spectroscopy of randomly oriented plastoquinone anion radicals. J Magn Reson 116:59–66

    Google Scholar 

  121. Nimz O, Lendzian F, Boullais C, Lubitz W (1998) Influence of hydrogen bonds on the electronic g-tensor and 13 C-hyperfine tensors of 13 C-labeled ubiquinones. EPR and ENDOR study. Appl Magn Reson 14:255–274

    Article  CAS  Google Scholar 

  122. Epel B, Sinnecker S, Zimmermann H, Lubitz W (2006) Phylloquinone and related radical anions studied by pulse electron nuclear double resonance spectroscopy at 34 GHz and density functional theory. J Phys Chem B 110:11549–11560; Sinnecker S, Reijerse E, Neese F, Lubitz W (2004) Hydrogen bond geometries from electron paramagnetic resonance and electron-nuclear double resonance parameters: density functional study of quinone radical anion-solvent interactions. J Am Chem Soc 126:3280–3290; Niklas J, Epel B, Antonkine ML, Sinnecker S, Pandelia M-E, Lubitz W (2009) Electronic structure of the quinone radical anion A1·– of photosystem I investigated by advanced pulse EPR and ENDOR techniques. J Phys Chem B 113:10367–10379

    Google Scholar 

  123. Kaupp M (2002) The function of photosystem I. quantum chemical insight into the role of tryptophan-quinone interactions. Biochemistry 41:2895–2900

    Article  CAS  Google Scholar 

  124. Sieckmann I, van der Est A, Bottin H, Sétif P, Stehlik D (1991) Nanosecond electron transfer kinetics in photosystem I following substitution of quinones for vitamin K1 as studied by time resolved EPR. FEBS Lett 284:98–102; van der Est A, Sieckmann I, Lubitz W, Stehlik D (1995) Differences in the binding of the primary quinone acceptor in Photosystem I and reaction centers of Rhodobacter sphaeroides-R26 studied with transient EPR spectroscopy. Chem Phys 194:349–359

    Google Scholar 

  125. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  Google Scholar 

  126. Kacprzak S, Kaupp M (2004) Electronic g-tensors of semiquinones in photosynthetic reaction centers. A density functional study. J Phys Chem B 108:2464–2469

    Article  CAS  Google Scholar 

  127. Kacprzak S, Kaupp M (2006) Molecular mechanical devices based on quinone-pyrrole and quinone-indole dyads: a computational study. J Phys Chem B 110:8158–8165

    Article  CAS  Google Scholar 

  128. Kacprzak S, Kaupp M, MacMillan F (2006) Protein-cofactor interactions and EPR parameters for the QH quinone binding site of quinol oxidase. A density functional study. J Am Chem Soc 128:5659–5671

    Article  CAS  Google Scholar 

  129. Grimaldi S, Ostermann T, Weiden N, Mog T, Miyoshi H, Ludwig B, Michel H, Prisner TF, MacMillan F (2003) Asymmetric binding of the high-affinity Q .H – ubisemiquinone in quinol oxidase (bo3) from Escherichia coli studied by multifrequency electron paramagnetic resonance spectroscopy. Biochemistry 42:5632–5639

    Article  CAS  Google Scholar 

  130. Yap LL, Samoilova RI, Gennis RB, Dikanov SA (2007) Characterization of mutants that change the hydrogen bonding of the semiquinone radical at the QH site of the cytochrome bo3 from Escherichia coli. J Biol Chem 282:8777–8785

    Article  CAS  Google Scholar 

  131. Boesch SE, Wheeler RA (2009) Isotropic 13C hyperfine coupling constants distinguish neutral from anionic ubiquinone-derived radicals and tell which oxygen is protonated in the neutral. ChemPhysChem 10:3187–3189

    Article  CAS  Google Scholar 

  132. MacMillan F, Kacprzak S, Hellwig P, Michel H, Kaupp M (2010) Elucidating mechanisms in haem copper oxidases: the high-affinity QH binding site in quinol oxidase as studied by DONUT-HYSCORE spectroscopy and density functional theory. J Chem Soc Faraday Trans 148:315–344

    Google Scholar 

  133. Witwicki M, Jezierska J (2011) Effects of solvents, ligand aromaticity, and coordination sphere on the g-tensor of anionic o-semiquinone radicals complexed by Mg2+ ions: DFT studies. J Phys Chem B 115:3172–3184; Witwicki M, Jerzykiewicz M, Jaszewski AR, Jezierska J, Ozarowski A (2009) Influence of Pb(II) ions on the EPR properties of the semiquinone radicals of humic acids and model compounds: high field EPR and relativistic DFT studies. J Phys Chem A 113:14115–14122

    Google Scholar 

  134. Witwicki M, Jezierska J (2010) Protic and aprotic solvent effect on molecular properties and g-tensors of o-semiquinones with various aromaticity and heteroatoms: a DFT study. Chem Phys Lett 493:364–370; Witwicki M, Jezierska J, Ozarowski A (2009) Solvent effect on EPR, molecular and electronic properties of semiquinone radical derived from 3,4-dihydroxybenzoic acid as model for humic acid transient radicals: high-field EPR and DFT studies. Chem Phys Lett 473:160–166; Witwicki M, Jaszewski AR, Jezierska J, Jerzykiewicz M, Jezierski A (2008) The pH-induced shift in the g-tensor components of semiquinone-type radicals in humic acids – DFT and EPR studies. Chem Phys Lett 462:300–306

    Google Scholar 

  135. Ciofini I, Adamo C, Barone V (2004) Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: glycyl radical as a case study. J Chem Phys 121:6710–6718

    Article  CAS  Google Scholar 

  136. Pogni R, Teutloff C, Lendzian F, Basosi R (2007) Tryptophan radicals as reaction intermediates in versatile peroxidases: multifrequency EPR, ENDOR and density functional theory studies. Appl Magn Reson 31:509–526

    Article  CAS  Google Scholar 

  137. Bleifuss G, Kolberg M, Pötsch S, Hofbauer W, Bittl R, Lubitz W, Gräslund A, Lassmann G, Lendzia F (2001) Tryptophan and tyrosine radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. Biochemistry 40:15362–15368

    Article  CAS  Google Scholar 

  138. Teutloff C, Hofbauer W, Zech SG, Stein M, Bittl R, Lubitz W (2001) High-frequency EPR studies on cofactor radicals in photosystem I. Appl Magn Reson 21:363–379; Petrenko A, Redding K, Kispert LD (2005) The influence of the structure of the radical cation dimer pair of aromatic molecules on the principal values of a g-tensor: DFT predictions. Chem Phys Lett 406:327–331

    Google Scholar 

  139. Stoll S, Gunn A, Brynda M, Sughrue W, Kohler A, Ozarowski A, Fisher A, Lagarias JC, Britt RD (2009) Structure of the biliverdin radical intermediate in phycocyanobilin: ferredoxin oxidoreductase identified by high-field EPR and DFT. J Am Chem Soc 13:1986–1995

    Article  CAS  Google Scholar 

  140. Pauwels E, Declerck R, Verstraelen T, De Sterck B, Kay CWM, Van Speybroeck V, Waroquier M (2010) Influence of protein environment on the electron paramagnetic resonance properties of flavoprotein radicals: A QM/MM study. J Phys Chem B 114:16655–16665

    Article  CAS  Google Scholar 

  141. Fuchs MR, Schleicher E, Schnegg A, Kay CWM, Törring JT, Bittl R, Bacher A, Richter G, Möbius K, Weber S (2002) g-Tensor of the neutral flavin radical cofactor of DNA photolyase revealed by 360-GHz electron paramagnetic resonance spectroscopy. J Phys Chem B 106:8885–8890

    Article  CAS  Google Scholar 

  142. Stoll S, Jahromi YN, Woodward JJ, Ozarowski A, Marletta MA, Britt RD (2010) Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state. J Am Chem Soc 132:11812–11823

    Article  CAS  Google Scholar 

  143. Pauwels E, Declerck R, Van Speybroeck V, Waroquier M (2008) Evidence for a Grotthuss-like mechanism in the formation of the rhamnose alkoxy radical based on periodic DFT calculations. Rad Res 169:8–18

    Article  CAS  Google Scholar 

  144. Zipse H, Artin E, Wnuk S, Lohman GJS, Martino D, Griffin RG, Kacprzak S, Kaupp M, Hoffman B, Bennati M, Stubbe J, Lees N (2009) Structure of the nucleotide radical formed during reaction of CDP/TTP with the E441Q-α2β2 of E. coli ribonucleotide reductase. J Am Chem Soc 131:200–211

    Google Scholar 

  145. Tanaka A, Nakashima K-I (2011) DFT studies of ESR parameters for N-O centered radicals, N-alkoxyaminyl and aminoxyl radicals. Magn Reson Chem 49:603–610; Tanaka A, Nakashima K-I, Miura Y (2010) DFT studies of N-alkoxyaminyl radicals: ESR parameters, UV–vis absorptions and generations. Tetrahed 67:2260–2268; Gomzi V (2008) Radicals formed in cytosine-hydrochloride(thiocytosine) single crystals: insights from a DFT study. J Mol Struct Theochem 860:137–140; Gomzi V (2007) Dependence of the radical g-tensor on the molecular environment. Sulfur-centered radicals of thiocytosine in the cytosine crystal matrices. Chem Phys 333:112–118

    Google Scholar 

Download references

Acknowledgments

I am very grateful for the important contributions by J. Vaara, O. L. Malkina, V. G. Malkin, and B. Schimmmelpfennig to our own entry into the field of g-tensor calculations, with further contributions due to S. Kacprzak, A. Arbouznikov, R. Reviakine, I. Ciofini, M. Munzarová, J. Asher, C. Remenyi, F. MacMillan, S. Schinzel, I. Malkin, P. Hrobárik, M. Repiský, S. Komorovský, V. Hrobáriková, C. Urban, T. Gress, and S. Schlund. Helpful comments on the 2003 version of the manuscript are due to I. Ciofini, J. Vaara, A. Arbuznikov, and V. G. Malkin. Funding over the years from Deutsche Forschungsgemeinschaft of our own research in this field is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kaupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaupp, M. (2013). Ab Initio and Density Functional Calculations of Electronic g-Tensors for Organic Radicals. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids I. Progress in Theoretical Chemistry and Physics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4893-4_7

Download citation

Publish with us

Policies and ethics