Skip to main content

Pulse EPR of Paramagnetic Centers in Solid Phases

  • Chapter
  • First Online:
EPR of Free Radicals in Solids I

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 24))

Abstract

We present an overview of the most used Electron Spin Echo techniques and their applications to the study of structure and dynamics of paramagnetic centers in solid phases. A short theoretical section presents the tools necessary to understand the experiments. Three sections describe the experiments that are used to get information on the spin and spatial dynamics of the system, on the distribution of paramagnetic centers in the solid matrix, and on their local environment. Many examples of applications to different paramagnetic centers in various research fields are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  2. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  3. Stoll S, Schweiger A (2007) EasySpin: a comprehensive software package for spectral simulation and analysis. In: Hemminga MA, Berliner L (eds) EPR in biological magnetic resonance, vol 27. Springer, Berlin, pp 299–321

    Google Scholar 

  4. Schweiger A, Jeschke G (2001) Principle of pulse electron paramagnetic resonance. Oxford University Press, New York

    Google Scholar 

  5. Kevan L, Schwartz RN (eds) (1979) Time domain electron spin rersonance. Wiley, New York

    Google Scholar 

  6. Kevan L, Bowman MK (eds) (1990) Modern pulsed and continuous-wave electron spin resonance. Wiley, New York

    Google Scholar 

  7. Keijzers CP, Reijerse EJ, Schmidt J (eds) (1989) Pulse EPR: a new field of applications. North Holland, Amsterdam

    Google Scholar 

  8. Dikanov SA, Tsvetkov YD (1992) Electron spin echo envelope modulation (ESEEM) spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  9. Chasteen ND, Snetsinger PA (2000) ESEEM and ENDOR spectroscopy. In: Que L (ed) Physical methods in bioinorganic chemistry, spectroscopy and magnetism. University Science Books, Sausalito, pp 187–231

    Google Scholar 

  10. Hoff AJ (ed) (1989) Advanced EPR applications in biology and biochemistry. Elsevier, Amsterdam

    Google Scholar 

  11. Kosman DJ (1984) Electron spin resonance. In: Rousseau DL (ed) Structural and resonance techniques in biological research. Academic, New York, pp 89–244

    Google Scholar 

  12. Mims WB, Peisach J (1981) Electron spin echo spectroscopy and the study of metalloproteins. In: Berliner LJ, Rubens J (eds) Biological magnetic resonance, vol 3. Plenum Press, New York, pp 213–263

    Chapter  Google Scholar 

  13. Schmidt J, Singel DJ (1987) Fashioning electron-spin echoes into spectroscopic tools – a study of aza-aromatic molecules in metastable triplet-states. Annu Rev Phys Chem 38:141–161

    Article  Google Scholar 

  14. Thomann H, Dalton LR, Dalton LA (1984) Biological application of time domain ESR. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 6. Plenum, New York, pp 143–186

    Google Scholar 

  15. Mehring M, Weberuβ VA (2001) Object oriented EPR classes of objects, calculations and computations. Academic, New York

    Google Scholar 

  16. Atherton NM (1993) Principles of ESR. Ellis Horwood and Prentice Hall, London

    Google Scholar 

  17. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance elementary theory and practical application. Wiley, New York

    Google Scholar 

  18. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  19. Freed JH (1976) Theory of slow tumbling ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labeling. Theory and applications. Academic, New York, pp 53–132

    Google Scholar 

  20. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  21. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  22. Abragam A (1961) Principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  23. Kevan L (1990) Developments in electron spin-echo modulation analysis. In: Kevan L, Bowman MK (eds) Modern pulsed and continuous-wave electron spin resonance. Wiley, New York, pp 231–283

    Google Scholar 

  24. Brustolon M, Barbon A, Maniero AL, Romanelli M, Brunel LC (1999) Dynamics and spin relaxation of tempone in a host crystal. An ENDOR, high field EPR and electron spin echo study. Phys Chem Chem Phys 1:4015–4023

    Google Scholar 

  25. Kingsley PB (1995) Product operators, coherence pathway, and phase cycling part I: product operators, spin-spin coupling, and coherence pathway. Con Magn Res 7:29–45; Kingsley PB (1995) Product operators, coherence pathway, and phase cycling part II. Coherence pathways in multipulse sequences: spin echoes, stimulated echoes, and multiple-quantum coherences. Con Magn Res 7:115–136

    Google Scholar 

  26. Koptyug IV, Bossmann SH, Turro NJ (1996) Inversion-recovery of nitroxide spin labels in solution and microheterogeneous environments. J Am Chem Soc 118:1435–1445

    Article  CAS  Google Scholar 

  27. Bowman MK, Kevan L (1979) Electron spin-lattice relaxation in nonionic solids. In: Kevan L, Schwartz RN (eds) Time domain electron spin rersonance 67–106. Wiley, New York

    Google Scholar 

  28. Salikhov KM, Tsvetkov YD (1979) Electron spin-echo studies of spin-spin interactions in solids. In: Kevan L, Schwartz RN (eds) Time domain electron spin rersonance 231–277. Wiley, New York

    Google Scholar 

  29. Gordy W (1980) Theory and applications of electron spin resonance. In: Weissberger A (ed) Techniques of Chemistry, XVth edn. Wiley, New York

    Google Scholar 

  30. Renk KF, Sixl H, Wolfrum H (1977) Spin lattice relaxation in triplet states of naphthalene crystals at very high magnetic fields. Chem Phys Lett 52:98–101

    Article  CAS  Google Scholar 

  31. Durny R, Yamasaki S, Isoya J, Matsuda A, Tanaka K (1993) New results of spin-lattice relaxation in a-Si-H by pulsed Esr. J Non-Cryst Solids 166:223–226

    Article  Google Scholar 

  32. Naber WJM, Faez S, van der Wiel WG (2007) Organic spintronics. J Phys D Appl Phys 40:R205–R228

    Article  CAS  Google Scholar 

  33. Brustolon M, Cassol T, Micheletti L, Segre U (1987) Endor studies of methyl dynamics in molecular-crystals. Mol Phys 61:249–255

    Article  CAS  Google Scholar 

  34. Rakvin B, Maltar-Strmecki N, Cevc P, Arcon D (2001) A pulse EPR study of longitudinal relaxation of the stable radical in gamma-irradiated L-alanine. J Magn Reson 152:149–155

    Article  CAS  Google Scholar 

  35. Bowman MK, Kevan L (1977) An electron spin-lattice relaxation mechanism involving tunneling modes for trapped radicals in glassy matrixes. Theoretical development and application to trapped electrons in.gamma.-irradiated ethanol glasses. J Phys Chem 81:456–461

    Article  CAS  Google Scholar 

  36. Eaton SS, Seiter M, Budker V, Du JL, Eaton GR (1998) Interspin distances determined by time domain EPR of spin-labeled high-spin methemoglobin. Inorg Chim Acta 273:354–366

    Article  Google Scholar 

  37. Stehlik D, Moebius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annu Rev Phys Chem 48:745–784

    Article  CAS  Google Scholar 

  38. Eaton GR, Harbridge JR, Eaton SS (2002) Electron spin-lattice relaxation in radicals containing two methyl groups, generated by gamma-irradiation of polycrystalline solids. J Magn Reson 159:195–206

    Article  Google Scholar 

  39. Du JL, Eaton GR, Eaton SS (1995) Temperature, orientation, and solvent dependence of electron spin-lattice relaxation rates for nitroxyl radicals in glassy solvents and doped solids. J Magn Reson Ser A 115:213–221

    Article  CAS  Google Scholar 

  40. Eaton SS, Kathirvelu V, Sato H, Eaton GR (2009) Electron spin relaxation rates for semiquinones between 25 and 295 K in glass-forming solvents. J Magn Reson 198:111–120

    Article  CAS  Google Scholar 

  41. Shell-Sorokin AJ, Mehran F, Eaton GR, Eaton SS, Viehbeck A, O’Toole TR, Brown AA (1992) Electron spin relaxation times of C -60 in solution. Chem Phys Lett 195:225–232

    Article  Google Scholar 

  42. Brustolon M, Zoleo A, Agostini G, Maggini M (1998) Radical anions of mono- and bis-fulleropyrrolidines: an EPR study. J Phys Chem A 102:6331–6339

    Article  CAS  Google Scholar 

  43. Eaton GR, Harbridge JR, Eaton SS (2003) Electron spin-lattice relaxation processes of radicals in irradiated crystalline organic compounds. J Phys Chem A 107:598–610

    Article  CAS  Google Scholar 

  44. Brustolon M, Segre U (1994) Electron spin-lattice relaxation-time and spectral diffusion in gamma-irradiated L-Alanine. Appl Magn Reson 7:405–413

    Article  CAS  Google Scholar 

  45. Nagakawa K, Eaton SS, Eaton GR (1993) Electron spin relaxation times of irradiated alanine. Appl Radiat Isot 44:73–76

    Article  Google Scholar 

  46. Angelone R, Forte C, Pinzino C (1993) Relaxation-time measurements by longitudinally modulated endor spectroscopy on irradiated L-Alanine single-crystal. J Magn Reson Ser A 101:16–22

    Article  CAS  Google Scholar 

  47. Ghim BT, Du JL, Pfenninger S, Rinard GA, Quine RW, Eaton SS, Eaton GR (1996) Multifrequency electron paramagnetic resonance of irradiated L-alanine. Appl Radiat Isot 47:1235–1239

    Article  CAS  Google Scholar 

  48. Eaton GR, Eaton SS (2005) Electron spin relaxation times for the alanine radical in two dosimeters. Appl Radiat Isot 62:129–132

    Article  CAS  Google Scholar 

  49. Du JL, Eaton GR, Eaton SS (1995) Temperature and orientation dependence of electron-spin relaxation rates for Bis(Diethyldithiocarbamato)Copper(Ii). J Magn Reson Ser A 117:67–72

    Article  CAS  Google Scholar 

  50. Hoffman BM, Telser J, Lee HI (2000) Investigation of exchange couplings in [Fe3S4](+) clusters by electron spin-lattice relaxation. J Biol Inorg Chem 5:369–380

    Article  Google Scholar 

  51. Lorigan GA, Britt RD (2000) Electron spin-lattice relaxation studies of different forms of the S2 state multiline EPR signal of the Photosystem II oxygen-evolving complex. Photosynth Res 66:189–198

    Article  CAS  Google Scholar 

  52. Takui T, Nishio T, Yokoyama S, Sato K, Shiomi D, Ichimura AS, Lin WC, Dolphin D, McDowell CA (2001) Ground-state high-spin iron (III) octaethylporphyrin as studied by single-crystal cw/pulsed ESR spectroscopy. Synthetic Met 121:1820–1821

    Article  Google Scholar 

  53. Kordas G, Mitrikas G, Trapalis CC (1999) Electron spin-lattice relaxation of silver nanoparticles embedded in SiO2 and TiO2 matrices. J Chem Phys 111:8098–8104

    Article  Google Scholar 

  54. Malten C, Mueller J, Finger F (1997) Pulsed ESR studies on doped microcrystalline silicon. Phys Status Solidi B 201:R15–R16

    Article  CAS  Google Scholar 

  55. Fedoruk GG (2000) Paramagnetic relaxation kinetics of the cation radical C +60 in C60 powder. Phys Solid State 42:1182–1185

    Article  CAS  Google Scholar 

  56. Porfyrakis K, Zhang JY, Morton JJL, Sambrook MR, Ardavan A, Briggs GAD (2006) The effects of a pyrrolidine functional group on the magnetic properties of N@C60. Chem Phys Lett 432:523–527

    Article  CAS  Google Scholar 

  57. Hirsh DJ, Brudvig GW (2007) Measuring distances in proteins by saturation-recovery EPR. Nat Protoc 2:1770–1781

    Article  CAS  Google Scholar 

  58. Schwartz LJ, Stillman AE, Freed JH (1982) Analysis of electron spin echoes by spectral representation of the stochastic Liouville equation. J Chem Phys 77:5410–5425

    Article  CAS  Google Scholar 

  59. Holczer K, Schmalbein D, Baker P (1988) Electron spin-echo spectroscopy: a domain of the ESP 380 FT spectrometer. Bruker Rep 113

    Google Scholar 

  60. Romanelli M, Kevan L (1997) Evaluation and interpretation of electron spin-echo decay. 1. Rigid samples. Concept Magn Res 9:403–430; ibid. (1998) Evaluation and interpretation of electron spin echo decay. Part II: molecular motions. Concept Magn Res 10:1–18

    Google Scholar 

  61. Brown IM (1979) Electron spin-echo studies of relaxation processes. In: Kevan L, Schwartz RN (eds) Molecular solids in time domain electron spin resonance. Wiley, New York, pp 195–230

    Google Scholar 

  62. Redfield AG (1966) The theory of relaxation processes. Adv Magn Reson 1:1–32

    CAS  Google Scholar 

  63. Freed JH, Fraenkel GK (1963) Theory of linewidths in electron spin resonance spectra. J Chem Phys 39:326–348

    Article  CAS  Google Scholar 

  64. Nordio PL (1976) General magnetic resonance theory. In: Berliner LJ (ed) Spin labeling. Theory and applications. Academic, New York, pp 5–53

    Google Scholar 

  65. Raitsimiring AM, Salikhov KM, Umanskii BA, Tsvetkov YD (1974) Instantaneous diffusion in the spin echo of paramagnetic centers stabilized in a solid host. Sov Phys Solid State 16:492–497; ibid, Fiz Tverd Tela 16:756

    Google Scholar 

  66. Doetschmen DC, Thomas GD (1995) Electron spin dephasing model for molecular reorientation: exact solutions. Chem Phys Lett 232:242–246

    Article  Google Scholar 

  67. Zecevic A, Eaton GR, Eaton SS, Lindgren M (1998) Dephasing of electron spin echoes for nitroxyl radicals in glassy solvents by non-methyl and methyl protons. Mol Phys 95:1255–1263

    Article  CAS  Google Scholar 

  68. Kurshev VV, Raitsimring AM (1990) Carr-Purcell train in the conditions of partial excitation of magnetic-resonance spectrum. J Magn Reson 88:126–129

    Google Scholar 

  69. Eaton GR, Harbridge JR, Eaton SS (2003) Comparison of electron spin relaxation times measured by Carr-Purcell-Meiboom-Gill and two-pulse spin-echo sequences. J Magn Reson 164:44–53

    Article  CAS  Google Scholar 

  70. Brustolon M, Romanelli M, Bonora M, Barbon A, Lund A (2001) Selective detection of EchoEPR signals due to naturally substituted 13C radicals in a single crystal of ammonium tartrate. Appl Magn Reson 20:171–188

    Article  CAS  Google Scholar 

  71. Goldfarb D, Kevan L (1998) Effect of nuclear modulation on field-swept electron spin-echo spectra. J Magn Reson 76:276–286

    Google Scholar 

  72. Dzuba SA (2000) Libration motion of guest spin probe molecules in organic glasses: CW EPR and electron spin echo study. Spectrochim Acta A 56:227–234

    Article  Google Scholar 

  73. Hiromitsu I, Kevan L (1987) Effect of cholesterol on the solubilization site and the photoionization efficiency of chlorophyll-a in dipalmitoylphosphatidylcholine vesicle solutions as studied by electron-spin-resonance and optical-absorption spectroscopies. J Am Chem Soc 109:4501–4507; Hiff T, Kevan L (1989) Electron-spin echo modulation studies of doxylstearic acid spin probes in frozen vesicles – interaction of the spin probe with D2O and effects of cholesterol additino. J Phys Chem 93:1572–1575; Martini G, Ristori S, Romanelli M, Kevan L (1990) Adsorption of nitroxide D2O solutions on X-zeolite and Y-zeolite studied by electron-spin-resonance and electron-spin echo spectroscopies. J Phys Chem 94:7607–7611

    Google Scholar 

  74. Saxena S, Freed JH (1997) Two-dimensional electron spin resonance and slow motions. J Phys Chem A 101:7998–8008

    Article  CAS  Google Scholar 

  75. Milov AD, Salikhov KM, Tsvetkov YD (1973) Phase relaxation of hydrogen atoms stabilized in an amorphous matrix. Sov Phys Solid State 15:802–806

    Google Scholar 

  76. Lindgren M, Eaton GR, Eaton SS, Jonsson BH, Hammarstrom P, Svensson M, Carlsson U (1997) Electron spin echo decay as a probe of aminoxyl environment in spin-labeled mutants of human carbonic anhydrase II. J Chem Soc Perk T 2:2549–2554

    Article  Google Scholar 

  77. Goslar J, Hilczer W, Morawsky P (2000) Low temperature dynamics of hydrazinium ions in lithium hydrazinium sulphate (LHS) studied by electron spin echo (ESE) technique. Solid State Ion 127:67–72

    Article  CAS  Google Scholar 

  78. Brustolon M, Maniero AL, Bonora M, Segre U (1996) Electron spin relaxation times and internal motions of radicals in the solid state investigated by ENDOR and pulsed EPR. Appl Magn Reson 11:99–113

    Article  Google Scholar 

  79. Dzuba SA (1996) Librational motion of guest spin probe molecules in glassy media. Phys Lett A 213:77–84

    Article  CAS  Google Scholar 

  80. Kirilina EP, Grigoriev IA, Dzuba SA (2004) Orientational motion of nitroxides in molecular glasses: dependence on the chemical structure, on the molecular size of the probe, and on the type of the matrix. J Chem Phys 121:12465–12471; Dzuba SA, Kirilina EP, Salnikov ES (2006) On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes. J Chem Phys 125:054502; Dzuba SA, Salnikov ES, Kulik LV (2006) CW EPR, echo-detected EPR, and field-step ELDOR study of molecular motions of nitroxides in o-terphenyl glass: dynamical transition, dynamical heterogeneity and beta-relaxation Appl Magn Reson 30:637–650

    Google Scholar 

  81. Isaev NP, Dzuba SA (2008) Fast stochastic librations and slow rotations of spin labeled stearic acids in a model phospholipid bilayer at cryogenic temperatures. J Phys Chem B 112:13285–13291

    Article  CAS  Google Scholar 

  82. Bartucci R, Erilov DA, Guzzi R, Sportelli L, Dzuba SA, Marsh D (2006) Time-resolved electron spin resonance studies of spin-labelled lipids in membranes. Chem Phys Lipids 141:142–157

    Article  CAS  Google Scholar 

  83. Rohrer M, Gast P, Mobius K, Prisner TF (1996) Anisotropic motion of semiquinones in photosynthetic reaction centers of Rhodobacter sphaeroides R26 and in frozen isopropanol solution as measured by pulsed high-field EPR at 95 GHz. Chem Phys Lett 259:523–530

    Article  CAS  Google Scholar 

  84. Arieli D, Vaughan DEW, Strohmaier KG, Thomann H, Bernardo M, Goldfarb D (1999) Studies of Fe(III) incorporated into AlPO(4)-20 by X- and W-band EPR spectroscopies. Magn Reson Chem 37:S43–S54

    Article  CAS  Google Scholar 

  85. Stosser R, Sebastian S, Scholz G, Willer M, Jeschke G, Schweiger A, Nofz M (1999) Pulse EPR spectroscopy of Cu2+-doped inorganic glasses. Appl Magn Reson 16:507–528

    Article  CAS  Google Scholar 

  86. Marrale M, Longo A, Brai M, Barbon A, Brustolon M, Fattibene P (2011) Pulsed EPR analysis of tooth enamel samples exposed to UV and gamma-radiations. Radiat Res 46:789–792

    CAS  Google Scholar 

  87. Barbon A, Bortolus M, Brustolon M, Comotti A, Maniero AL, Segre U, Sozzani P (2003) Dynamics of the triplet state of a dithiophene in different solid matrixes studied by transient and pulse EPR techniques. J Phys Chem B 107:3325–3331

    Article  CAS  Google Scholar 

  88. Brustolon M, Zoleo A, Lund A (1999) Spin concentration in a possible ESR dosimeter: An electron spin echo study on X-irradiated ammonium tartrate. J Magn Reson 137:389–396

    Article  CAS  Google Scholar 

  89. Brown IW (1973) Concentration dependent relaxation times in organic radical solids. J Chem Phys 58:4242–4251

    Article  CAS  Google Scholar 

  90. Eaton SS, Eaton GR (1993) Irradiated fused-quartz standard sample for time-domain EPR. J Magn Reson A 102:354–356

    Article  CAS  Google Scholar 

  91. Boscaino R, Gelardi FM (1992) Instantaneous diffusion in spin-echo dynamics: a frequency-domain experimental investigation. Phys Rev B 46:14550–14558

    Article  CAS  Google Scholar 

  92. Marrale M, Brai M, Barbon A, Brustolon M (2009) Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques. Radiat Res 171:349–359

    Article  CAS  Google Scholar 

  93. Hoff AJ, Gast P, Dzuba SA, Timmel CR, Fursman CE, Hore PJ (1998) The nuts and bolts of distance determination and zero- and double-quantum coherence in photoinduced radical pairs. Spectrochim Acta A 54:2283–2293

    Article  Google Scholar 

  94. Lakshmi KV, Brudvig GW (2001) Pulsed electron paramagnetic resonance methods for macromolecular structure determination. Curr Opin Struct Biol 11:523–531

    Article  CAS  Google Scholar 

  95. Tsvetkov YD, Grishin YA (2009) Techniques for EPR spectroscopy of pulsed electron double resonance (PELDOR): a review. Instrum Exp Tech 52:615–636

    Article  Google Scholar 

  96. Jeschke G, Pannier M, Spiess HW (2000) Double electron–electron resonance, distance measurements. In: Berliner LJ, Eaton SS, Eaton GR (eds) Biological systems by EPR 493–512. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  97. Kurshev VV, Raitsimring AM, Tsvetkov YD (1989) Selection of dipolar interaction by the 2 + 1 pulse train ESE. J Magn Reson 81:441–454

    CAS  Google Scholar 

  98. Astashkin AV, Hara H, Kawamori A (1998) The pulsed electron-electron double resonance and “2 + 1” electron spin echo study of the oriented oxygen-evolving and Mn-depleted preparations of photosystem II. J Chem Phys 108:3805–3812

    Article  CAS  Google Scholar 

  99. Milov AD, Maryasov AG, Tsvetkov YD, Raap J (1999) Pulsed ELDOR in spin-labeled polypeptides. Chem Phys Lett 303:135–143

    Article  CAS  Google Scholar 

  100. Bowman MK, Becker D, Sevilla MD, Zimbrick JD (2005) Track structure in DNA irradiated with heavy ions. Radiat Res 163:447–454

    Article  CAS  Google Scholar 

  101. Jeschke G (2002) Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol Rapid Commun 23:227–246

    Article  CAS  Google Scholar 

  102. Martin RE, Pannier M, Diederich F, Gramlich V, Hubrich M, Spiess HW (1998) Determination of end-to-end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angew Chem Int Ed 37:2833–2837; Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340; Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2:904-923

    Google Scholar 

  103. Margraf D, Cekan P, Prisner TF, Sigurdsson ST, Schiemann O (2009) Ferro- and antiferromagnetic exchange coupling constants in PELDOR spectra. Phys Chem Chem Phys 11:6708–6714

    Article  CAS  Google Scholar 

  104. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  105. Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proc Natl Acad Sci USA 103:13386–13390

    Article  CAS  Google Scholar 

  106. Ghimire H, McCarrick RM, Budil DE, Lorigan GA (2009) Significantly improved sensitivity of Q-Band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide. Biochemistry 48:5782–5784

    Article  CAS  Google Scholar 

  107. Sicoli G, Argirevic T, Stubbe J, Tkach I, Bennati M (2010) Effects in 94 GHz orientation-selected PELDOR on a rigid pair of radicals with non-collinear axes. Appl Magn Reson 37:539–548; Denysenkov VP, Biglino D, Lubitz W, Prisner TF, Bennati M (2008) Structure of the tyrosyl biradical in mouse R2 ribonucleotide reductase from high-field PELDOR. Angew Chem Int Edit 47:1224–1227; Savitsky A, Dubinskii AA, Flores M, Lubitz W, Mobius K (2007) Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers. J Phys Chem B 111:6245–6262

    Google Scholar 

  108. Saxena S, Freed JH (1996) Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chem Phys Lett 251:102–110; Freed JH, Borbat PP, Mchaourab HS (2002) Protein structure determination using long-distance constraints from double-quantum coherence ESR: Study of T4 lysozyme. J Am Chem Soc 124:5304–5314

    Google Scholar 

  109. Reginsson GW, Schiemann O (2011) Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules. Biochem J 434:353–363

    Article  CAS  Google Scholar 

  110. Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Re 82:147–197

    Article  CAS  Google Scholar 

  111. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9:1895–1910

    Article  CAS  Google Scholar 

  112. Fajer PG (2005) Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron-electron resonance) of force activation in muscle. J Phys-Condens Mat 17:S1459–S1469

    Article  CAS  Google Scholar 

  113. Cai Q, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ (2007) Nanometer distance measurements in RNA using site-directed spin Labeling. Biophys J 93:2110–2117

    Article  CAS  Google Scholar 

  114. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1–53

    Article  CAS  Google Scholar 

  115. Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Edit 50:5070–5074

    Article  CAS  Google Scholar 

  116. Borovykh IV, Ceola S, Gajula P, Gast P, Steinhoff HJ, Huber M (2006) Distance between a native cofactor and a spin label in the reaction centre of Rhodobacter sphaeroides by a two-frequency pulsed electron paramagnetic resonance method and molecular dynamics simulations. J Magn Reson 180:178–185

    Article  CAS  Google Scholar 

  117. Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D, Otting G (2011) Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR. J Am Chem Soc 133:10418–10421

    Article  CAS  Google Scholar 

  118. Yang ZY, Kise D, Saxena S (2010) An approach towards the measurement of nanometer range distances based on Cu(2+) ions and ESR. J Phys Chem B 114:6165–6174

    Article  CAS  Google Scholar 

  119. Bennati M, Weber A, Antonic J, Perlstein DL, Robblee J, Stubbe JA (2003) Pulsed ELDOR spectroscopy measures the distance between the two tyrosyl radicals in the R2 subunit of the E-coli ribonucleotide reductase. J Am Chem Soc 125:14988–14989

    Article  CAS  Google Scholar 

  120. Junk MJN, Spiess HW, Hinderberger D (2011) DEER in biological multispin-systems: a case study on the fatty acid binding to human serum albumin. J Magn Reson 210:210–217

    Article  CAS  Google Scholar 

  121. Hinderberger D, Schmelz O, Rehahn M, Jeschke G (2004) Electrostatic site attachment of divalent counterions to rodlike ruthenium(II) coordination polymers characterized by EPR spectroscopy. Angew Chem Int Edit 43:4616–4621

    Article  CAS  Google Scholar 

  122. Lueders P, Jeschke G, Yulikov M (2011) Double electron-electron resonance measured between Gd(3+) ions and nitroxide radicals. J Phys Chem Lett 2:604–609

    Article  CAS  Google Scholar 

  123. Carmieli R, Mi QX, Ricks AB, Giacobbe EM, Mickley SM, Wasielewski MR (2009) Direct measurement of photoinduced charge separation distances in donor-acceptor systems for artificial photosynthesis using OOP-ESEEM. J Am Chem Soc 131:8372–8373

    Article  CAS  Google Scholar 

  124. Tang J, Thurnauer MC, Norris JR (1994) Electron-spin echo envelope modulation due to exchange and dipolar interactions in a spin-correlated radical pair. Chem Phys Lett 219:283–290

    Article  CAS  Google Scholar 

  125. Iwaki M, Itoh S, Hara H, Kawamori A (1998) Spin-polarized radical pair in photosystem I reaction center that contains different quinones and fluorenones as the secondary electron acceptor. J Phys Chem B 102:10440–10445

    Article  CAS  Google Scholar 

  126. Calle C, Sreekanth A, Fedin MV, Forrer J, Garcia-Rubio I, Gromov IA, Hinderberger D, Kasumaj B, Leger P, Mancosu B, Mitrikas G, Santangelo MG, Stoll S, Schweiger A et al (2006) Pulse EPR methods for studying chemical and biological samples containing transition metals. Helv Chim Acta 89:2495–2521

    Article  CAS  Google Scholar 

  127. Hoentsch J, Rosentzweig Y, Heinhold D, Koehler K, Gutjahr M, Poeppl A, Voelkel G, Boettcher R (2003) A Q-band pulsed ENDOR spectrometer for the study of transition metal ion complexes in solids. Appl Magn Reson 25:249–259

    Article  CAS  Google Scholar 

  128. Kababya S, Nelson J, Calle C, Neese F, Goldfarb D (2006) Electronic structure of binuclear mixed valence copper azacryptates derived from integrated advanced EPR and DFT calculations. J Am Chem Soc 128:2017–2029

    Article  CAS  Google Scholar 

  129. Bennati M, Prisner TF (2005) New developments in high field electron paramagnetic resonance with applications in structural biology. Rep Prog Phys 68:411–448

    Article  CAS  Google Scholar 

  130. Cruickshank PAS, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM (2009) A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with highconcentration sensitivity, high instantaneous bandwidth, and low dead time. Rev Sci Instrum 80:103102

    Article  CAS  Google Scholar 

  131. Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I (2008) HYSCORE and DEER with an upgraded 95 GHz pulse EPR spectrometer. J Magn Reson 194:8–15

    Article  CAS  Google Scholar 

  132. Kevan L (1979) Modulation of electron spin-echo decay in solids, Ch. 8. In: Kevan L, Schwartz RN (eds) Time domain electron spin rersonance. Wiley, New York, pp 279–342

    Google Scholar 

  133. Mims WB, Peisach J (1989) ESEEM and LEFE of metalloproteins and model compounds in advanced EPR applications. In: Hoff AJ (ed) Biology and biochemistry. Elsevier, Amsterdam, pp 1–58

    Google Scholar 

  134. Atherton NM (1993) Bruker lecture – the nuclear zeeman interaction in electron resonance. Chem Soc Rev 22:293–298

    Article  CAS  Google Scholar 

  135. Schweiger A (1991) Pulsed electron spin resonance spectroscopy: basic principles, techniques, and examples of applications. Angew Chem Int Ed Engl 30:265–292

    Article  Google Scholar 

  136. Brustolon M, Maniero AL, Jovine S, Segre U (1996) ENDOR and ESEEM study of the radical obtained by gamma irradiation of a single crystal of ammonium tartrate. Res Chem Intermediat 22:359–368

    Article  CAS  Google Scholar 

  137. Braunschweiler L, Schweiger A, Fauth JM, Ernst RR (1985) Selective excitation in electron spin-echo modulation experiments. J Magn Reson 64:160–166

    CAS  Google Scholar 

  138. Barkhuijsen H, de Beer R, Pronk BJ, Vanormondt D (1985) Partial excitation in electron spin-echo envelope modulation spectroscopy. J Magn Reson 61:284–293

    CAS  Google Scholar 

  139. Hoefer P, Grupp A, Nebenfuehr H, Mehring M (1986) Hyperfine sublevel correlation (HYSCORE) spectroscopy - a 2d electron-spin-resonance investigation of the squaric acid radical. Chem Phys Lett 132:279–282

    Article  CAS  Google Scholar 

  140. Hoefer P (1988) Bruker Rep 118

    Google Scholar 

  141. Szosenfogel R, Goldfarb D (1998) Simulation of HYSCORE spectra obtained with ideal and non-ideal pulses. Mol Phys 95:1295–1308

    CAS  Google Scholar 

  142. Gemperle C, Aebli G, Schweiger A, Ernst RR (1990) Phase cycling in pulse EPR. J Magn Reson 88:241–256

    CAS  Google Scholar 

  143. Benetis NP, Dave PC, Goldfarb D (2002) Characteristics of ESEEM and HYSCORE spectra of S > 1/2 centers in orientationally disordered systems. J Magn Reson 158:126–142

    Article  CAS  Google Scholar 

  144. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  145. van Ormond D (1989) Instrumentation. In: Keijzers CP, Reijerse EJ, Schmidt J (eds) Pulse EPR: a new field of applications. North Holland, Amsterdam, pp 43–78

    Google Scholar 

  146. Kevan L (1989) Advances in electron spin echo modulation analysis and applications to cations and zeolites and to photoionization in micelles and vesicles. In: Keijzers CP, Reijerse EJ, Schmidt J (eds) Pulse EPR: a new field of applications. North Holland, Amsterdam, pp 127–134

    Google Scholar 

  147. Davies ER (1974) A new Pulse ENDOR technique. Phys Lett A 47:1–2

    Article  CAS  Google Scholar 

  148. Mims WB (1965) Pulsed ENDOR experiments. Proc R Soc Lond A 283:452–457

    Article  CAS  Google Scholar 

  149. Forrer J, Pfenninger S, Eisenegger J, Schweiger A (1990) A pulsed ENDOR probehead with the bridged loop-gap resonator – construction and performance. Rev Sci Instrum 61:3360–3367

    Article  CAS  Google Scholar 

  150. Bietsch W, vin Schuetz JU (1993) Bruker Rep 139

    Google Scholar 

  151. Grommen R, Manikandan P, Gao Y, Shane T, Shane JJ, Schoonheydt RA, Weckhuysen BM, Goldfarb D (2000) Geometry and framework interactions of zeolite-encapsulated copper(II)-histidine complexes. J Am Chem Soc 122:11488–11496

    Article  CAS  Google Scholar 

  152. Epel B, Slutter CS, Neese F, Kroneck PMH, Zumft WG, Pecht I, Farver O, Lu Y, Goldfarb D (2002) Electron-mediating Cu-A centers in proteins: a comparative high field H-1 ENDOR study. J Am Chem Soc 124:8152–8162

    Article  CAS  Google Scholar 

  153. Gromov IA, Harmer J (2007) Radio frequencies in EPR: conventional and advanced use. Appl Magn Reson 31:627–647

    Article  CAS  Google Scholar 

  154. Fan C, Kennedy MC, Beinert H, Hoffman BM (1992) 2H mims pulsed ENDOR of hydrogen bonds and exogenous ligands to the metal clusters of iron-sulfur proteins. J Am Chem Soc 114:374–375

    Article  CAS  Google Scholar 

  155. Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  Google Scholar 

  156. Hadjiliadis N, Deligiannakis Y, Louloudi M (2000) Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coordin Chem Rev 204:1–112

    Article  Google Scholar 

  157. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Oxford University Press, New York

    Google Scholar 

  158. Calle C, Eichel RA, Finazzo C, Forrer J, Granwehr J, Gromov I, Groth W, Harmer J, Kalin M, Lammler W, Liesum L, Madi Z, Stoll S, Van Doorslaer S, Schweiger A (2001) Electron paramagnetic resonance spectroscopy. Chimia 55:763–766

    CAS  Google Scholar 

  159. Luca V, MacLachlan DJ, Bramley R (1999) Electron paramagnetic resonance and electron spin echo study of supported and unsupported vanadium oxides. Phys Chem Chem Phys 1:2597–2606

    Article  CAS  Google Scholar 

  160. Carl PJ, Isley SL, Larsen SC (2001) Combining theory and experiment to interpret the EPR spectra of VO2+-exchanged zeolites. J Phys Chem A 105:4563–4573

    Article  CAS  Google Scholar 

  161. Van Doorslaer S, Shane JJ, Stoll S, Schweiger A, Kranenburg M, Meier RJ (2001) Continuous wave and pulse EPR as a tool for the characterization of monocyclopentadienyl Ti(III) catalysts. J Organomet Chem 634:185–192

    Article  Google Scholar 

  162. Biglino D, Bonora M, Volodin A, Lund A (2001) Pulsed EPR study of the (NO)2-Na+ triplet state adsorption complex. Chem Phys Lett 349:511–516

    Google Scholar 

  163. Goldfarb D (2006) High field ENDOR as a characterization tool for functional sites in microporous materials. Phys Chem Chem Phys 8:2325–2343

    Article  CAS  Google Scholar 

  164. Van Doorslaer S, Caretti I, Fallis IA, Murphy DM (2009) The power of electron paramagnetic resonance to study asymmetric homogeneous catalysts based on transition-metal complexes. Coordin Chem Rev 253:2116–2130

    Article  CAS  Google Scholar 

  165. Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313

    Article  CAS  Google Scholar 

  166. Shergill JK, Cammack R, Weiner JH (1993) Electron spin-echo envelope modulation studies of the [3Fe–4S] cluster of Escherichia coli fumarate reductase. J Chem Soc Faraday Trans 89:3685–3689

    Article  CAS  Google Scholar 

  167. Peloquin JM, Britt RD (2001) EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta 1503:96–111

    Article  CAS  Google Scholar 

  168. Deligiannakis Y, Rutherford AW (2001) Electron spin echo envelope modulation spectroscopy in photosystem I. Biochim Biophys Acta 1507:226–246

    Article  CAS  Google Scholar 

  169. Goldfarb D, Arieli D (2004) Spin distribution and the location of protons in paramagnetic proteins. Annu Rev Biophys Biomol Struct 33:441–468

    Article  CAS  Google Scholar 

  170. Kulik L, Lubitz W (2009) Electron-nuclear double resonance. Photosynth Res 102:391–401

    Article  CAS  Google Scholar 

  171. Van Doorslaer S, Vinck E (2007) The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins. Phys Chem Chem Phys 9:4620–4638

    Article  CAS  Google Scholar 

  172. Hoffman BM (2003) ENDOR of metalloenzymes. Acc Chem Res 36:522–529

    Article  CAS  Google Scholar 

  173. Lyubenova S, Maly T, Zwicker K, Brandt U, Ludwig B, Prisner T (2010) Multifrequency pulsed Electron earamagnetic resonance on metalloproteins. Acc Chem Res 43:181–189

    Article  CAS  Google Scholar 

  174. Hunsicker-Wang L, Vogt M, DeRose VJ (2009) EPR methods to study specific metal-ion binding sites in RNA. In: Herschalag D (ed) Biophysical, chemical, and functional probes of RNA structure, interactions and folding: part A, vol 468, Methods in enzymology. Academic, San Diego, pp 335–367

    Chapter  Google Scholar 

  175. Silakov A, Reijerse EJ, Albracht SPJ, Hatchikian EC, Lubitz W (2007) The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: aQ-band Fe-57-ENDOR and HYSCORE study. J Am Chem Soc 129:11447–11458

    Article  CAS  Google Scholar 

  176. Grimaldi S, Arias-Cartin R, Lyubenova S, Ceccaldi P, Prisner T, Magalon A, Guigliarelli B (2010) HYSCORE evidence that endogenous mena- and ubisemiquinone bind at the same Q aite (Q(D)) of Escherichia coli nitrate reductase A. J Am Chem Soc 132:5942–5943

    Article  CAS  Google Scholar 

  177. van Gastel M, Coremans JW, Mol J, Jeuken LJ, Canters GW, Groenen EJ (1999) The binding of imidazole in an azurin-like blue-copper site. J Biol Inorg Chem 4:257–265

    Article  Google Scholar 

  178. Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) Pulsed EPR/ENDOR characterization of perturbations of the Cu(A) center ground state by axial methionine ligand mutations. J Am Chem Soc 123:5325–5336

    Article  CAS  Google Scholar 

  179. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001

    Article  CAS  Google Scholar 

  180. Schneider B, Sigalat C, Amano T, Zimmermann JL (2000) Evidence for changes in the nucleotide conformation in the active site of H+-ATPase as determined by pulsed EPR spectroscopy. Biochemistry 39:15500–15512

    Article  CAS  Google Scholar 

  181. Konovalova TA, Dikanov SA, Bowman MK, Kispert LD (2001) Detection of anisotropic hyperfine components of chemically prepared carotenoid radical cations: 1D and 2D ESEEM and pulsed ENDOR study. J Phys Chem B 105:8361–8368

    Article  CAS  Google Scholar 

  182. Focsan AL, Bowman MK, Molnar P, Deli J, Kispert LD (2011) Carotenoid radical formation: dependence on conjugation length. J Phys Chem B 115:9495–9506

    Article  CAS  Google Scholar 

  183. Lubitz W (2003) Photochemical processes in photosynthesis studied by advanced electron paramagnetic resonance techniques. Pure Appl Chem 75:1021–1030

    Article  CAS  Google Scholar 

  184. Stich TA, Lahiri S, Yeagle G, Dicus M, Brynda M, Gunn A, Aznar C, DeRose VJ, Britt RD (2007) Multifrequency pulsed EPR studies of biologically relevant manganese(II) complexes. Appl Magn Reson 31:321–341

    Article  CAS  Google Scholar 

  185. Carmieli R, Manikandan P, Kalb AJ, Goldfarb D (2001) Proton positions in the Mn2+ binding site of concanavalin A as determined by single-crystal high-field ENDOR spectroscopy. J Am Chem Soc 123:8378–8386

    Article  CAS  Google Scholar 

  186. Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C (1999) In vivo electron spin-echo envelope modulation (ESEEM) spectroscopy: first observation of vanadyl coordination to phosphate in bone. J Am Chem Soc 121:11004–11005

    Google Scholar 

  187. Kordas G (2001) Investigation of the medium range structure of phosphosilicate glasses by cw-EPR, 1D-ESEEM and HYSCORE spectroscopies. J Non-Cryst Solids 281:133–138

    Article  CAS  Google Scholar 

  188. Kordas G, Goldfarb D (2008) Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy. J Chem Phys 129:154502

    Article  CAS  Google Scholar 

  189. Manikandan P, Epel B, Goldfarb D (2001) Structure of copper(II) -histidine based complexes in frozen aqueous solutions as determined from high-field pulsed electron nuclear double resonance. Inorg Chem 40:781–787

    Article  CAS  Google Scholar 

  190. Raitsimring AM, Astashkin AV, Baute D, Goldfarb D, Caravan P (2004) W-band 17O pulsed Electron Nuclear Double Resonance study of gadolinium complexes with water. J Phys Chem A 108:7318–7323

    Article  CAS  Google Scholar 

  191. Arieli D, Vaughan DEW, Goldfarb D (2004) New synthesis and insight into the structure of blue ultramarine pigments. J Am Chem Soc 126:5776–5788

    Article  CAS  Google Scholar 

  192. Weiden N, Kass H, Dinse KP (1999) Pulse electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) investigation of N@C60 in polycrystalline C60. J Phys Chem B 103:9826–9830

    Article  CAS  Google Scholar 

  193. Knorr S, Grupp A, Mehring M, Kirbach U, Bartl A, Dunsch L (1998) Pulsed ESR investigations of anisotropic interactions in M@C82 (M = Sc, Y, La). Appl Phys A-Mater 66:257–264

    Article  CAS  Google Scholar 

  194. Kaess H, Hoefer P, Grupp A, Kahol PK, Weizenhofer R, Wegner G, Mehring M (1987) Electron-spin delocalization in feast-type (Durham Route) polyacetylene - Pulsed ENDOR investigations. Europhys Lett 49:47–951

    Google Scholar 

  195. Baranov PG, Orlinskii SB, Donega CD, Schmidt J (2010) High-frequency EPR and ENDOR spectroscopy on semiconductor quantum dots. Appl Magn Reson 39:151–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Brustolon .

Editor information

Editors and Affiliations

Appendix

Appendix

The 2p echo decays are all given by a stretched exponential function

$$ {V_d}(2\tau ) = {V_0}\exp {( - 2\tau /{T_M})^x} $$
(2.37)
  1. 1.

    In the case of relaxation due to time modulation of anisotropic terms of the spin Hamiltonian, solution of Eq. (2.17) in fast motion régime (Redfield limit) [16], x = 1,

    $$ {{1} \left/ {{{T_M}}} \right.}{ = }{\Delta^{{2}}}\frac{{{\tau_c}}}{{{1 + }{\omega^{{2}}}\tau_c^2}} $$
    (2.38)

    where Δ is the magnetic anisotropy (in frequency units) averaged by the motion and τ c is the correlation time of the motion.

  1. 2.

    In the case of instantaneous diffusion, x = 1 and with \( 2{\theta_1} = {\theta_2} \) (see Sect. 2.4.1)

    $$ {{1} \left/ {{{T_M}}} \right.} = A + B \cdot {\sin^2}({{{{\theta_2}}} \left/ {2} \right.}) $$
    (2.39)

    where A is the contribution due to any other process, and B is due to instantaneous diffusion and it is proportional to the concentration see Eq. (2.27), and θ2 is the tilting angle of the π pulse (assuming non selective pulses).

In the case of spin-spin interactions (spectral diffusion) the values of the exponent and of 1/T M depend on the particular process and model, see Table 2.1.

Table 2.1 Analytical expressions for echo decay in the presence of spectral diffusion for given models and approximations

The general expression found for the echo intensity is obtained from solution of Eq. (2.13) as [60]:

$$ {{{V}}_{{Y}}}\left( {{2}\tau + {{T}}} \right) = {{n}}\left( {{\omega_{{k}}}} \right){\hbar^{{2}}}\gamma {\omega_{{k}}}{/}\left( {{4kT}} \right){{Re}}\left[ {{ \exp }\left[ {{{i}}\int_{{0}}^{{{2}\tau }} {{{s(t^\prime)}}\delta {\omega_{{k}}}{{(t^\prime}}} {{)dt^\prime}}} \right]} \right] $$
(2.40)

where ωk is the resonance frequency of the k-th spin packet, δωk its frequency shift due to coupled-spin flips, and s(t’) is a step function (equal to +1,0 or –1 during the different free evolutions).

Evaluation of the integral can be performed on the basis of the type of spin-flip mechanism with different models. The expression is given for the three pulses (stimulated) echo, for the 2p-echo the time T = 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brustolon, M., Barbon, A. (2013). Pulse EPR of Paramagnetic Centers in Solid Phases. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids I. Progress in Theoretical Chemistry and Physics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4893-4_2

Download citation

Publish with us

Policies and ethics