Airborne Pollen Transport

  • Mikhail Sofiev
  • Jordina Belmonte
  • Regula Gehrig
  • Rebeca Izquierdo
  • Matt Smith
  • Åslög Dahl
  • Pilvi Siljamo
Chapter

Abstract

This chapter reviews the present knowledge and previous developments concerning the pollen transport in the atmosphere. Numerous studies are classified according to the spatial scales of the applications, key processes considered, and the methodology involved. Space-wise, local, regional and long-range scales are distinguished. An attempt of systematization is made towards the key processes responsible for the observed patterns: initial dispersion of pollen grains in the nearest vicinity of the sources at micro-scale, transport with the wind, mixing inside the atmospheric boundary layer and dry and wet removal at the regional scale, and the long-range dispersion with synoptic-scale wind, exchange between the boundary layer and free troposphere, roles of dry and wet removal, interactions with chemicals and solar radiation at the large scales.

Atmospheric dispersion modelling can pursue two goals: estimation of concentrations from known source (forward problem), and the source apportionment (inverse problem). Historically, the inverse applications were made first, mainly using the simple trajectory models. The sophisticated integrated systems capable of simulating all main processes of pollen lifecycle have been emerging only during last decade using experience of the atmospheric chemical composition modelling.

Several studies suggest the allergen existence in the atmosphere separately from the pollen grains – as observed in different parts of the world. However, there is no general understanding of the underlying processes, and the phenomenon itself is still debated. Another new area with strongly insufficient knowledge is the interactions of airborne allergens and chemical pollutants.

Keywords

Airborne pollen Atmospheric pollen transport Dispersion modelling 

References

  1. Aina, R., Asero, R., Ghiani, A., Marconi, G., Albertini, E., & Citterio, S. (2010). Exposure to cadmium-contaminated soils increases allergenicity of Poa annua L. pollen. Allergy, 65, 1313–1321. ALL2364 [pii], 10.1111/j.1398-9995.2010.02364.x [doi].Google Scholar
  2. Alché, J. D., Castro, A. J., & Rodriguez-García, M. I. (2002). Localization of transcripts corresponding to the major allergen from olive pollen (Ole e I) by electron microscopic non-radioactive in situ RT-PCR. Micron, 33, 33–37.Google Scholar
  3. Arritt, R. W., Clark, C. A., Goggi, S., Lopez Sanchez, H., Westgate, M. E., & Riese, J. M. (2007). Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crops Research, 102, 151–162.Google Scholar
  4. Ashbaugh, L. L. (1983). A statistical trajectory technique for determining air pollution source regions. Journal of the Air Pollution Control Association, 33, 1096–1098.Google Scholar
  5. Aylor, D. E., Schultes, N. P., & Shields, E. J. (2003). An aerobiological framework for assessing cross-pollination in maize. Agricultural and Forest Meteorology, 119, 111–129.Google Scholar
  6. Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modelling. Journal of Applied Meteorology and Climatology, 45, 1003–1015.Google Scholar
  7. Behrendt, H., & Becker, W.-F. (2001). Localization, release and bioavailability of pollen allergens: The influence of environmental factors. Current Opinion in Immunology, 13, 709–715.Google Scholar
  8. Behrendt, H., Becker, W. M., Fritzsche, C., Sliwa-Tomczok, W., Tomczok, J., Friedrichs, K. H., & Ring, J. (1997). Air pollution and allergy: Experimental studies on modulation of allergen release from pollen by air pollutants. International Archives of Allergy and Immunology, 113, 69–74.Google Scholar
  9. Behrendt, H., Tomczok, J., Sliwa-Tomczok, W., Kasche, A., Ebner von Eschenbach, C., Becker, W. M., & Ring, J. (1999). Timothy grass (Phleum pratense L.) pollen as allergen carriers and initiators of an allergic response. International Archives of Allergy and Immunology, 118, 414–418.Google Scholar
  10. Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, A. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16, 93–99.Google Scholar
  11. Belmonte, J., Alarcón, M., Avila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52, 675–687. doi:10.1007/s00484-008-0160-9.Google Scholar
  12. Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., & Dlugokencky, E. J. (2005). Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics, 5, 2431–2460.Google Scholar
  13. Boehm, M. T., Aylor, D. E., & Shields, E. J. (2008). Maize pollen dispersal under convective conditions. Journal of Applied Meteorology and Climatology, 47, 291–307.Google Scholar
  14. Bohrerova, Z., Bohrer, G., Cho, K. D., Bolch, M. A., & Linden, K. G. (2009). Determining the viability response of pine pollen to atmospheric conditions during long-distance dispersal. Ecological Applications, 19(3), 656–667.Google Scholar
  15. Bourgeois, J. C. (2000). Seasonal and interannual pollen variability in snow layers of arctic ice caps. Review of Palaeobotany and Palynology, 108, 17–36.Google Scholar
  16. Bricchi, E., Frenguelli, G., & Mincigrucci, G. (2000). Experimental results about Platanus pollen deposition. Aerobiologia, 16, 347–352.Google Scholar
  17. Brown, J. K. M., & Hovmoller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.Google Scholar
  18. Brunet, Y., Foueillassar, X., Audran, A., Garrigou, D., & Dayau, S. (2004). Evidence for long-range transport of viable maize pollen. Reprints, 16th Conference on Biometeorology and Aerobiology. Vancouver, Canada. American Meteorological Society, CD-ROM, P4A.2.Google Scholar
  19. Burczyk, J., DiFazio, S. P., & Adams, W. T. (2004). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11, 1–14.Google Scholar
  20. Busse, W. W., Charles, E. R., & Hoehne, J. H. (1972). Where is the allergic reaction in ragweed asthma? II. Demonstration of ragweed antigen in airborne particles smaller than pollen. The Journal of Allergy and Clinical Immunology, 50, 289–293.Google Scholar
  21. Buters, J. T., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., Boere, A. J., Schober, W., & Behrendt, H. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65(7), 850–858. doi:ALL2286 [pii], 10.1111/j.1398-9995.2009.02286.x.Google Scholar
  22. Cabezudo, B., Recio, M., Sanchez-Laulhe, J. M., Trigo, M. M., Toro, F. J., & Polvorinos, F. (1997). Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmospheric Environment, 31, 3323–3328.Google Scholar
  23. Campbell, I. D., McDonald, K., Flannigan, M. D., & Kringayark, J. (1999). Long-distance transport of pollen into the Arctic. Nature, 399, 29–30.Google Scholar
  24. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2004). Analysis of the particles transported with dust-clouds reaching Córdoba, southwestern Spain. Archives of Environmental Contamination and Toxicology, 46, 141–146.Google Scholar
  25. Cecchi, L., Morabito, M., Paola Domeneghetti, M., Crisci, A., Onorari, M., & Orlandini, S. (2006). Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Annales of Allergy Asthma and Immunology, 96, 86–91.Google Scholar
  26. Cecchi, L., Torrigiani Malaspina, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., Morabito, M., Dall’ Aglio, P., & Orlandini, S. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151.Google Scholar
  27. Chamecki, M., Meneveau, C., & Parlange, M. B. (2009). Large eddy simulation of pollen transport in the atmospheric boundary layer. Journal of Aerosol Science, 40, 241–255.Google Scholar
  28. Clot, B., Schneiter, D., Tercier, Ph, Gehrig, R., Peeters, A., Thibaudon, M., & Clot, B. (2002). Ambrosia pollen in Switzerland: Local production or transport? Allergie et Immunologie, 34, 126–128.Google Scholar
  29. Dahl, A., Strandhede, S.-V., & Wihl, J.-A. (1999). Ragweed: An allergy risk in Sweden? Aerobiologia, 15, 293–297.Google Scholar
  30. Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145.Google Scholar
  31. Danielsen, E. F. (1961). Trajectories: Isobaric, isentropic and actual. Journal of Meteorology, 18, 479–486.Google Scholar
  32. Davis, J. M., Main, C. E. (1984). A regional analysis of the meteorological aspects of the spread and development of blue mold on tobacco. Boundary-Layer Meteorology, 28, 271–304.Google Scholar
  33. Davis, J. M., Main, C. E. (1986). Applying atmospheric trajectory analysis to problems in epidemiology. Plant Disease, 70, 490–497.Google Scholar
  34. Davidson, A. (1941). A note on anthesis in some common grasses near Johannesburg, and the relation of anthesis to collection of pollen for medical purposes. Journal of South African Botany, 7, 145–152.Google Scholar
  35. Di-Giovanni, F., & Kevan, P. G. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canadian Journal of Forest Research, 21, 1155–1170.Google Scholar
  36. Draxler, R. R., Hess, G. D. (2010). Description of the HYSPLIT_4 modelling system. NOAA Technical Memorandum ERL ARL-224NOAA Air Resources Laboratory; 27 pp. http://www.arl.noaa.gov/ready/hysplit4.html, http://www.arl.noaa.gov/documents/reports/arl-224.pdf. Last access 25 July 2012.
  37. Efstathiou, C., Isukapalli, S., & Georgopoulos, P. (2011). A mechanistic modelling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmospheric Environment 45(13), 2260–2276. [online] Available from: http://dx.crossref.org/10.1016%2Fj.atmosenv.2010.12.008 (last access 25.07.2012).
  38. Ellstrand, N. C. (1992). Gene flow by pollen: Implications for plant conservation genetics. Oikos, 63, 77–86.Google Scholar
  39. Ennos, R. A. (1994). Estimating the relative rates of pollen and seed migration among plant-populations. Heredity, 72, 250–259.Google Scholar
  40. Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992-1999). International Journal of Biometeorology, 54, 49–59.Google Scholar
  41. European Environment Agency. (2002). Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. Environmental Issue Report No 28, ISBN: 92-9167-411-7, Copenhagen, 75 pp. http://www.eea.europa.eu/publications/environmental_issue_report_2002_28 (last access 25.07.2012).Google Scholar
  42. Faegri, K., Iversen, J., & Krzywinski, K. (1989). Textbook of pollen analysis. Toronto: Wiley. 328 pp.Google Scholar
  43. Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2010). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50. doi: 10.1007/s00484-010-0307-3.Google Scholar
  44. Fraile, R., Calvo, A. I., Castro, A., Fernandez-Gonzalez, D., & Garcıa-Ortega, E. (2006). The behavior of the atmosphere in long-range transport. Aerobiologia, 22, 35–45.Google Scholar
  45. Franze, T., Weller, M. G., Niessner, R., & Poschl, U. (2005). Protein nitration by polluted air. Environmental Science and Technology, 39, 1673–1678.Google Scholar
  46. Franzen, L. (1989). A dustfall episode on the Swedish west-coast, October 1987. Geografiska Annaler Series A, Physical Geography, 71, 263–267.Google Scholar
  47. Franzen, L., & Hjelmroos, M. (1988). A coloured snow episode on the Swedish west coast, January 1987. A quantitative study of air borne particles. Geografiska Annaler Series A, Physical Geography, 70, 235–243.Google Scholar
  48. Franzen, L., Hjelmroos, M., Kallberg, P., Brorstromlunden, E., Juntto, S., & Savolainen, A. L. (1994). The yellow-snow episode of northern Fennoscandia, March-1991: A case-study of long-distance transport of soil, pollen and stable organic-compounds. Atmospheric Environment, 28, 3587–3604.Google Scholar
  49. Gage, S., Isard, S. A., & Colunga, G. M. (1999). Ecological scaling of aerobiological dispersal processes. Agricultural and Forest Meteorology, 97, 249–261.Google Scholar
  50. Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., & Smith, G. W. (2003). African and Asian dust: From desert soils to coral reefs. Bioscience, 53, 469–480.Google Scholar
  51. Garrison, V. H., Foreman, W. T., Genualdi, S., Griffin, D. W., Kellogg, C. A., Majewski, M. S., Mohammed, A., Ramsubhag, A., Shinn, E. A., Simonich, S. L., & Smith, G. W. (2006). Saharan dust – a carrier of persistent organic pollutants, metals and microbes to the Caribbean? Revista Biologia Tropical (Int. J. Trop. Biol. ISSN-0034-7744) 54(3), 9–21.Google Scholar
  52. Gassmann, M. I., & Pérez, C. F. (2006). Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar Del Plata (Argentina). International Journal of Biometeorology, 50, 280–291. doi: 10.1007/s00484-005-0021-8.Google Scholar
  53. Gehrig, R., & Peeters, A. G. (2000). Pollen distribution at elevations above 1000 m in Switzerland. Aerobiologia, 16, 69–74.Google Scholar
  54. Gilles, S., Jacoby, D., Blume, C., Mueller, M. J., Jakob, T., Behrendt, H., Schaekel, K., & Traidl-Hoffmann, C. (2010). Pollen-derived low-molecular weight factors inhibit 6-sulfo LacNAc  +  ­dendritic cells’ capacity to induce T-helper type 1 responses. Clinical and Experimental Allergy, 40, 269–278. doi:CEA3369 [pii], 10.1111/j.1365-2222.2009.03369.x.Google Scholar
  55. Giner, M. M., Garcia, C. J. S., & Selles, G. J. (1999). Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: Annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. International Journal of Biometeorology, 43, 51–63.Google Scholar
  56. Gleaves, J. T. (1973). Gene flow mediated by wind-borne pollen. Heredity, 31, 355–366.Google Scholar
  57. Gorbushina, A. A., Kort, R., Schuite, A., Lazarus, D., Schnetger, B., Brumsack, H., Broughton, W. J., & Favet, J. (2007). Life in Darwin’s dust: Intercontinental transport and survival of microbes in the nineteenth century. Environmental Microbiology, 9(12), 2911–2922. doi: 10.1111/j.1462-2920.20.2007.01461.x.Google Scholar
  58. Goudie, A. S., & Middleton, N. J. (2001). Saharan dust storms: Nature and consequences. Earth-Science Reviews, 56, 179–204.Google Scholar
  59. Govindaraju, D. R. (1988). Relationship between dispersal ability and levels of gene flow in plants. Oikos, 52, 31–35.Google Scholar
  60. Govindaraju, D. R. (1989). Estimates of gene flow in forest trees. Biological Journal of the Linnean Society, 37, 345–357.Google Scholar
  61. Gregory, P. H. (1961). The microbiology of the atmosphere. New York: Interscience. 251 pp.Google Scholar
  62. Griffin, D. W. (2004). Terrestrial microorganism at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20, 135–140.Google Scholar
  63. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.Google Scholar
  64. Griffin, D. W., & Kellogg, C. A. (2004). Dust storms and their impact on ocean and human health: Dust in Earth’s atmosphere. EcoHealth, 1, 284–295.Google Scholar
  65. Griffin, D. W., Kellogg, C. A., & Shinn, E. A. (2001a). Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystems health. Global Change and Human Health, 2, 20–33.Google Scholar
  66. Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. (2001b). African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia, 17, 203–213.Google Scholar
  67. Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.Google Scholar
  68. Griffin, D. W., Westplhal, D. L., & Gray, M. A. (2006). Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia, 22, 211–226. doi: 10.1007/s10453-006-9033-z.Google Scholar
  69. Griffin, D. W., Kubilay, N., Koçak, M., Gray, M. A., Borden, T. C., & Shinn, E. A. (2007). Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41, 4050–4062.Google Scholar
  70. Grote, M., Vrtala, S., Niederberger, V., Valenta, R., & Reichelt, R. (2000). Expulsion of allergen-containing materials from hydrated rye grass (Lolium perenne) pollen revealed by using immunogold field emission scanning and transmission electron microscopy. The Journal of Allergy and Clinical Immunology, 105, 1140–1145.Google Scholar
  71. Grote, M., Vrtala, S., Niederberger, V., Wierman, R., Valenta, R., & Reichelt, R. (2001). Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to variety of grass (Poaceae) species revealed by electron microscopy. The Journal of Allergy and Clinical Immunology, 108, 109–115.Google Scholar
  72. Grote, M., Valenta, R., & Reichelt, R. (2003). Abortive pollen germination: A mechanism of allergen release in birch, alder and hazel revealed by immunogold electron microscopy. The Journal of Allergy and Clinical Immunology, 111, 1017–1023.Google Scholar
  73. Guerzoni, S., & Chester, R. (1996). The impact of desert dust across the Mediterranean. Dordrecht: Kluwer Academic Publishers. 389 pp.Google Scholar
  74. Gunawan, H., Takai, T., Kamijo, S., Wang, X. L., Ikeda, S., Okumura, K., & Ogawa, H. (2008). Characterization of proteases, proteins, and eicosanoid-like substances in soluble extracts from allergenic pollen grains. International Archives of Allergy and Immunology, 147, 276–288. doi:000144035 [pii] 10.1159/000144035 [doi].Google Scholar
  75. Gupta, N., Sriramarao, P., Kori, R., & Rao, P. V. (1995). Immunochemical characterization of rapid and slowly released allergens from the pollen of Parthenium hysterophorus. International Archives of Allergy and Immunology, 107, 557–565.Google Scholar
  76. Hart, M. A., de Dear, R., & Beggs, P. J. (2007). A synoptic climatology of pollen concentrations during the six warmest months in Sydney, Australia. International Journal of Biometeorology, 51, 209–220.Google Scholar
  77. Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20(1), 3–19.Google Scholar
  78. Hervàs, A., Camarero, L., Reche, I., & Casamayor, E. O. (2009). Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology, 11(6), 1612–1623.Google Scholar
  79. Hicks, S. (1985). Modern pollen deposition records from Kuusamo, Finland. Grana, 24, 167–184.Google Scholar
  80. Hicks, S. H., Tinsley, A., Huusko, C., Jensen, M., Hättestrand, M., Gerasimedes, A., & Kvavadze, E. (2001). Some comments on spatial variation in arboreal pollen deposition: First records from the Pollen Monitoring Programme (PMP). Review of Palaeobotany and Palynology, 117, 183–194.Google Scholar
  81. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.Google Scholar
  82. Høgda, K. A., Karlsen, S. R., Solheim, I., Tommervik, H., & Ramfjord, H. (2002). The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Proceeding of IGARSS. June 24–28, 2002, Toronto. ISBN 0-7803-7536-X.Google Scholar
  83. Hooghiemstra, H., Lezine, A. M., Leroy, S. A. G., Dupont, L., & Marret, F. (2006). Late quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International, 148, 29–44.Google Scholar
  84. Hua, N., Kobayashi, F., Iwasaka, Y., Shi, G., & Naganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291–298.Google Scholar
  85. Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere: An airscape approach to understanding invasive organisms. East Lansing: Michigan State University Press. 240 pp.Google Scholar
  86. Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience, 55(10), 851–861.Google Scholar
  87. Izquierdo, R., Belmonte, J., Avila, A., Alarcón, M., Cuevas, E., & Alonso-Pérez, S. (2011). Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). International Journal of Biometeorology, 55(1), 67–85. doi: 10.1007/s00484-010-0309-1.Google Scholar
  88. Janssen, C. R. (1973). Local and regional pollen deposition. In J. H. B. Birks & R. G. West (Eds.), Quaternary plant ecology (pp. 30–43). Oxford: Blackwell Scientific.Google Scholar
  89. Jarosz, N., Loubet, B., Durand, B., McCartney, A., Foueillassar, X., & Huber, L. (2003). Field measurements of airborne concentration and deposition rate of maize pollen. Agricultural and Forest Meteorology, 119, 37–51.Google Scholar
  90. Jarosz, N., Loubet, B., & Huber, L. (2004). Modelling airborne concentrations and deposition rate of maize pollen. Atmospheric Environment, 38, 5555–5566.Google Scholar
  91. Kasprzyk, I. (2008). Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland); Evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. International Journal of Biometeorology, 52, 341–351. doi: 10.1007/s00484-007-0129.Google Scholar
  92. Kasprzyk, I., Myszkowska, D., Grewling, Ł., Stach, A., Šikoparija, B., Skjøth, C. A., & Smith, M. (2010). The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: Investigation of trends and possible transport of Ambrosia pollen from Ukraine. International Journal of Biometeorology. doi: 10.1007/s00484-010-0376-3.
  93. Kawashima, S., & Takahashi, Y. (1999). An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana, 38, 316–324.Google Scholar
  94. Kazlauskas, M., Sauliene, I., & Lankauskas, A. (2006). Airborne Artemisia pollen in Siauliai (Lithuania) atmosphere with reference to meteorological factors during 2003-2005. Acta Biologica Universitatis, 6, 1–2.Google Scholar
  95. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.Google Scholar
  96. Kellogg, C. A., Griffin, D. W., Garrison, V. H., Peak, K. K., Royall, N., Smith, R. R., & Shinn, E. A. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia, 20, 99–110.Google Scholar
  97. Klein, E. K., Lavigne, C., Foueilassar, X., Gouyon, P. H., & Laredo, C. (2003). Corn pollen dispersal: Quasi-mechanistic models and field experiments. Ecological Monographs, 73, 131–150.Google Scholar
  98. Knox, R. B., Suphioglu, C., Taylor, P., Desai, R., Watson, H. C., Peng, J. L., & Bursill, L. A. (1997). Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: Implications for asthma and air pollution. Clinical and Experimental Allergy, 27, 246–251.Google Scholar
  99. Kuparinen, A. (2006). Mechanistic models for wind dispersal. Trends in Plant Science, 11, 298–301.Google Scholar
  100. Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007). Modelling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 208, 177–188.Google Scholar
  101. Laursen, S. C., Reiners, W. A., Kelly, R. D., & Gerow, K. G. (2007). Pollen dispersal by Artemisia tridentata (Asteraceae). International Journal of Biometeorology, 51, 465–481.Google Scholar
  102. Lee, A. K. Y., Lau, A. P. S., Cheng, J. Y. W., Fang, M., & Chan, C. K. (2007). Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 41, 2831–2843.Google Scholar
  103. Lewis, S. A., Corden, J. M., Forster, G. E., & Newlands, M. (2000). Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993-96. Clinical and Experimental Allergy, 30, 1724–1732.Google Scholar
  104. Linkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., & Sofiev, M. (2010). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology, 150(12), 1579–1584.Google Scholar
  105. Linskens, H. F., & Cresti, M. (2000). Pollen allergy as an ecological phenomenon: A review. Plant Biosystems, 134(3), 341–352.Google Scholar
  106. Mahura, A., Korsholm, S. U., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23, 171–179.Google Scholar
  107. Mahura, A., Baklanov, A., & Korsholm, U. (2009). Parameterization of the birch pollen diurnal cycle. Aerobiologia, 25, 203–208.Google Scholar
  108. Makra, L., & Palfi, S. (2007). Intra-regional and long-range ragweed pollen transport over southern Hungary. Acta Climatologica Et Chorologica, 40–41, 69–77.Google Scholar
  109. Marchuk, G. I. (1982). Mathematical modelling in the environmental problems. Moscow: “Nauka” publisher. 320 pp, (in Russian).Google Scholar
  110. Marks, G. B., Colquhoun, J. R., Girgis, S. T., Koski, M. H., Treloar, A. B., Hansen, P., Downs, S. H., & Car, N. G. (2001). Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax, 56, 468–471.Google Scholar
  111. Matikainen, E., & Rantio-Lehtimaki, A. (1999). Semiquantitative and qualitative analysis of pre seasonal airborne birch pollen allergens in different particle sizes. Grana, 37, 293–297.Google Scholar
  112. McCartney, H. A., & Lacey, M. E. (1991). Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). Journal of Aerosol Science, 22, 467–477.Google Scholar
  113. Michel, D., Rotach, M. W., Gehrig, R., & Vogt, R. (2010). Experimental investigation of micrometeorological influences on birch pollen emission. Arbeitsberichte der MeteoSchweiz, 230, 37 pp.Google Scholar
  114. Miguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., & Flagan, R. C. (2006). Meteorological influences on respirable fragment release from Chinese Elm pollen. Aerosol Science and Technology, 40(9), 690–696.Google Scholar
  115. Moar, N. T. (1969). Possible long-distance transport of pollen to New Zealand. New Zealand Journal of Botany, 7, 424–426.Google Scholar
  116. Motta, A. C., Marliere, M., Peltre, G., Sterenberg, P. A., & Lacroix, G. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. International Archives of Allergy and Immunology, 139, 294–298.Google Scholar
  117. Nichols, H. (1967). Pollen diagrams from Sub-Arctic Central Canada. Science, 155, 1665–1668.Google Scholar
  118. Novotny, E., & Perdang, J. (2003). Simulations of pollen transport by wind. SGR (Scientist for Global Responsibility), 3 pp.Google Scholar
  119. Oikonen, M., Hicks, S., Heino, S., & Rantio-Lehtimaki, A. (2005). The start of the birch pollen season in Finnish Lapland: Separating non-local from local birch pollen and the implication for allergy sufferers. Grana, 44, 181–186.Google Scholar
  120. Pacini, E., & Hesse, M. (2004). Cytophysiology of pollen presentation and dispersal. Flora, 199, 273–285.Google Scholar
  121. Pacini, E., Guarnieri, M., & Nepi, M. (2006). Pollen carbohydrates and water content during development, presentation and dispersal: A short review. Protoplasma, 228, 73–77.Google Scholar
  122. Pasken, R., & Pietrowicz, J. A. (2005). Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmospheric Environment, 39, 7689–7701.Google Scholar
  123. Paz, S., & Broza, M. (2007). Wind direction and its linkage with Vibrio cholerae dissemination. Environmental Health Perspectives, 115(2), 195–200.Google Scholar
  124. Peeters, A. G., & Zoller, H. (1988). Long range transport of Castanea sativa pollen. Grana, 27, 203–207.Google Scholar
  125. Peltre, G., Derouet, L., & Cerceau-Larrival, M. T. (1991). Model treatments simulating environmental action on allergenic Dactylis glomerata pollen. Grana, 30, 59–61.Google Scholar
  126. Pérez-Landa, G., Ciais, P., Gangoiti, G., Palau, J. L., Carrara, A., Gioli, B., Miglietta, F., Schumacher, M., Millán, M. M., & Sanz, M. J. (2007a). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 2: Modeling CO2 transport using idealized surface fluxes. Atmospheric Chemistry and Physics, 7, 1851–1868.Google Scholar
  127. Pérez-Landa, G., Ciais, P., Sanz, M. J., Gioli, B., Miglietta, F., Palau, J. L., Gangoiti, G., & Millán, M. M. (2007b). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 1: Simulation of diurnal circulation regimes. Atmospheric Chemistry and Physics, 7, 1835–1849.Google Scholar
  128. Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.Google Scholar
  129. Porsbjerg, C., Rasmussen, A., & Backer, A. (2003). Airborne pollen in Nuuk, Greenland, and the importance of meteorological parameters. Aerobiologia, 19, 29–37.Google Scholar
  130. Prank, P., Sofiev, M., Kaasik, M., Ruuskanen, T., Kukkonen, J., & Kulmala, M. (2008). The origin and formation mechanics of aerosol during a measurement campaign in Finnish Lapland, evaluated using the regional dispersion model SILAM. In C. Borrego & A. I. Miranda (Eds.), Air pollution modeling and its application XIX (NATO science for peace and security series-C: Environmental security, pp. 530–538). Berlin: Springer.Google Scholar
  131. Prank, M., Sofiev, M., Denier van der Gon, H. A. C., Kaasik, M., Ruuskanen, T., & Kukkonen, J. (2010). A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling. Atmospheric Chemistry and Physics Discussions, 10, 15963–16006.Google Scholar
  132. Prospero, J. M., Barett, K., Churcha, T., Dentener, F., Duce, R. A., Galloway, J. N., Levy, H., II, Moody, J., & Quinn, P. (1996). Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry, 35, 27–73.Google Scholar
  133. Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19.Google Scholar
  134. Pulimood, T. B., Corden, J. M., Bryden, C., Sharples, L., & Nasser, S. M. (2007). Epidemic asthma and the role of the fungal mold Alternaria alternata. The Journal of Allergy and Clinical Immunology, 120, 610–617. doi:S0091-6749(07) 00970-0 [pii], 10.1016/j.jaci.2007.04.045 [doi].Google Scholar
  135. Radauer, C., Bublin, M., Wagner, S., Mari, A., & Breiteneder, H. (2008). Allergens are distributed into few protein families and possess a restricted number of biochemical functions. The Journal of Allergy and Clinical Immunology, 121, 847.e7–852.e7. DOI: S0091-6749(08)00163-2.Google Scholar
  136. Rannik, U., Markkanen, T., Raittila, J., Hari, P., & Vesala, T. (2003). Turbulence statistics inside and over forest: Influence on footprint prediction. Boundary-Layer Meteorology, 109, 163–189.Google Scholar
  137. Ranta, H., & Satri, P. (2007). Synchronised inter-annual fluctuations of flowering intensity affects the exposure to allergenic tree pollen in north Europe. Grana, 46(4), 274–284.Google Scholar
  138. Ranta, H., Kubin, E., Siljamo, P., Sofiev, M., Linkosalo, T., Oksanen, A., & Bondestam, K. (2006). Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana, 45(4), 297–304.Google Scholar
  139. Ranta, H., Sokol, C., Hicks, S., Heino, S., & Kubin, E. (2008). How do airborne and deposition pollen samplers reflect the atmospheric dispersal of different pollen types? An example from northern Finland. Grana, 47, 285–296.Google Scholar
  140. Rantio-Lehtimaaki, A., Viander, M., & Koivikko, A. (1994). Airborne birch pollen antigens in different particle sizes. Clinical and Experimental Allergy, 24, 23–28.Google Scholar
  141. Rantio-Lehtimaki, A. (2002). Siitepolyallergeenit sisalyss. Allergia & Asthma, 2, 25–27 (in Finnish).Google Scholar
  142. Rantio-Lehtimaki, A., & Matikainen, E. (2002). Pollen allergen reports help to understand preseason symptoms. Aerobiologia, 18, 135–140.Google Scholar
  143. Raynor, G. S., & Hayes, J. V. (1983). Testing of the air resources laboratories trajectory model on cases of pollen wet deposition after long-distance transport from known source regions. Atmospheric Environment, 17(2), 213–220.Google Scholar
  144. Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1970). Dispersion and deposition of ragweed pollen from experimental sources. Journal of Applied Meteorology, 9, 885–895.Google Scholar
  145. Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1972a). Dispersion and deposition of timothy pollen from experimental sources. Agricultural Meteorology, 9, 347–366.Google Scholar
  146. Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1972b). Dispersion and deposition of corn pollen from experimental sources. Agronomy Journal, 64, 420–427.Google Scholar
  147. Risse, U., Tomczok, J., Huss-Marp, J., Darsow, U., & Behrendt, H. (2000). Health-relevant interaction between airborne particulate matter and aeroallergens (pollen). Journal of Aerosol Science, 31, 27–28.Google Scholar
  148. Ritchie, J. C. (1974). Modern pollen assemblages near arctic tree Line, Mackenzie Delta Region, Northwest-Territories. Canadian Journal of Botany, 52, 381–396.Google Scholar
  149. Ritchie, J. C., & Lichti-Federovich, S. (1967). Pollen dispersal phenomena in Arctic-Subarctic Canada. Review of Palaeobotany and Palynology, 3, 255–266.Google Scholar
  150. Rodríguez-García, M. I., Fernández, M. C., Alché, J. D., & Olmedilla, A. (1995). Endoplasmic reticulum as a storage site for allergenic proteins in pollen grains of several Oleaceae. Protoplasma, 187, 111–116. doi: 10.1007/bf01280238.Google Scholar
  151. Rogerieux, F., Godfrin, D., Senechal, H., Motta, A. C., Marliere, M., Peltre, G., & Lacroix, G. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). International Archives of Allergy and Immunology, 143, 127–134. doi:000099079 [pii] 10.1159/000099079 [doi].Google Scholar
  152. Rogers, C. A., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42, 65–72.Google Scholar
  153. Romero, O. E., Dupont, L., Wyputta, U., Jahns, S., & Wefer, G. (2003). Temporal variability of fluxes of eolian-transported freshwater diatoms, phytoliths, and pollen grains off Cape Blanc as reflection of land-atmosphere-ocean interactions in northwest Africa. Journal of Geophysical Research-Oceans, 108(C5), 3153–3164. doi: 10.1029/2000JC000375/2003.Google Scholar
  154. Rousseau, D. D., Duzer, D., Cambon, G. V., Jolly, D., Poulsen, U., Ferrier, J., Schevin, P., & Gros, R. (2003). Long distance transport of pollen to Greenland. Geophysical Research Letters, 30, 1765. doi: 10.1029/2003GL017539.Google Scholar
  155. Rousseau, D. D., Duzer, D., Etienne, J.-L., Cambon, G., Jolly, D., Ferrier, J., & Schevin, P. (2004). Pollen record of rapidly changing air trajectories to the North Pole. Journal of Geophysical Research, 109, D06116. doi: 10.1029/2003JD003985.Google Scholar
  156. Rousseau, D. D., Schevin, P., Duzer, D., Cambon, G., Ferrier, J., Jolly, D., & Poulsen, U. (2005). Pollen transport to southern Greenland: New evidences of a late spring long distance transport. Biogeosciences Discussions, 2(4), 709–715.Google Scholar
  157. Rousseau, D. D., Schevin, P., Duzer, D., Cambon, G. V., Ferrier, J., Jolly, D., & Poulsen, U. (2006). New evidence of long distance pollen transport to southern Greenland in late spring. Review of Palaeobotany and Palynology, 141, 277–286. doi: 10.1016/j.revpalbo.2006.05.001.Google Scholar
  158. Rousseau, D. D., Schevin, P., Ferrier, J., Jolly, D., Andreasen, T., Ascanius, S. E., Hendriksen, S. E., & Poulsen, U. (2008). Long-distance pollen transport from North America to Greenland in spring. Journal of Geophysical Research-Biogeosciences, 113. doi: 10.1029/2007JG000456.
  159. Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., & Hillamo, R. (2007). Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577–3589.Google Scholar
  160. Salas, M. R. (1983). Long-distance pollen transport over the southern Tasman Sea: Evidence from Macquarie Island. New Zealand Journal of Botany, 21, 285–292.Google Scholar
  161. Saltbones, J., Bartnicki, J., & Foss, A. (2001). Handling of fallout processes from nuclear explosions in a severe nuclear accident program (SNAP). met.no report no. 157/2003, http://ebookbrowse.com/saltbones-pdf-d25441461 (last access 25.07.2012), 13 pp. (shortened English version).Google Scholar
  162. Šaulienė, I., & Veriankaitė, L. (2006). Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. Journal of Environmental Engineering and Landscape Management, 14(3), 113–120.Google Scholar
  163. Sauliene, I., Veriankaite, L., & Lankauskas, A. (2007). The analysis of the impact of long distance air mass to airborne pollen concentration. Cross-border cooperation in researches of biological diversity. Acta Biologica Universitatis Daugapiliensis Supplement, 1, 61–74.Google Scholar
  164. Savelieva, L. A., Dorozhkina, M. V., & Pavlova, E. Y. (2002). Modern annual deposition and aerial pollen transport in the Lena Delta. Polarforschung, 70, 115–122.Google Scholar
  165. Schäppi, G. F., Suphioglu, C., Taylor, P. E., & Knox, R. B. (1997). Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere. The Journal of Allergy and Clinical Immunology, 100, 656–661. doi: S0091-6749(97)70170-2.Google Scholar
  166. Schlesinger, P., Mamane, Y., & Grishkan, I. (2006). Transport of microorganisms to Israel during Saharan dust events. Aerobiologia, 22, 259–273. doi: 10.1007/s10453-006-9038-7.Google Scholar
  167. Schmidt-Lebuhn, A. N., Seltmann, P., & Kessler, M. (2007). Consequences of the pollination system on genetic structure and patterns of species distribution in the Andean genus Polylepis (Rosaceae): A Comparative study. Plant Systematics and Evolution, 266, 91–103. doi: 10.1007/s00606-007-0543-0.Google Scholar
  168. Schueler, S., & Schlünzen, K. H. (2006). Modelling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modelling and Assessment, 11, 179–194.Google Scholar
  169. Seibert, P., Kromp-Kolb, H., Balterpensger, U., Jost, D.T., Schwikowski, M., Kasper A., Puxbaum, H. (1994). Trajectory analysis of aerosol measurements at high alpine sites. In P. M. Borrel, P. Borrell, T. Cvitas, W. Seiler (Eds.), Transport and transformation of pollutants in the troposphere (pp. 689–693). The Hague: Academic.Google Scholar
  170. Seibert, P., & Frank, A. (2004). Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmospheric Chemistry and Physics, 4, 51–63. http://www.atmos-chem-phys.net/4/51/2004/ (last access 25.07.2012).Google Scholar
  171. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley Interscience, Wiley. 1203 pp.Google Scholar
  172. Shahali, Y., Pourpak, Z., Moin, M., Zare, A., & Majd, A. (2009). Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens. Journal of Physics Conference Series, 151, 012027. doi: 10.1088/1742-6596/151/1/012027.Google Scholar
  173. Sharma, C. M., & Khanduri, V. P. (2007). Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia, 23, 153–158. doi: 10.1007/s10453-007-9056-0.Google Scholar
  174. Shinn, E. A., Griffin, D. W., & Seba, D. B. (2003). Atmospheric transport of mold spores in clouds of desert dust. Archives of Environmental Health, 58, 498–504.Google Scholar
  175. Šikoparija, B., Smith, M., Skjøth, C. A., Radišić, P., Milkovska, S., Šimić, S., & Brandt, J. (2009). The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53, 263–272.Google Scholar
  176. Siljamo, P., Sofiev, M., & Ranta, H. (2004a). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In C. Borrego & A. -L. Norman, (Eds.), Air pollution modelling and its applications XVII (pp. 331–340). New York: Springer (2007). ISBN-10: 0-387-28255-6.Google Scholar
  177. Siljamo, P., Sofiev, M., Ranta, H., Kalnina, L., & Ekebom, A. (2004b). Long-range atmospheric transport of birch pollen. Problem statement and feasibility studies. Proceedings of Baltic HIRLAM workshop, St. Petersburg, November 17–20, 2003. (pp. 100–103). HIRLAM publications, SMHI Norrkoping, Sweden.Google Scholar
  178. Siljamo, P., Sofiev, M., Severova, E., Ranta, H., & Polevova, S. (2006). On influence of long-range transport of pollen grains onto pollinating seasons. Developments in Environmental Science, 6. DOI:  10.1016/S1474-8177(70)06074-3. C. Borrego & E. Renner (Eds.). Air pollution modelling and its applications XVIII, (pp. 708–716) Amsterdam: Elsevier.
  179. Siljamo, P., Sofiev, M., & Ranta, H. (2007). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In C. Borrego & A.-L. Norman (Eds.), Air pollution modeling and its applications XVII, (pp. 331–339). New York: Springer.Google Scholar
  180. Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., Genikhovich, E., Jatczak, K., Jato, V., Nekovar, J., Minin, A., Severova, E., & Shalaboda, V. (2008a). Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489–502. doi: 10.1111/j.1466-8238.2008.00383.x.Google Scholar
  181. Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E., & Minin, A. (2008b). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia, 24, 211–230. doi: 10.1007/s10453-008-9100-8.Google Scholar
  182. Siljamo, P., Sofiev, M., Linkosalo, T., Ranta, H., & Kukkonen, J. (2008c). Development and application of biogenic emission term as a basis of long-range transport of allergenic pollen. In C. Borrego & A. I. Miranda (Eds.), Air pollution modelling and its application XIX. NATO Science for Peace and Security Series C: Environmental Security (pp. 154–162). Dordrecht: Springer.Google Scholar
  183. Skjøth, C. A., Hertel, O., & Ellermann, T. (2002). Use of the ACDEP trajectory model in the Danish nation-wide background monitoring programme. Physics and Chemistry of the Earth, 27, 1469–1477.Google Scholar
  184. Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.Google Scholar
  185. Skjøth, C. A., Geels, C., Hvidberg, M., Hertel, O., Brandt, J., Frohn, L. M., Hansen, K. M., Hedegard, G. B., Christensen, J. H., & Moseholm, L. (2008a). An inventory of tree species in European essential data input for air pollution modelling. Ecological Modelling, 217, 292–304.Google Scholar
  186. Skjøth, C. A., Sommer, J., Brandt, J., Hvidberg, M., Geels, C., Hansen, K. M., Hertel, O., Frohn, L. M., & Christensen, J. H. (2008b). Copenhagen – a significant source to birch (Betula) pollen? International Journal of Biometeorology, 52, 453–462.Google Scholar
  187. Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2009). Are the birch trees in Southern England a source of pollen in North London? International Journal of Biometeorology, 53, 75–86.Google Scholar
  188. Skjøth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., Radisic, P., Stjepanovic, B., Hrga, I., Apatini, D., Magyar, D., Páldy, A., & Ianovici, N. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.Google Scholar
  189. Smith, M., Emberlin, J., & Kress, A. (2005). Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia, 21(2), 85–94.Google Scholar
  190. Smith, M., Skjøth, C. A., Myszkowska, D. A. U., Puc, M., Stach, A., Balwierz, Z., Chlopek, K., Piotrowska, K., Kasprzyk, I., & Brandt, J. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.Google Scholar
  191. Smouse, P., Dyer, R. J., Westfall, R. D., & Sork, V. L. (2001). Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55, 260–271. doi: 10.1111/j.0014-3820.2001.tb01291.Google Scholar
  192. Sofiev, M., & Atlaskin, E. (2007). An example of application of data assimilation technique and adjoint modelling to an inverse dispersion problem based on the ETEX experiment. In C. Borrego & A. Norman (Eds.), Air pollution modelling and its application XVII (pp. 438–448). New York: Springer.Google Scholar
  193. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.Google Scholar
  194. Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685. doi: 10.1016/j.atmosenv.2005.09.069.Google Scholar
  195. Sofiev, M., Bousquet, J., Linkosalo, T., Ranta, H., Rantio-Lehtimaki, A., Siljamo, P., Valovirta, E., & Damialis, A. (2009). Pollen, allergies and adaptation. Chapter 5. In K. Ebi, G. McGregor & I. Burton (Eds.), Biometeorology and adaptation to climate variability and change (pp. 75–107). ISBN 978-4020-8920-6, Dordrecht: Springer.Google Scholar
  196. Sorensen, J. H. (1998). Sensitivity of the DERMA long-range Gaussian dispersion model to meteorological input and diffusion parameters. Atmospheric Environment, 32, 4195–4206.Google Scholar
  197. Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia, 16, 21–24.Google Scholar
  198. Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51, 275–286.Google Scholar
  199. Stanley, R. G., & Linskens, H. F. (Eds.). (1974). Pollen: Biology – biochemistry – management. Berlin: Springer.Google Scholar
  200. Stewart, G. A., & Holt, P. G. (1985). Submicronic airborne allergens. The Medical Journal of Australia, 143(9), 426–427.Google Scholar
  201. Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.Google Scholar
  202. Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O’Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., & Yokouchi, Y. (2009). An analytical inversion method for determining, regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 9, 1597–1620. www.atmos-chem-phys.net/9/1597/2009/.Google Scholar
  203. Subba Reddi, C., Reddi, N. S., & Atluri Janaki, B. (1988). Circadian patterns of pollen release in some species of Poaceae. Review of Palaeobotany and Palynology, 54, 11–42.Google Scholar
  204. Tampieri, F., Mandrioli, P., & Puppi, G. L. (1977). Medium range transport of airborne pollen. Agricultural Meteorology, 18, 9–20.Google Scholar
  205. Taylor, D. A. (2002). Dust in the wind. Environmental Health Perspectives, 110, A80–A87.Google Scholar
  206. Taylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. (2002). Release of allergens as respirable aerosols: A link between grass pollen and asthma. The Journal of Allergy and Clinical Immunology, 109, 51–56.Google Scholar
  207. Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., & Glovsky, M. M. (2004). Birch pollen rupture and the release of aerosols of respirable allergens. Clinical and Experimental Allergy, 34, 1591–1596.Google Scholar
  208. Taylor, P. E., Card, G., House, J., Dickinson, M. H., & Flagan, R. C. (2006). High-speed pollen release in the white mulberry tree, Morus alba L. sexual plant. Reproduction, 19, 19–24.Google Scholar
  209. Taylor, P. E., Jacobson, K. W., House, J. M., & Glovsky, M. M. (2007). Links between pollen, atopy and the asthma epidemic. International Archives of Allergy and Immunology, 144, 162–170. doi:000103230 [pii] 10.1159/000103230 [doi].Google Scholar
  210. Timmons, A., O’Brien, E., Charters, Y., Dubbels, S., & Wilkinson, M. (1995). Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica, 85, 417–423.Google Scholar
  211. Traidl-Hoffmann, C., Kasche, A., Menzel, A., Jakob, T., Thiel, M., Ring, J., & Behrendt, H. (2003). Impact of pollen on human health: More than allergen carriers? International Archives of Allergy and Immunology, 131, 1–13. doi: 10.1159/000070428.Google Scholar
  212. Van Campo, M., & Quet, L. (1982). Pollen and red dust transport from South to North of the Mediterranean area. Comptes Rendus des Seances de l’Academie des Sciences Serie III Sciences de la Vie, 295, 61–64.Google Scholar
  213. Van de Water, P. K., & Levetin, E. (2001). The contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.Google Scholar
  214. Van de Water, P. K., Keever, T., Main, C. E., & Levetin, E. (2003). An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA. International Journal of Biometeorology, 48, 74–82.Google Scholar
  215. Van de Water, P., Watrud, L. S., Lee, E. H., Burdick, C., & King, G. A. (2007). Long-distance GM pollen movement of creeping bentgrass using modeled wind trajectory analysis. Ecological Applications, 17(4), 1244–1256.Google Scholar
  216. Veriankaité, L., Siljamo, P., Sofiev, M., Sauliené, I., & Kukkonen, J. (2010). Modelling analysis of source regions of long range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26, 47–62.Google Scholar
  217. Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulations of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.Google Scholar
  218. von Wahl, P.-G., & Puls, K. E. (1989). The emission of mugwort polen (Artemisia vulgaris L.) and its flight in the air. Aerobiologia, 5, 55–63.Google Scholar
  219. Vrtala, S., Grote, M., Duchene, M., van Ree, R., Kraft, D., Scheiner, O., & Valenta, R. (1993). Properties of tree and grass pollen allergens: Reinvestigation of the linkage between solubility and allergenicity. International Archives of Allergy and Immunology, 102, 160–169.Google Scholar
  220. Waisel, Y., Ganor, E., Epshtein, V., Stupp, A., & Eshel, A. (2008). Airborne pollen, spores, and dust across the East Mediterranean sea. Aerobiologia, 24, 125–131.Google Scholar
  221. Westbrook, J. K., & Isard, S. A. (1999). Atmospheric scales of biotic dispersal. Agricultural and Forest Meteorology, 97, 263–274.Google Scholar
  222. WHO. (2003). Phenology and human health: Allergic disorders. Copenhagen: WHO Regional Office for Europe. 55 pp.Google Scholar
  223. Wodehouse, R. P. (1935). Pollen grains. Their structure, identification and significance in science and medicine. New York: MacGraw-Hill.Google Scholar
  224. Wotawa, G., De Geer, L.-E., Denier, P., Kalinowski, M., Toivonen, H., D’Amours, R., Desiato, F., Issartel, J.-P., Langer, M., Seibert, P., Frank, A., Sloan, C., & Yamazawa, H. (2003). Atmospheric transport modelling in support of CTBT verification – overview and basic concepts. Atmospheric Environment, 37, 1565–1573.Google Scholar
  225. Wu, P. C., Tsai, J. C., Li, F. C., Lung, S. C., & Su, H. J. (2004). Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment, 38, 4879–4886.Google Scholar
  226. Wynn-Williams, D. D. (1991). Aerobiology and colonization in Antarctica: The BIOTAS ­programme. Grana, 30, 380–393.Google Scholar
  227. Yadav, S., Chauhan, M. S., & Sharma, A. (2007). Characterisation of bio-aerosols during dust storm period in N-NW India. Atmospheric Environment, 41, 6063–6073.Google Scholar
  228. Zhang, W. Y., Arimoto, R., & An, Z. S. (1997). Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research, 102(23), 28041–28147.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mikhail Sofiev
    • 1
  • Jordina Belmonte
    • 2
  • Regula Gehrig
    • 3
  • Rebeca Izquierdo
    • 4
  • Matt Smith
    • 5
  • Åslög Dahl
    • 6
  • Pilvi Siljamo
    • 7
  1. 1.Air Quality ResearchFinnish Meteorological InstituteHelsinkiFinland
  2. 2.Botany Unit and Institut de Ciència i Tecnologies AmbientalsUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Bio- & UmweltmeteorologieMeteoSwissZurichSwitzerland
  4. 4.Centre de Recerca Ecològica I Aplicacions ForetsalsUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK
  6. 6.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
  7. 7.Meteorological ResearchFinnish Meteorological InstituteHelsinkiFinland

Personalised recommendations