The Onset, Course and Intensity of the Pollen Season

  • Åslög Dahl
  • Carmen Galán
  • Lenka Hajkova
  • Andreas Pauling
  • Branko Sikoparija
  • Matt Smith
  • Despoina Vokou
Chapter

Abstract

The onset, duration and intensity of the period when pollen is present in the air varies from year to year. Amongst other things, there is an effect upon the quality of life of allergy sufferers. The production and emission of pollens are governed by interacting environmental factors. Any change in these factors may affect the phenology and intensity of the season. Readiness to flower in a plant, and the amount of pollen produced, is the result of conditions during an often long period foregoing flowering. When a plant is ready to flower, temporary ambient circumstances e.g., irradiation and humidity, determine the timing of the actual pollen release. In order to understand variation between years and to be able to safely predict future situations, not least due to the ongoing climate change, it is necessary to know the determinants of all related processes and differences between and within species, here reviewed.

Keywords

Anemophily Allergenic plants Phenology Readiness to flower Vernalization Onset of anthesis Chilling Dormancy Forcing Pollen release Pollen emission Circadian rhythms Pollen season duration Pollen index Flowering intensity Masting Pollen season severity Pollen production Climate change 

References

  1. Ahas, R. A., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.Google Scholar
  2. Alcalá, A. R., & Barranco, D. (1992). Prediction of flowering time in olive for the Cordoba olive collection. Hortscience, 27, 1205–1207.Google Scholar
  3. Alcamo, J., Moreno, J. M., Nováky, B., Bindi, M., Corobov, R., Devoy, R. J. N., Giannakopoulos, C., Martin, E., Olesen, J. E., & Shvidenko, A. (2007). Europe climate change 2007: Impacts, adaptation and vulnerability. In M. L. Parry, O. Canziani, F. J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 541–580). Cambridge: Cambridge University Press.Google Scholar
  4. Alcázar, P., Stach, A., Nowak, M., & Galán, C. (2009). Comparison of airborne herb pollen types in Córdoba (Southwestern Spain) and Poznan (Western Poland). Aerobiologia, 25, 55–63.Google Scholar
  5. Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.Google Scholar
  6. Antepara, I., Fernandez, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilbao area (European Atlantic seaboard climate): Pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.Google Scholar
  7. Aron, R. (1983). Availability of chilling temperatures in California. Agricultural Meteorology, 28, 351–363.Google Scholar
  8. Arora, R., Rowland, L. J., & Tanino, K. (2003). Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience, 38, 911–921.Google Scholar
  9. Barnes, C., Pacheco, F., Landuyt, J., Hu, F., & Portnoy, J. (2001). The effect of temperature, relative humidity and rainfall on airborne ragweed pollen concentrations. Aerobiologia, 17, 61–68.Google Scholar
  10. Barney, J. N., & DiTommaso, A. (2003). The biology of Canadian weeds. 118. Artemisia vulgaris L. Canadian Journal of Plant Science, 83, 205–215.Google Scholar
  11. Bianchi, D. E., Schwemmin, D. J., & Wagner, W. H., Jr. (1959). Pollen release in the common ragweed (Ambrosia artemisiifolia). Botanical Gazette, 120, 235–243.Google Scholar
  12. Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2009). Evidences of olive pollination date variations in relation to spring temperature trends. Aerobiologia, 25, 227–237.Google Scholar
  13. Cariñanos, P., Galán, C., Alcazar, P., & DomÌnguez, E. (2010). Airborne pollen records and status of the anemophilous flora in arid areas of the Iberian Peninsula. Journal of Arid Environments, 74, 1102–1105.Google Scholar
  14. Cecchi, L., D’Amato, G., Ayres, J. G., Galán, C., Forastiere, F., Forsberg, B., Gerritsen, J., Nunes, C., Behrendt, H., Akdis, C., Dahl, R., & Annesi-Maesano, I. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65, 1073–1081.Google Scholar
  15. Chastain, T. G., & Young, W. C. (1998). Vegetative plant development and seed production in cool-season perennial grasses. Seed Science Research, 8, 295–301.Google Scholar
  16. Chmielewski, F. M., & Rötzer, T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forestry Meteorology, 108, 101–112.Google Scholar
  17. Chuine, I., & Belmonte, J. (2004). Improving prophylaxis for pollen allergies: Predicting the time of course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana, 43, 65–80.Google Scholar
  18. Chuine, I., & Cour, P. (1999). Climatic determinants of budburst seasonality of temperate-zone trees. The New Phytologist, 143, 339–349.Google Scholar
  19. Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant, Cell & Environment, 22, 1–13.Google Scholar
  20. Chuine, I., Morin, X., & Bugmann, H. (2010). Warming, photoperiods, and tree phenology. Science, 329(5989), 277–278.Google Scholar
  21. Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., & Field, C. B. (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences, USA, 103, 13740–13744.Google Scholar
  22. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchatel (Switzerland). Aerobiologia, 19, 227–234.Google Scholar
  23. Colasanti, J., & Coneva, V. (2009). Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology, 149, 56–62.Google Scholar
  24. Comtois, P. (1998). Ragweed (Ambrosia sp.): The Phoenix of allergophytes. In: 6th international congress on aerobiology. Satellite symposium proceedings: Ragweed in Europe. Perugia, Italy: ALK Abelló.Google Scholar
  25. Corden, J., Millington, W., Bailey, J., Brookes, M., Caulton, E., Emberlin, J., Mullins, J., Simpson, C., & Wood, A. (2000). UK regional variations in Betula pollen (1993–1997). Aerobiologia, 16, 227–32.Google Scholar
  26. Craine, J. M., Towne, E. G., & Nippert, J. B. (2010). Climate controls on grass culm production over a quarter century in a tallgrass prairie. Ecology, 91, 2132–2140.Google Scholar
  27. Cristofolini, F., & Gottardini, E. (2000). Concentration of airborne pollen of Vitis vinifera L. and yield forecast: A case study at S. Michele all’Adige, Trento, Italy. Aerobiologia, 16, 125–129.Google Scholar
  28. Curtis, J. D., & Lersten, N. R. (1995). Anatomical aspects of pollen release from staminate flowers of Ambrosia trifida (Asteraceae). International Journal of Plant Sciences, 165, 29–36.Google Scholar
  29. D’Amato, G., & Cecchi, L. (2008). Effects of climate change on environmental factors in respiratory allergic diseases. Clinical and Experimental Allergy, 38, 1264–1274.Google Scholar
  30. Dahl, A., & Strandhede, S.-O. (1996). Predicting the intensity of the birch pollen season. Aerobiologia, 12, 97–106.Google Scholar
  31. Dahl, A., Strandhede, S.-O., & Wihl, J.-A. (1999). Ragweed, an allergy risk in Sweden? Aerobiologia, 15, 293–297.Google Scholar
  32. Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.Google Scholar
  33. Davies, R. R., & Smith, L. P. (1973). Forecasting the start and severity of the hay fever season. Clinical Allergy, 32, 263–267.Google Scholar
  34. D’Odorico, P., Yoo, J. C., & Jager, S. (2002). Changing seasons: An effect of the North Atlantic Oscillation? Journal of Climate, 15, 435–445.Google Scholar
  35. El-Ghazaly, G., Takahashi, Y., Nilsson, S., Grafström, E., & Berggren, B. (1995). Orbicules in Betula pendula and their possible role in allergy. Grana, 34, 300–304.Google Scholar
  36. Emberlin, J., Savage, M., & Jones, S. (1993). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.Google Scholar
  37. Emberlin, J., Mullins, J., Cordon, J., Jones, S., Millington, W., Brooke, M., & Savage, M. (1999). Regional variations in grass pollen seasons in the UK, long term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.Google Scholar
  38. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51, 181–191.Google Scholar
  39. Fairley, D., & Batchelder, G. L. (1986). A study of oak-pollen production and phenology in northern California: Prediction of annual variation in pollen counts based on geographic and meteorologic factors. The Journal of Allergy and Clinical Immunology, 78, 300–307.Google Scholar
  40. Fernández-González, F., Loidi, J., Moreno, J. C., del Arco, M., Férnández-Cancio, A., Galán, C., García-Mozo, H., Muñoz, J., Pérez-Badia, R., Sardinero, S., & Tellería, M. (2005). Impact on plant biodiversity. In J. M. Moreno (Ed.), Impacts on Climatic Change in Spain (pp. 183–248). Madrid: OCCE, Ministerio de Medio Ambiente.Google Scholar
  41. Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2010). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50.Google Scholar
  42. Franchi, G. G., Nepi, M., Matthews, M. L., & Pacini, E. (2007). Anther opening, pollen biology and stigma receptivity in the long blooming species, Parietaria judaica L. (Urticaceae). Flora, 202, 118–127.Google Scholar
  43. Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season, an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.Google Scholar
  44. Frenguelli, G., & Bricchi, E. (1998). The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia, 14, 39–44.Google Scholar
  45. Frenguelli, G., Bricchi, E., Romano, B., Mincigrucci, G., & Spieksma, F.Th.M. (1989). A predictive study on the beginning of the pollen season for Gramineae and Olea europaea L. Aerobiologia, 5, 64–70.Google Scholar
  46. Fuertes-Rodriguez, C. R., Gonzalez-Parrado, Z., Vega-Maray, A. M., Valencia-Barrera, R. M., & Fernandez-Gonzalez, D. (2007). Effect of air temperature on forecasting the start of Cupressaceae pollen type in Ponferrada (León, Spain). Annals of Agricultural and Environmental Medicine, 14, 237–242.Google Scholar
  47. Fumanal, B., Chauvel, B., & Bretagnolle, F. (2007). Estimation of pollen and seed production of common ragweed in France. Annals of Agricultural and Environmental Medicine, 14, 233–236.Google Scholar
  48. Galán, C., Emberlin, J., Dominguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana, 34, 189–198.Google Scholar
  49. Galán, C., Alcázar, P., Cariñanos, P., Garcia, H., & Dominguez-Vilches, E. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology, 43, 191–195.Google Scholar
  50. Galan, C., Garcia-Mozo, H., Carinanos, P., Alcazar, P., Dominguez-Vilches, E. (2001). The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. International Journal of Plant Biometeorology, 45, 8–12.Google Scholar
  51. Galán, C., Garcia-Mozo, H., Vazquez, L., Ruiz, L., Diaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.Google Scholar
  52. Garcia-Mozo, H., Galán, C., Cariñanos, P., Alcazár, P., Mendez, J., Vendrell, M., Alba, F., Saenz, C., Fernandez, D., Cabezudo, B., & Dominguez, E. (1999). Variations in the Quercus sp. pollen season at selected sites in Spain. Polen, 10, 59–69.Google Scholar
  53. Garcia-Mozo, H., Galán, C., Aira, M. J., Belmonte, J., Diaz de la Guardia, C., Fernandez, D., Gutierrez, M., Gutierrez, M., Rodriguez, F. J., Trigo, M. M., & Dominguez-Vilches, E. (2001). Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Agricultural and Forest Meteorology, 110, 247–257.Google Scholar
  54. García-Mozo, H., Galán, C., Aira, M. J., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutierrez, F. J., Trigo, M. M., & Domínguez, E. (2002). Modelling start of oak pollen season in different climatic zones in Spain. Agricultural and Forest Meteorology, 110, 247–257.Google Scholar
  55. Garcia-Mozo, H., Galán, C., Jato, V., Belmonte, J., Diaz de la Guardia, C., Fernandez, D., Gutierrez, M., Aira, M. J., Roure, J. M., Ruiz, L., Trigo, M. M., & Dominguez-Vilches, E. (2006). Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13, 209–224.Google Scholar
  56. Garnock-Jones, P. J. (1986). Floret specialization, seed production and gender in Artemisia vulgaris L. (Asteraceae, Anthemideae). Botanical Journal of the Linnean Society, 92, 286–302.Google Scholar
  57. Gomez-Casero, M. T., Hidalgo, P. J., Garcia-Mozo, H., Dominguez, E., & Galán, C. (2004). Pollen biology in four Mediterranean Quercus species. Grana, 43, 22–30.Google Scholar
  58. Gonzalez Minero, F. J., & Fernandez-Mensaque, P. C. (1996). Prediction of the beginning of the olive full pollen season in south-west Spain. Aerobiologia, 12, 91–96.Google Scholar
  59. Gonzalez Minero, F. J., Candau, P., Tomas, C., & Morales, J. (1998). Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987-96). Allergy, 53, 266–274.Google Scholar
  60. Gordo, O., & Sanz, J. J. (2005). Phenology and climate change: A long-term study in a Mediterranean locality. Oecologia, 146, 484–495.Google Scholar
  61. Grant, V. (1983). Plant speciation. New York: Columbia University Press.Google Scholar
  62. Guardia, R., & Belmonte, J. (2004). Phenology and pollen production of Parietaria judaica L in Catalonia (NE Spain). Grana, 43, 57–64.Google Scholar
  63. Heide, O. M. (1993). Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiologia Plantarum, 88, 531–540.Google Scholar
  64. Heide, O. M. (1994). Control of flowering and reproduction in temperate grasses. New Phytologist, 128, 431–462.Google Scholar
  65. Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.Google Scholar
  66. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676–679.Google Scholar
  67. Huynen, M., Menne, B., Behrendt, H., Bertollini, R., Bonini, S., Brandao, R., Brown-Fahrländer, C., Clot, B., D’Ambrosio, C., De Nuntiis, P., Ebi, K. L., Emberlin, J., Erdei Orbanne, E., Galán, C., Jäger, S., Kovats, S., Mandrioli, P., Martens, P., Menzel, A., Nyenzi, B., Rantio-Lehtimäki, A., Ring, J., Rybnicek, O., Traidl-Hoffmann, C., van Vliet, A. J. H., Voigt, T., Weiland, S., & Wickman, M. (2003). Phenology and human health: Allergic disorders. Rome: Health and global environmental change.Google Scholar
  68. Isagi, Y., Sugimura, K., Sumida, A., & Ito, H. (1997). How does masting happen and synchronize? Journal of Theoretical Biology, 187, 231–239.Google Scholar
  69. Jäger, S., Spieksma, F. Th. M., & Nolard, N. (1991). Fluctuation and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden and Brussels. Grana, 30, 309–312.Google Scholar
  70. Janzen, D. H. (1971). Seed predation by animals. Annual Review of Ecology and Systematics, 2, 465–492.Google Scholar
  71. Jato, V., Rodriguez Rajo, F. J., & Aira, M. J. (2007). Use of Quercus ilex subsp. ballota phenological and pollen-production data for interpreting Quercus pollen curves. Aerobiologia, 23, 91–105.Google Scholar
  72. Jarosz, N., Loubet, B., Durand, B., McCartney, A., Fouellassar, X., & Huber, L. (2003). Field measurements of airborne concentration and deposition rate of maize pollen. Agricultural and Forest Meteorology, 119, 37–51.Google Scholar
  73. Jato, V., Frenguelli, G., Rodriguez, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain and Italy (1994–1998). Grana, 39, 240–245.Google Scholar
  74. Jato, V., Dopazo, A., & Aira, M. J. (2002). Influence of precipitation and temperature on atmospheric pollen concentration in Santiago de Compostela (Spain). Grana, 41, 232–241.Google Scholar
  75. Jones, S. (1995). Allergenic pollen concentrations in the United Kingdom. PhD Thesis. London: University of North London.Google Scholar
  76. Käpylä, M. (1981). Diurnal variation of non-arboreal pollen in the air in Finland. Grana, 20, 55–59.Google Scholar
  77. Kazlauskas, M., Sauliene, I., & Lankauskas, A. (2006). Airborne Artemisia pollen in Siauliai (Lithuania) atmosphere with reference to meteorological factors during 2003–2005. Acta Biologica Universitatis, 6, 1–2.Google Scholar
  78. Kelly, D. (1994). The evolutionary ecology of mast seeding. Trends in Ecology & Evolution, 9, 465–470.Google Scholar
  79. Kim, D. H., Doyle, M. R., Sung, S., & Amasino, R. M. (2009). Vernalization: Winter and the timing of flowering in plants. Annual Review of Cell and Developmental Biology, 25, 277–299.Google Scholar
  80. King, R. W., & Heide, O. M. (2009). Seasonal flowering and evolution: The heritage from Charles Darwin. Functional Plant Biology, 36, 1027–1036.Google Scholar
  81. Kobzar, V. N. (1999). Aeropalynological monitoring in Bishkek, Kyrgyzstan. Aerobiologia, 15, 149–153.Google Scholar
  82. Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461–1462.Google Scholar
  83. Kudo, G., & Hirao, A. S. (2006). Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: Implications for global-change impacts. Population Ecology, 48, 49–58.Google Scholar
  84. Lang, G. A., Earl, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo-, para- and ecodormancy: Physiological terminology and classification for dormancy research. HortScience, 22, 371–377.Google Scholar
  85. Latałowa, M., Miętus, M., & Uruska, A. (2002). Seasonal variations in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia, 18, 33–43.Google Scholar
  86. Latorre, F. (1999). Differences between airborne pollen and flowering phenology of urban trees with reference to production, dispersal and interannual climate variability. Aerobiologia, 15, 131–141.Google Scholar
  87. Laursen, S. C., Reiners, W. A., Kelly, R. D., & Gerow, K. G. (2007). Pollen dispersal by Artemisia tridentata (Asteraceae). International Journal of Biometeorology, 51, 465–481.Google Scholar
  88. Lavee, S. (2007). Biennal bearing in olive (Olea europaea). Annales Series Historia Naturalis, 17, 101–112.Google Scholar
  89. Linkosalo, T., Carter, T. R., Hakkinen, R., & Hari, P. (2000). Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: A comparison of two models. Tree Physiology, 20, 1176–1182.Google Scholar
  90. Linkosalo, T., Hakkinen, R., & Hanninen, H. (2006). Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 26, 1165–1172.Google Scholar
  91. Linskens, H. F., & Cresti, M. (2000). Pollen allergy as an ecological phenomenon; A review. Plant Biosystems, 134, 341–352.Google Scholar
  92. Mahura, A. G., Korsholm, U. S., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23, 171–179.Google Scholar
  93. Martin, M. D., Chamecki, M., Brush, G. S., Meneveau, C., & Parlange, M. B. (2009). Pollen clumping and wind dispersal in an invasive angiosperm. American Journal of Botany, 96, 1703–1711.Google Scholar
  94. Martin, M. D., Chamecki, M., & Brush, G. S. (2010). Anthesis synchronization and floral morphology determine diurnal patterns of ragweed pollen dispersal. Agricultural and Forest Meteorology, 150, 1307–1317.Google Scholar
  95. Masaka, K., & Maguchi, S. (2001). Modelling the masting behaviour of Betula platyphylla var japonica using the resource budget model. Annals of Botany, 88, 1049–1055.Google Scholar
  96. Matsui, T., Omasa, K., & Horie, T. (1999). Rapid swelling of pollen grains in response to floret opening unfolds anther locules in rice (Oryza sativa L.). Plant Production Science, 2, 196–199.Google Scholar
  97. Matsui, T., Omasa, K., & Horie, T. (2000). Anther dehiscence in two-rowed barley (Hordeum distichum) triggered by mechanical stimulation. Journal of Experimental Botany, 51, 1319–1321.Google Scholar
  98. McClanahan, T. R. (1986). Pollen dispersal and intensity as criteria for the minimum viable population and species reserves. Environmental Management, 10, 381–383.Google Scholar
  99. McWilliam, J. R. (1968). Nature and genetic control of the vernalization response in Phalaris tuberosa L. Australian Journal of Biological Sciences, 21, 359–408.Google Scholar
  100. Mendez, J., Comptois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia, 21, 115–123.Google Scholar
  101. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., Braslavska, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mage, F., Mestre, A., Nordli, O., Peñuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Viet, A. J. H., Wielgolaski, F., Zach, S., & Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.Google Scholar
  102. Meyer, S. E., Nelson, D. L., & Carlson, S. L. (2004). Ecological genetics of vernalization response in Bromus tectorum L. Annals of Botany, 93, 653–666.Google Scholar
  103. Miyazaki, Y., Hiura, T., Kato, E., & Funada, R. (2002). Allocation of resources to reproduction in Styrax obassia in a masting year. Annals of Botany, 89, 767–772.Google Scholar
  104. Monselise, S. P., & Goldschmidt, E. E. (1982). Alternate bearing in fruit trees. Horticultural Reviews, 4, 128–173.Google Scholar
  105. Munuera Giner, M., Carrión García, J. S., & García Sellés, J. (1999). Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: Annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. International Journal of Biometeorology, 43, 51–63.Google Scholar
  106. Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693–700.Google Scholar
  107. Myking, T. (1997a). Dormancy, budburst and impacts of climatic warming in coastal-inland and altitudinal Betula pendula and B. pubescens ecotypes. In H. Lieth & M. D. Schwarz (Eds.), Phenology in seasonal climates I (pp. 51–66). Leiden: Backhuys.Google Scholar
  108. Myking, T. (1998). Interrelations between respiration and dormancy in buds of three hardwood species with different chilling requirements for dormancy release. Trees, 12, 224–229.Google Scholar
  109. Myking, T. (1997b). Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees, 12, 107–112.Google Scholar
  110. Myking, T. (1999). Winter dormancy release and budburst in Betula pendula Roth. and B. pubescens Ehrh. ecotypes. Phyton, 39, 139–146.Google Scholar
  111. Myking, T., & Heide, O. M. (1995). Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiology, 15, 697–704.Google Scholar
  112. Nord, E. A., & Lynch, J. P. (2009). Plant phenology: A critical controller of soil resource acquisition. Journal of Experimental Botany, 60, 1927–1937.Google Scholar
  113. Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentrations. Grana, 34, 182–188.Google Scholar
  114. Norris-Hill, J., & Emberlin, J. (1991). Diurnal variation of pollen concentration in the air of north-central London. Grana, 30, 229–234.Google Scholar
  115. Ogden, E., Hayes, J., & Raynor, G. (1969). Diurnal patterns of pollen emission in Ambrosia, Phleum, Zea and Ricinus. American Journal of Botany, 56, 16–21.Google Scholar
  116. Ong, E. K., Taylor, P. E., & Knox, R. B. (1997). Forecasting the onset of the grass pollen season in Melbourne (Australia). Aerobiologia, 13, 43–48.Google Scholar
  117. Orlandi, F., Fornaciari, M., & Romano, B. (2002). The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction. International Journal of Biometeorology, 46, 2–8.Google Scholar
  118. Orlandi, F., Sgromo, C., Bonofiglio, T., Ruga, L., Romano, B., & Fornaciari, M. (2009). A comparison among olive flowering trends in different Mediterranean areas (south-central Italy) in relation to meteorological variations. Theoretical and Applied Climatology, 97, 339–347.Google Scholar
  119. Orlandi, F., Garcia-Mozo, H., Vazquez Ezquerra, L., Romano, B., Dominguez, E., Galán, C., & Fornaciari, M. (2004). Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosystems, 138, 111–116.Google Scholar
  120. Orlandi, F., Garcia-Mozo, H., Galán, C., Romano, B., de la Guardia, C. D., Ruiz, L., del Mar Trigo, M., Dominguez-Vilches, E., & Fornaciari, M. (2010). Olive flowering trends in a large Mediterranean area (Italy and Spain). International Journal of Biometeorology, 54, 151–163.Google Scholar
  121. Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C., & Stenseth, N. C. (2001). Ecological effects of the North Atlantic Oscillation. Oecologia, 12, 1–14.Google Scholar
  122. Pacini, E. (2000). From anther and pollen ripening to pollen presentation. Plant Systematics and Evolution, 22, 219–243.Google Scholar
  123. Pacini, E., & Hesse, M. (2004). Cytophysiology of pollen presentation and dispersal. Flora, 199, 273–285.Google Scholar
  124. Peñuelas, J., Fillela, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531–544.Google Scholar
  125. Peñuelas, J., Fillela, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M., & Terradas, J. (2004). Complex spatiotemporal phenological shifts as a response to rainfall changes. The New Phytologist, 161, 837–846.Google Scholar
  126. Pidek, I. A. (2007). Nine-year record of Alnus pollen deposition in the Roztocze region (SE Poland) with relation to vegetation data. Acta Agrobotanica, 60, 57–64.Google Scholar
  127. Pop, E. W., Oberbauer, S. F., & Starr, G. (2000). Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia, 124, 176–184.Google Scholar
  128. Post, E., & Stenseth, N. C. (1999). Climatic variability, plant phenology and northern ungulates. Ecology, 80, 1322–1339.Google Scholar
  129. Primack, R. B. (1985). Patterns of flowering phenology in communities, populations, individuals and single flowers. In J. White (Ed.), The Population Structure of Vegetation (pp. 571–593). Dordrecht: Junk.Google Scholar
  130. Ranta, H., & Satri, P. (2007). Synchronised inter-annual fluctuation of flowering intensity affects the exposure to allergenic tree pollen in North Europe. Grana, 46, 274–284.Google Scholar
  131. Ranta, H., Oksanen, A., Hokkanen, T., Bondestam, K., & Heino, S. (2005). Masting by Betula-species; Applying the resource budget model to north European data sets. International Journal of Biometeorology, 49, 146–151.Google Scholar
  132. Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., & Oksanen, A. (2008). Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255, 643–650.Google Scholar
  133. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.Google Scholar
  134. Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179–214.Google Scholar
  135. Recio, M., Rodriguez-Rajo, F. J., Jato, V., Mar Trigo, M., & Cabezudo, B. (2009). The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo. Climatic Change, 97, 215–228.Google Scholar
  136. Recio, M., Docampo, S., García-Sanchez, J., Trigo, M., Melgar, M., & Cabezudo, M. (2010). Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agricultural and Forest Meteorology, 160, 931–940.Google Scholar
  137. Repo, T., Mäkälä, A., & Hänninen, H. (1990). Modeling frost resistance of trees. In H. Jozefek (Ed.), Modeling to understand forest functions (Silva Carelia, Vol. 15, pp. 61–74). Joensuu: University of Joensuu.Google Scholar
  138. Ribeiro, H., Cunha, M., & Abreu, I. (2006). Comparison of classical models for evaluating the heat requirements of olive (Olea europaea L.) in Portugal. Journal of Integrative Plant Biology, 48, 664–671.Google Scholar
  139. Richardson, E. A., & Anderson, J. L. (1986). The omnidata biophenometer (TA45-p). A chill unit and growing degree hour accumulator. Acta Horticulturae, 184, 95–99.Google Scholar
  140. Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. HortScience, 9(4), 331–332.Google Scholar
  141. Rodriguez-Rajo, F. J., Frenguelli, G., & Jato, M. V. (2003). Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47, 117–125.Google Scholar
  142. Rodriguez-Rajo, F. J., Dopazo, A., & Jato, V. (2004). Environmental factors affecting the start of the pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Annals of Agricultural and Environmental Medicine, 11, 35–44.Google Scholar
  143. Rodriguez-Rajo, F. J., Valencia-Barrera, R. M., Vega-Maray, A. M., Suarez, F. J., Fernandez-Gonzalez, D., & Jato, M. V. (2006). Prediction of airborne Alnus pollen concentration by using ARIMA models. Annals of Agricultural and Environmental Medicine, 13, 25–32.Google Scholar
  144. Rogers, C. A., Wayne, P. M., Macklin, E. A., Muilenberg, M. L., Wagner, C. J., Epstein, P. R., & Bazzaz, F. A. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives, 114, 865–869.Google Scholar
  145. Rohde, A., Howe, G. T., Olsen, J. E., Moritz, T., van Montagu, M., Junttila, O., & Boerjan, W. (2000). Molecular aspects of bud dormancy in trees. In S. M. Jain & S. C. Minocha (Eds.), Molecular Biology of Woody Plants (Vol. 1, pp. 89–134). Dordrecht: Kluwer Academic Publishers.Google Scholar
  146. Saar, M., Gudiskas, Z., Plompuu, T., Linno, E., Minkien, Z., & Motiekaityt, V. (2000). Ragweed plants and airborne pollen in the Baltic states. Aerobiologia, 16, 101–106.Google Scholar
  147. Sanchez Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.Google Scholar
  148. Sarvas, R. (1974). Investigations of the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fennia, 84. 101p.Google Scholar
  149. Schappi, G. F., Taylor, P. E., Kenrick, J., Staff, I. A., & Suphioglu, C. (1998). Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia). Aerobiologia, 14, 29–37.Google Scholar
  150. Scheifinger, H., Menzel, A., Koch, E., & Peter, C. (2002). Atmospheric mechanisms governing the spatial a temporal variability of phenological phases in central Europe. International Journal of Climatology, 22, 1739–1755.Google Scholar
  151. Scheifinger, H., Menzel, A., Koch, E., & Peter, C. (2003). Trends of spring frost events and phenological dates in Central Europe. Theoretical and Applied Climatology, 74, 41–51.Google Scholar
  152. Skjoth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.Google Scholar
  153. Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35, 1400–1406.Google Scholar
  154. Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., Balwierz, Z., Chlopek, K., Piotrowska, K., Kasprzyk, I., & Brandt, J. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.Google Scholar
  155. Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50, 233–242.Google Scholar
  156. Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimäki, A., Caulton, E., Thibaudon, M., Sindt, C., Jäger, S., Gehrig, R., Frenguelli, G., Jato, V., Rajo, F., Alcázar, P., & Galán, C. (2009). Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia, 25(4), 321–332.Google Scholar
  157. Solomon, W., & Mathews, K. (1990). Aerobiology and inhalant allergens. In E. Middleton, C. E. Reed, E. F. Ellis, N. F. Adkinson, & J. W. Yunginger (Eds.), Allergy principles and practice (Vol. 1, pp. 312–372). St Louis: Mosby.Google Scholar
  158. Spieksma, F. T., & Nikkels, A. H. (1998). Airborne grass pollen in Leiden, the Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiologia, 14, 347–358.Google Scholar
  159. Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007a). Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51, 275–286.Google Scholar
  160. Stach, A., Garcia-Mozo, H., Prieto-Baena, J. C., Czarnecka-Operacz, M., Jenerowicz, D., Silny, W., & Galán, C. (2007b). Prevalence of Artemisia species pollinosis in Western Poland: Impact of Climate Change on aerobiological trends, (1995–2004). Journal of Investigational Allergy and Clinical Immunology, 17, 39–47.Google Scholar
  161. Stach, A., Emberlin, J., Smith, M., Adams-Groom, B., & Myszkowska, D. (2008). Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznan and Krakow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311–321.Google Scholar
  162. Stark, P. C., Ryan, L. M., McDonald, J. L., & Burge, H. A. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13, 177–184.Google Scholar
  163. Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K. S., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297, 1292–1296.Google Scholar
  164. Stepalska, D., Szczepanek, K., & Myszkowska, D. (2002). Variation in Ambrosia pollen concentration in Southern and Central Poland in 1982–1999. Aerobiologia, 18, 13–22.Google Scholar
  165. Subba Reddi, C., & Reddi, N. S. (1986). Pollen production in some anemophilous angiosperms. Grana, 25, 55–61.Google Scholar
  166. Subba Reddi, C., Reddi, N. S., & Atluri Janaki, B. (1988). Circadian patterns of pollen release in some species of Poaceae. Review of Palaeobotany and Palynology, 54, 11–42.Google Scholar
  167. Tedeschini, E., Rodriguez-Rajo, F. J., Caramiello, R., Jato, V., & Frenguelli, G. (2006). The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana, 45, 222–229.Google Scholar
  168. Van der Pijl, L. (1978). Reproductive integration and sexual disharmony in floral functions. In A. J. Richards (Ed.), The pollination of flowers by insects (pp. 79–88). London: Academic.Google Scholar
  169. van Hout, R., Chamecki, M., Brush, G., Katz, J., & Parlange, M. B. (2008). The influence of local meteorological conditions on the circadian rhythm of corn (Zea mays L.) pollen emission. Agricultural and Forest Meteorology, 148, 1078–1092.Google Scholar
  170. Vázquez, L. M., Galán, C., & Domínguez, E. (2003). Influence of meteorological parameters in Olea pollen. International Journal of Biometeorology, 48, 83–90.Google Scholar
  171. von Wahl, P.-G., & Puls, K. E. (1989). The emission of mugwort pollen (Artemisia vulgaris L.) and its flight in the air. Aerobiologia, 5, 55–63.Google Scholar
  172. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.Google Scholar
  173. Wanner, H., Bronnimann, C., Casty, D., Gyalistras, J., Luterbacher, C., Schmultz, D., Stephenson, B., & Xoplaki, E. (2001). North Atlantic Oscillation – concepts and studies. Surveys in Geophysics, 22, 321–382.Google Scholar
  174. Wielgolaski, F. E. (1999). Starting dates and basic temperatures in phenological observations of plants. International Journal of Biometeorology, 42, 158–168.Google Scholar
  175. Woś, A. (1994). Klimat Niziny Wielkopolskiej (p. 192). Poznan: Wyd. 1 Adam Mickiewicz University. written in polish.Google Scholar
  176. Xoplaki, E. J., Gonzalez-Rouco, F., Luterbacher, H., & Wanner, H. (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and predictability. Climate Dynamics, 23, 63–79.Google Scholar
  177. Yli-Panula, E., & Rantio-Lehtimäki, A. (1995). Birch pollen antigenic activity of settled dust in rural and urban homes. Allergy, 50, 303–307.Google Scholar
  178. Ziska, L. H., Ghannoum, O., Baker, J. T., Conroy, J., Bunce, J. A., Kobayashi, K., & Okada, M. (2001). A global perspective of ground level, ‘ambient’ carbon dioxide for assessing the response of plants to atmospheric CO2. Global Change Biology, 7, 789–796.Google Scholar
  179. Ziska, L. H., Epstein, P. R., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaption Strategies for Global Change, 13, 607–613.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Åslög Dahl
    • 1
  • Carmen Galán
    • 2
  • Lenka Hajkova
    • 3
    • 4
  • Andreas Pauling
    • 5
  • Branko Sikoparija
    • 6
  • Matt Smith
    • 7
  • Despoina Vokou
    • 8
  1. 1.Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
  2. 2.Department of Botany, Ecology and Plant PhysiologyUniversity of CordobaCordobaSpain
  3. 3.Czech Hydrometeorological InstituteCharles UniversityUsti nad LabemCzech Republic
  4. 4.Faculty of ScienceCharles UniversityPrague 2Czech Republic
  5. 5.MeteoSwissZurichSwitzerland
  6. 6.Laboratory for Palynology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  7. 7.National Pollen and Aerobiology Research Unit, Institute of HealthUniversity of WorcesterWorcesterUK
  8. 8.Department of Ecology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations