Skip to main content

Applications of Network Bioinformatics to Cancer Angiogenesis

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery
  • 1880 Accesses

Abstract

Angiogenesis is the formation of new blood vessels from preexisting microvessels. Excessive and insufficient angiogenesis has been associated with many diseases including cancer, age-related macular degeneration, ischemic heart, brain, and skeletal muscle diseases. In this book chapter, we focus on the biological networks associated with angiogenesis in cancer. We review diverse studies on angiogenesis networks, including angiogenic signaling and angiogenic switch networks, global angiogenesis protein-protein interaction networks, crosstalk among angiogenic pathways, and drug networks. This chapter is for readers who are interested in cancer systems biology and bioinformatics, especially in angiogenesis.

Authors Corban G. Rivera and Liang-Hui Chu both Contributed Equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PPI:

Protein-protein interaction

PIN:

Protein interaction network

HUVEC:

Human umbilical vein endothelial cells

GO:

Gene ontology

TNF:

Tumor necrosis factor

CSPN:

Characteristic subpathway network

VEGF:

Vascular endothelial growth factor

RTK:

Receptor tyrosine kinase

NF-κB:

Nuclear factor kappa B

TSP1:

Thrombospondin-1

ERBB3:

Gene encoding for receptor tyrosine kinase

ERB:

Estrogen receptor beta

HIF1-α:

Hypoxia inducible factor 1

MAP Kinase:

Mitogen activated protein kinase

bFGF:

Basic fibroblast growth factor

SVMs:

Support vector machines

MYC:

Myelocytomatosis viral oncogene homolog

TNF:

Tumor necrosis factor

ClustEX:

Clustering techniques for automatic information extraction

TGF-β:

Transforming growth factor beta

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

IL-1:

Interleukin-1

kDa:

Kilo Dalton

References

  • Abdollahi A, Hahnfeldt P, Maercker C, Grone HJ, Debus J, Ansorge W, Folkman J, Hlatky L, Huber PE (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13:649–663

    Article  CAS  PubMed  Google Scholar 

  • Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J et al (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104:12890–12895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, Hlatky L, Vajkoczy P, Huber PE, Folkman J et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844

    Article  CAS  PubMed  Google Scholar 

  • Arrell DK, Terzic A (2009) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125

    Article  Google Scholar 

  • Boran AD, Iyengar R (2010) Systems pharmacology. Mt Sinai J Med 77:333–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wei T, Yan L, Lawrence F, Qian HR, Burkholde TP, Starling JJ, Yingling JM, Shou J (2008) Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model. BMC Genomics 9:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu LH, Rivera CG, Popel AS, Bader JS (2012) Constructing the Angiome – a global angiogenesis protein interaction network. Physiol. Genomics

    Google Scholar 

  • Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    Article  CAS  PubMed  Google Scholar 

  • Gaur P, Bose D, Samuel S, Ellis LM (2009) Targeting tumor angiogenesis. Semin Oncol 36:S12–S19

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Chen Y, Li S, Li Y (2010) Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis. BMC Syst Biol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H (2009) Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol 5:e1000550

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibino S, Shibuya M, Hoffman MP, Engbring JA, Hossain R, Mochizuki M, Kudoh S, Nomizu M, Kleinman HK (2005) Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res 65:10494–10501

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li S (2010) Detection of characteristic sub pathway network for angiogenesis based on the comprehensive pathway network. BMC Bioinformatics 11:S32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  PubMed Central  Google Scholar 

  • Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105:13775–13780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanckriet GR, De Bie T, Cristianini N, Jordan MI, Noble WS (2004) A statistical framework for genomic data fusion. Bioinformatics 20:2626–2635

    Article  CAS  PubMed  Google Scholar 

  • London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Dev GR (2003) A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 10:823–832

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25:1408–1412

    Article  CAS  PubMed  Google Scholar 

  • Murali TM, Wu CJ, Kasif S (2006) The art of gene function prediction. Nat Biotechnol 24:1474–1475; author reply 1475–1476

    Article  CAS  PubMed  Google Scholar 

  • Noguer O, Reina M (2009) Is syndecan-2 a key angiogenic element? Scientific World Journal 9:729–732

    Article  CAS  PubMed  Google Scholar 

  • Pena-Castillo L, Tasan M, Myer CL, Lee H, Joshi T, Zhang C, Guan Y, Leone M, Pagnani A, Kim WK et al (2008) A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol 9(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera CG, Bader JS, Popel AS (2011a) Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins. Ann Biomed Eng 39:2213–2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera CG, Mellberg S, Claesson-Welsh L, Bader JS, Popel AS (2011b) Analysis of VEGF-a regulated gene expression in endothelial cells to identify genes linked to angiogenesis. PLoS One 6:e24887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12:1101–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100:8348–8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Kao MC, Wong WH (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99:12783–12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) grants R01 CA138264 (ASP), and U54 RR020839 and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation (JSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corban G. Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rivera, C.G., Chu, LH., Bader, J.S., Popel, A.S. (2012). Applications of Network Bioinformatics to Cancer Angiogenesis. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_9

Download citation

Publish with us

Policies and ethics