Skip to main content

Human MicroRNA Targetome Indicates a Specialized Role of MicroRNAs in Regulation of Oncogenesis

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery

Abstract

MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, mediate posttranscriptional regulation of protein-coding genes by binding to the 3′ untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation. A single miRNA concurrently down-regulates hundreds of target mRNAs, and thereby fine-tunes gene expression involved in diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains unknown whether the set of miRNA target genes designated “targetome” regulated by an individual miRNA constitutes the biological network of functionally-associated molecules or reflects a random set of functionally-independent genes. To address this question, we studied the molecular network of the whole human miRNA targetome. Among 1,223 human miRNAs derived from miRbase Release 16, Diana-microT 3.0, a target prediction program, predicted reliable targets from 273 miRNAs. Among them, KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the comprehensive knowledgebase, successfully extracted molecular networks from 232 miRNAs. In miRNA targetome networks, the most relevant pathway was transcriptional regulation by RB/E2F, important regulators of oncogenic transformation, the disease was adult T cell lymphoma/leukemia, and the pathological event was cancer, indicating that the human miRNA system termed “miRNAome” plays a specialized role in regulation of oncogenesis. The predicted targets derived from approximately 20 % of all human miRNAs construct biologically meaningful molecular networks, supporting the view that the miRNA targetome generally constitutes the biological network of functionally-associated molecules in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EMT:

Epithelial-mesenchymal transition

HPRD:

Human protein reference database

IPA:

Ingenuity pathways analysis

KEGG:

Kyoto encyclopedia of genes and genomes

miTG:

MicroRNA-targeted gene

MRE:

MicroRNA recognition elements

PPI:

Protein-protein interaction

RISC:

RNA-induced silencing complex

3′ UTR:

3′ Untranslated region

References

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bemis LT, Chen R, Amato CM et al (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68:1362–1368

    Article  CAS  PubMed  Google Scholar 

  • Blenkiron C, Miska EA (2007) MiRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 16 Spec No 1:R106–R113

    Google Scholar 

  • Boominathan L (2010) The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 5:e10615

    Article  PubMed  PubMed Central  Google Scholar 

  • Boross G, Orosz K, Farkas I (2009) Human microRNAs co-silence in well-separated groups and have different predicted essentialities. Bioinformatics 25:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Boyle EI, Weng S, Gollub J et al (2004) GO::TermFinder–open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20:3710–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung EY, Dews M, Cozma D et al (2008) c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol Ther 7:1758–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yu Z, Pan Y et al (2007) MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 352:733–738

    Article  CAS  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C et al (2010) miR-148 regulates Mitf in melanoma cells. PLoS One 5:e11574

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CW, Juan HF, Huang HC (2008) Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8:1975–1979

    Article  CAS  PubMed  Google Scholar 

  • Hsu SD, Lin FM, Wu WY et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M et al (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–210

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Li WH (2007) MicroRNA regulation of human protein protein interaction network. RNA 13:1402–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Maragkakis M, Alexiou P, Papadopoulos GL et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  • Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286

    Article  CAS  PubMed  Google Scholar 

  • Place RF, Li LC, Pookot D et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivlin N, Brosh R, Oren M et al (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2:466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh J (2010) Bioinformatics approach to identifying molecular biomarkers and networks in multiple sclerosis. Clin Exp Neuroimmunol 1:127–140

    Article  CAS  Google Scholar 

  • Satoh J, Tabunoki H (2011) Comprehensive analysis of human microRNA target networks. BioData Min 4:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh J, Tabunoki H, Arima K (2009) Molecular network analysis suggests aberrant CREB-mediated gene regulation in the Alzheimer disease hippocampus. Dis Markers 27:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shioya M, Obayashi S, Tabunoki H et al (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36:320–330

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  • Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan GA, Seto J, Patil S et al (2008) Getting started in biological pathway construction and analysis. PLoS Comput Biol 4:e16

    Article  PubMed  PubMed Central  Google Scholar 

  • Volinia S, Galasso M, Costinean S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Huang Q, Hu Y et al (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Kalota A, Jin S et al (2009) The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113:505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Hiroko Tabunoki and Ms. Midori Ohta for their invaluable help. This work was supported by grants from the Research on Intractable Diseases (H21-Nanchi-Ippan-201; H22-Nanchi-Ippan-136), the Ministry of Health, Labour and Welfare (MHLW), Japan and the High-Tech Research Center Project (S0801043) and the Grant-in-Aid (C22500322), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Satoh, Ji. (2012). Human MicroRNA Targetome Indicates a Specialized Role of MicroRNAs in Regulation of Oncogenesis. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_10

Download citation

Publish with us

Policies and ethics