Skip to main content

Systems Biology Approach to Metabolomics in Cancer Studies

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery

Abstract

The astonishing development of high-throughput techniques in the last decades has fostered a renewed, dynamic comprehension of cell and tissue metabolism, giving unexpected insights into the ‘systemic aspects’ of cancer, namely pointing out that metabolism should be considered a truly “systems property”. Both internal and microenvironmental cues tightly cooperate in shaping the tissue metabolomic fingerprint. Tumour metabolome hardly could be mechanistically linked to the linear dynamics of few gene regulatory networks thus, it is more likely to be the complex end point of several interacting non-linear pathways, involving both cells and their microenvironment. As such, tumour metabolism might be considered an emerging, “systems property”, arising at the integrated scale of the whole system and behaving like an “attractor” in a specific space phase defined by thermodynamic constraints.

Therefore, metabolomics ‘strategies’ are settled in order to understand complex biological systems from an integrated (‘holistic’) point of view. Metabolomics measurements are hence correlated with the time-dependent changes in concentrations of other components (proteins, gene-expression data), in order to obtain an integrated model of the gene-protein-metabolite interactions. Such framework represents a meaningful discontinuity with respect to the reductionist and qualitative molecular biology, and discloses new perspectives to scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FDG-PET:

2-Fluoro-2-deoxy-D-glucose-positron emission tomography

ATP:

Adenosine triphosphate

LDH:

Lactate dehydrogenase

HK:

Hexokinase

AcCoA:

Acetyl-CoA

OAA:

Oxalacetate

AMPK:

AMP-activated protein kinase

GLUT-1:

Glucose transporter

PGK-1:

Phosphoglycerate kinase

NBE:

Normalized bending energy

MCA:

Metabolic control analysis

G6P:

Glucose 6 phosphate

References

  • Agris PF (2004) Decoding the genome: a modified view. Nucleic Acids Res 32:223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhasan SA, Pietrasczkiwicz H, Alonso MD et al (1999) Genistein induced cell cycle arrest and apoptosis in a head and neck squamous cell carcinoma cell line. Nutr Cancer 34:12–19

    Article  CAS  PubMed  Google Scholar 

  • Alirol E, Martinou JC (2006) Mitochondria and cancer: is there a morphological connection? Oncogene 25:4706–4716

    Article  CAS  PubMed  Google Scholar 

  • Allen DB, Maguire JJ, Mahdavian M et al (1997) Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132:991–996

    Article  CAS  PubMed  Google Scholar 

  • Ao P (2005) Metabolic network modelling: including stochastic effects. Comput Chem Eng 29:2297–2303

    Article  CAS  Google Scholar 

  • Arbeit JM, Riley RR, Huey B et al (1999) Difluoromethylornithine chemoprevention of epidermal carcinogenesis in K14-HPV16 transgenic mice. Cancer Res 59:3610–3620

    CAS  PubMed  Google Scholar 

  • Auffray C, Nottale L (2008) Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Prog Biophys Mol Biol 97:79–114

    Article  PubMed  Google Scholar 

  • Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618

    Article  CAS  PubMed  Google Scholar 

  • Banki K, Hutter E, Colombo E et al (1996) Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271:32994–33001

    Article  CAS  PubMed  Google Scholar 

  • Bannasch P, Hacker HJ, Tsuda H et al (1986) Aberrant regulation of carbohydrate metabolism and metamorphosis during renal carcinogenesis. Adv Enzyme Regul 25:279–296

    Article  CAS  PubMed  Google Scholar 

  • Bannasch P, Jahn U, Hacker H et al (1997a) Focal hepatic glycogenosis. Int J Oncol 10:261–268

    CAS  PubMed  Google Scholar 

  • Bannasch P, Klimek F, Mayer D (1997b) Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone. J Bioenerg Biomembr 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri M, D’Anselmi F, Valerio M, Cucina A, Proietti S, Dinicola S, Pasqualato A, Manetti C, Galli L, Giuliani A (2010) Metabolomic profile and fractal dimensions in breast cancer cells. In: Knapp JS, Cabrera WL (eds) Metabolomics: metabolites, metabolomics and cancer. NovaScience, London

    Google Scholar 

  • Bizzarri M, Cucina A, Biava PM et al (2011a) Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Review article. Curr Pharm Biotechnol 12:243–253

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri M, Giuliani A, Cucina A et al (2011b) Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 21:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boren J, Cascante M, Marin S et al (2001) Gleevec (STI571) influences metabolic enzymes activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem 276:37747–37753

    CAS  PubMed  Google Scholar 

  • Boros LG, Williams RD (2001) Isofenphos induced metabolic changes in K562 myeloid blast cells. Leuk Res 25:883–890

    Article  CAS  PubMed  Google Scholar 

  • Boros LG, Torday JS, Lim S et al (2000) Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res 60:1183–1185

    CAS  PubMed  Google Scholar 

  • Boros LG, Bassilian S, Lim S et al (2001) Genistein inhibits non-oxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanisms of controlling tumor growth. Pancreas 22:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bowie JE, Young IT (1977) An analysis technique for biological shape-III. Acta Cytol 21:739–746

    CAS  PubMed  Google Scholar 

  • Brand K (1985) Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 228:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand K (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 29:355–364

    Article  CAS  PubMed  Google Scholar 

  • Burdon RH (1996) Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  CAS  PubMed  Google Scholar 

  • Capuano F, Varone D, D’Eri N et al (1996) Oxidative phosphorylation and F(O)F(1) ATP synthase activity of human hepatocellular carcinoma. Biochem Mol Biol Int 38:1013–1022

    CAS  PubMed  Google Scholar 

  • Cascante M, Centelles JJ, Veech RL et al (2000) Role of thiamine (vitamin B-1) and transketolase in tumor cell proliferation. Nutr Cancer 36:150–154

    Article  CAS  PubMed  Google Scholar 

  • Cascante M, Boros LG, Comin-Anduix B et al (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243–249

    Article  CAS  PubMed  Google Scholar 

  • Castleman KR (1996) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cho YM, Kwon S, Pak YK et al (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Coleman WB (2003) Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3:573–588

    Article  CAS  PubMed  Google Scholar 

  • Constant JS, Feng JJ, Zabel DD et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360

    Article  CAS  PubMed  Google Scholar 

  • Cooper M (2009) Regenerative pathologies: stem cells, teratomas and theories of cancer. Med Stud 1:55–66

    Article  Google Scholar 

  • Costello LC, Franklin RB (2005) ‘Why do tumor glycolyse?’: from glycolysis through citrate to lypogenesis. Mol Cell Biochem 280:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree HG (1928) The carbohydrate metabolism of certain pathological growths. Biochem J 22:1289–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cucina A, Biava PM, D’Anselmi F et al (2006) Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis 11:1617–1628

    Article  CAS  PubMed  Google Scholar 

  • Cuezva JM, Ostronoff LK, Ricart J et al (1997) Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 29:365–377

    Article  CAS  PubMed  Google Scholar 

  • D’Anselmi F, Valerio M, Cucina A et al (2011) Metabolism and cell shape in cancer: a fractal analysis. Int J Biochem Cell Biol 3:1052–1058

    Article  CAS  Google Scholar 

  • Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV, Lewis BC, Dolde C (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 29:345–354

    Article  CAS  PubMed  Google Scholar 

  • De Bels D, Corazza F, Germonpré P et al (2011) The normobaric oxygen paradox: a novel way to administer oxygen as an adjuvant treatment for cancer? Med Hypotheses 76:467–470

    Article  PubMed  CAS  Google Scholar 

  • DeMeo MT (2001) Pancreatic cancer and sugar diabetes. Nutr Rev 59:112–115

    CAS  PubMed  Google Scholar 

  • Dinicola S, D’Anselmi F, Pasqualato A et al (2011) A systems biology approach to cancer: fractals, attractors, and nonlinear dynamics. OMICS 15:93–104

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  • Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274:17410–17416

    Article  CAS  PubMed  Google Scholar 

  • Elson DA, Ryan HE, Snow JW et al (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60:6189–6195

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  CAS  PubMed  Google Scholar 

  • Enzhmann H, Ohlhauser D, Dettler T et al (1989) Enhancement of hepatocarcinogenesis in rats by dietary fructose. Carcinogenesis 10:1247–1252

    Article  Google Scholar 

  • Evans JM, Donnelly LA, Emslie-Smith AM et al (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305

    Article  PubMed  PubMed Central  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96:1805–1806

    Article  PubMed  Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumour invasion: insights through mathematical models. Cancer Res 63:3847–3854

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  • Gercel-Taylor C, Doering DL, Kraemer FB et al (1996) Aberrations in normal systemic lipid metabolism in ovarian cancer patients. Gynecol Oncol 60:35–41

    Article  CAS  PubMed  Google Scholar 

  • Ghani QP, Hussain MZ, Zhang J et al (1992) Control of procollagen gene transcription and prolyl hydroxylase activity by poly(ADP-ribose). In: Poirier GG, Moreau P (eds) ADP-ribosylation reactions. Springer, New York

    Google Scholar 

  • Gibson JJ, Angeles AP, Hunt TK (1997) Increased oxygen tension potentiates angiogenesis. Surg Forum 48:696–699

    CAS  Google Scholar 

  • Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert DL, Colton CA (1999) An overview of reactive oxygen species. In: Gilbert DL, Colton CA (eds) Reactive oxygen species in biological systems. Kluwer Academic-Plenum Publishers, New York

    Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure. Stability and fluctuations. Wiley, New York

    Google Scholar 

  • Glunde K, Jiang L, Moestue SA et al (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24:673–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golshani-Hebroni SG, Bessman SP (1997) Hexokinase binding to mitochondria: a basis for proliferative energy metabolism. J Bioenerg Biomembr 29:331–338

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk S, Anderson N, Hainz C et al (2004) Imatinib (STI571)-mediated changes in glucose metabolism in human leukaemia BCR-Abl-positive cells. Clin Cancer Res 10:6661–6668

    Article  CAS  PubMed  Google Scholar 

  • Graff C, Clayton DA, Larsson NG (1999) Mitochondrial medicine-recent advances. J Intern Med 246:11–23

    Article  CAS  PubMed  Google Scholar 

  • Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Kauppinen RA (2007) Tumour metabolomics in animal models of human cancer. J Proteome Res 6:498–505

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JR, Stubbs M (2003) Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Regul 43:67–76

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JR, McIntyre DJO, Howe FA et al (2001) Causes and consequences of hypoxia and acidity. In: Novartis Foundation Symposium (ed) The tumor microenvironment. Wiley, Chichester

    Google Scholar 

  • Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Article  CAS  PubMed  Google Scholar 

  • Guppy M, Greiner E, Brand K (1993) The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212:95–99

    Article  CAS  PubMed  Google Scholar 

  • Harvey AJ, Kind KL, Thompson JG (2002) REDOX regulation of early embryo development. Reproduction 123:479–486

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, Phelphs ME (1988) PET in clinical oncology. Cancer Metastasis Rev 7:119–142

    Article  CAS  PubMed  Google Scholar 

  • Hedeskov CJ (1968) Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem J 110:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13:337–343

    Article  CAS  PubMed  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ingber DE (2007) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    Google Scholar 

  • Hunt TK, Pai MP (1972) The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 135:561–567

    CAS  PubMed  Google Scholar 

  • Hyun JY, Chun YS, Kim TY et al (2004) Hypoxia-inducible factor 1alpha- mediated resistance to phenolic anticancer. Chemotherapy 50:119–126

    Article  CAS  PubMed  Google Scholar 

  • Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197

    Article  CAS  PubMed  Google Scholar 

  • Jones RH, Ozanne SE (2009) Fetal programming of glucose-insulin metabolism. Mol Cell Endocrinol 297:4–9

    Article  CAS  PubMed  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    CAS  PubMed  Google Scholar 

  • Kacser H, Small JR (1996) How may phenotypes from one genotype? The case of prion diseases. J Theor Biol 182:209–218

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  PubMed  Google Scholar 

  • Kasemeier-Kulesa JC, Teddy JM, Postovit LM et al (2008) Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn 237:2657–2666

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  PubMed  Google Scholar 

  • Kerangueven F, Noguchi T, Coulie F et al (2000) Genome wide-search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas. Cancer Res 57:5469–5474

    Google Scholar 

  • Koistinen HA, Chibalin AV, Zierath JR (2003) Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from Type 2 diabetic patients. Diabetologia 46:1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Kolch W, Calder M, Gilbert D (2005) When kinases meet mathematics: the systems biology of MAPK signaling. FEBS Lett 579:1891–1895

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Nakashima Y et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Chong W et al (2004) Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol 53:8–14

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Harris AL et al (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637

    Article  CAS  PubMed  Google Scholar 

  • Krieg RC, Knuechel R, Schiffmann E et al (2004) Mitochondrial proteome: cancer-altered metabolism associated with cytochrome c oxidase subunit level variation. Proteomics 4:2789–2795

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumour cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  • Kunkel M, Reichert TE, Benz P et al (2003) Overexpression of Glut-1 and increased metabolism in tumours are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Langness U, Udenfriend S (1974) Collagen biosynthesis in nonfibroblastic cell lines. Proc Natl Acad Sci USA 71:50–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mellay V, Houben R, Troppmair J et al (2002) Regulation of glycolysis by Raf protein serine/threonine kinases. Adv Enzyme Regul 42:317–332

    Article  PubMed  Google Scholar 

  • Lee LM, Seftor EA, Bonde G et al (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Lelièvre SA, Weaver VM, Nickerson JA et al (1998) Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA 95:14711–14716

    Article  PubMed  PubMed Central  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  CAS  PubMed  Google Scholar 

  • Lobo C, Ruiz-Bellido MA, Aledo JC et al (2000) Inhibition of glutaminase expression by antisense mRNA decreases growth and tumorigenicity of tumour cells. Biochem J 348(Pt 2):257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupu R, Menendez JA (2006) Pharmacological inhibitors of fatty acid synthase (FASN)-catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr Pharm Biotechnol 7:483–493

    Article  CAS  PubMed  Google Scholar 

  • Maltepe E, Schmidt JV, Baunoch D et al (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    Article  CAS  PubMed  Google Scholar 

  • Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA et al (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273:1975–1988

    Article  PubMed  CAS  Google Scholar 

  • Mayer D, Klimek F, Rempel A et al (1997) Hexokinase expression in liver preneoplasia and neoplasia. Biochem Soc Trans 25:122–127

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Eigenbrodt E (2003) The tumor metabolome. Anticancer Res 23:1149–1154

    CAS  PubMed  Google Scholar 

  • Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Eigenbrodt E, Failing K et al (1999) Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells. J Cell Physiol 181:136–146

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Grimm H, Boschek CB et al (2002) Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br J Nutr 87(Suppl 1):S23–S29

    Article  CAS  PubMed  Google Scholar 

  • McKeehan WL (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6:635–650

    Article  CAS  PubMed  Google Scholar 

  • Meadows AL, Kong B, Berdichevsky M et al (2008) Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells. Biotechnol Prog 24:334–341

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi MF, Macchia V, Laccetti P (1976) Differences in phosphofructokinase regulation in normal and tumor rat thyroid cells. J Biol Chem 251:6244–6251

    CAS  PubMed  Google Scholar 

  • Memendez JA, Colomer R, Lupu R (2005) Why does tumour-associated fatty acid synthase (oncogenic antigen 519) ignore dietary fatty acids? Med Hypotheses 64:342–349

    Article  CAS  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  CAS  PubMed  Google Scholar 

  • Miccheli AT, Miccheli A, Di Clemente R et al (2006a) NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim Biophys Acta 1760:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Miccheli A, Tomassini A, Puccetti C et al (2006b) Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie 88:437–448

    Article  CAS  PubMed  Google Scholar 

  • Michaud DS, Liu S, Giovannucci E et al (2002) Dietary sugar, glycemic load and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 94:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Modica-Napolitano JS, Singh KK (2002) Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med 4:1–19

    Article  PubMed  Google Scholar 

  • Mootha VK, Handschin C, Arlow D et al (2004) Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 101:6570–6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreadith RW, Lehninger AL (1984) The pathways of glutamate and glutamine oxidation by tumour cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 259:6215–6221

    CAS  PubMed  Google Scholar 

  • Mori M, Saitoh S, Takagi S et al (2000) A review of cohort studies on the association between history of diabetes mellitus and occurrence of cancer. Asian Pac J Cancer Prev 1:269–276

    PubMed  Google Scholar 

  • Munyon WH, Merchant DJ (1959) The relation between glucose utilization, lactic acid production and utilization and the growth cycle of L strain fibroblasts. Exp Cell Res 17:490–498

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Wilson ID (2003) Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546

    Article  CAS  PubMed  Google Scholar 

  • Noble D (2002) Modelling the heart – from genes to cells to the whole organ. Science 295:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Nose K (2000) Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull 23:897–903

    Article  CAS  PubMed  Google Scholar 

  • Oakman C, Tenori L, Biganzoli L et al (2011) Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol 43:1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Palsson BO (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, New York

    Book  Google Scholar 

  • Papacostantinou J (1967) Metabolic control of growth and differentiation in vertebrate embryos. In: Weber R (ed) The biochemistry of animal development. Academic, New York/London

    Google Scholar 

  • Parlo RA, Coleman PS (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259:9997–10003

    CAS  PubMed  Google Scholar 

  • Parlo RA, Coleman PS (1986) Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumours: further evidence for a persistent truncated Krebs cycle in hepatomas. Biochim Biophys Acta 886:169–176

    Article  CAS  PubMed  Google Scholar 

  • Pasteur L (1861) Experiénces et vues nouvelles sur la nature des fermentations. C R Acad Sci 52:344–347

    Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A et al (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  CAS  PubMed  Google Scholar 

  • Pierce GB, Nakane PK, Martinez-Hernandez A et al (1977) Ultrastructural comparison of differentiation of stem cells of murine adenocarcinomas of colon and breast with their respective normal counterparts. J Natl Cancer Inst 58:1329–1345

    CAS  PubMed  Google Scholar 

  • Postovit LM, Adams MA, Lash GE et al (2002) Oxygen-mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling pathway. J Biol Chem 277:35730–35737

    Article  CAS  PubMed  Google Scholar 

  • Postovit LM, Margaryan NV, Seftor EA et al (2008) Human embryonic stem cell microenvironment suppress the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA 105:4329–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  CAS  PubMed  Google Scholar 

  • Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I, Wiame JM (1946) Biologie et Thermodynamique des phenomenes irreversibles. Experientia 2:451–453

    Article  CAS  PubMed  Google Scholar 

  • Qiu J (2006) Epigenetics: the unfinished symphony. Nature 441:143–145

    Article  CAS  PubMed  Google Scholar 

  • Ramalho-Santos J, Varum S, Amaral S et al (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15:553–572

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102:5992–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasnick D, Duesberg P (1999) How aneuploidy affects metabolic control and causes cancer. Biochem J 340:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resendis-Antonio O, Checa A, Encarnacion S (2010) Modelling core metabolism in cancer cell: surveying the topology underlying the Warburg effect. PLoS One 5(8):e12383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson AD, Yang C, Osterman A et al (2008) Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat 110:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riss J, Khanna C, Koo S et al (2006) Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 66:7216–7224

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Enriquez S, Vital-Gonzalez PA, Flores-Rodriguez FL et al (2006) Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Bowne J (2009) What is metabolomics all about? Biotechniques 46:363–365

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    Article  CAS  PubMed  Google Scholar 

  • Rossignol R, Gilkerson R, Aggeler R et al (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  CAS  PubMed  Google Scholar 

  • Rustin P (2002) Mitochondria, from cell death to proliferation. Nat Genet 30:352–353

    Article  CAS  PubMed  Google Scholar 

  • Saetzler K, Sonnenschein C, Soto AM Systems (2011) Systems biology beyond networks: generating order from disorder through self-organization. Semin Cancer Biol 21:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmerón J, Manson JE, Stampfer MJ et al (1997) Dietary fiber, glycemic load and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277:472–477

    Article  PubMed  Google Scholar 

  • Sánchez-Martínez C, Estévez AM, Aragón JJ (2000) Phosphofructokinase C isozyme from ascites tumor cells: cloning, expression, and properties. Biochem Biophys Res Commun 271:635–640

    Article  PubMed  CAS  Google Scholar 

  • Scheers I, Bachy V, Stephenne X et al (2005) Risk of hepatocellular carcinoma in liver mitochondrial respiratory chain disorders. J Pediatr 146:414–417

    Article  PubMed  Google Scholar 

  • Schomack PA, Gilles RJ (2003) Contributions of cell metabolism and H+ diffusion to the acidic pH of tumours. Neoplasia 5:135–145

    Article  Google Scholar 

  • Schulz TJ, Thierbach R, Voigt A (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem 281:977–981

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Khanna S, Cordillo G et al (2002) Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann NY Acad Sci 957:239–249

    Article  CAS  PubMed  Google Scholar 

  • Seshagiri PB, Bavister BD (1991) Glucose and phosphate inhibit respiration and oxidative metabolism in cultured hamster eight-cell embryos: evidence for the “crabtree effect”. Mol Reprod Dev 30:105–111

    Article  CAS  PubMed  Google Scholar 

  • Setty BN, Dubowy RL, Stuart MJ (1987) Endothelial cell proliferation may be mediated via the production of endogenous lipoxygenase metabolites. Biochem Biophys Res Commun 144:345–351

    Article  CAS  PubMed  Google Scholar 

  • Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab (Lond) 7:7

    Article  CAS  Google Scholar 

  • Sherman IW (1998) Carbohydrate metabolism of asexual stages. In: Sherman IW (ed) Malaria, parasite biology, pathogenesis and protection. ASM, Washington DC

    Google Scholar 

  • Shim H, Dolde C, Lewis BC et al (1997) C-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shureiqi I, Lippman SM (2001) Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 61:6307–6312

    CAS  PubMed  Google Scholar 

  • Smith TA (2001) The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol 28:1–4

    Article  CAS  PubMed  Google Scholar 

  • Smith-McCune K, Zhu YH, Hanahan D et al (1997) Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HPV16 transgenic mice. Cancer Res 57:1294–1300

    CAS  PubMed  Google Scholar 

  • Snow MH (1981) Growth and its control in early mammalian development. Br Med Bull 37:221–226

    CAS  PubMed  Google Scholar 

  • Soderberg K, Nissinen E, Bakay B (1980) The energy charge in wild-type and respiration deficient Chinese hamster cell mutants. J Cell Physiol 103:169–172

    Article  CAS  PubMed  Google Scholar 

  • Soto AM, Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays 33:332–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto AM, Maffini MV, Sonnenschein C (2008) Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl 31:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Swain JE, Bormann CL, Clark SG et al (2002) Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction 123:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol 168:9–24

    Article  CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi A (1977) The living state and cancer. Proc Natl Acad Sci USA 74:2844–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarn C, Skorobogatko YV, Tagichi T et al (2006) Therapeutic effect of imatinib in gastrointestinal stromal tumors: AKT signaling dependent and independent mechanisms. Cancer Res 66:5477–5486

    Article  CAS  PubMed  Google Scholar 

  • ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171

    Article  PubMed  Google Scholar 

  • Terrier F, Vock P, Cotting J et al (1989) Effect of intravenous fructose on the P-31 MR spectrum of the liver: dose response in healthy volunteers. Radiology 171:557–563

    Article  CAS  PubMed  Google Scholar 

  • Thomas CH, Collier JH, Sfeir CS et al (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 99:1972–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian WN, Braunstein LD, Pang J et al (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617

    Article  CAS  PubMed  Google Scholar 

  • Trabold O, Wagner S, Wicke C et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509

    Article  PubMed  Google Scholar 

  • Valgepea K, Adamberg K, Nahku R et al (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wijk R, Souren J, Schamhart DH et al (1984) Comparative studies of the heat production of different rat hepatoma cells in culture. Cancer Res 44:671–673

    PubMed  Google Scholar 

  • Varum S, Rodrigues AS, Moura MB et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walenta S, Wetterling M, Lehrke M et al (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    CAS  PubMed  Google Scholar 

  • Wang T, Marquardt C, Foker J (1976) Aerobic glycolysis during lymphocyte proliferation. Nature 261:702–705

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1926) Ǘber den Stoffwechsel der Tumoren. Springer, Berlin

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88:434–438

    Article  CAS  PubMed  Google Scholar 

  • Weinhouse S (1956) On respiratory impairment in cancer cells. Science 124:267–269

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253–1263

    CAS  PubMed  Google Scholar 

  • Westerhoff H, Palsson BO (2004) The evolution of molecular biology into system biology. Nat Biotechnol 22:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Jahic M, Enfors SO (1999) Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol Prog 15:81–90

    Article  PubMed  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  • Yamaji Y, Shiotani T, Nakamura H et al (1994) Reciprocal alterations of enzymic phenotype of purine and pyrimidine metabolism in induced differentiation of leukemic cells. Adv Exp Med Biol 370:747–751

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Borg LA, Eriksson UJ (1997) Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 272(1 Pt 1):E173–E180

    CAS  PubMed  Google Scholar 

  • Yin PH, Lee HC, Chau GY et al (2004) Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90:2390–2396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Z (2010) Non linear science. The challenge of complex systems. Springer, Berlin

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky B, Orrenius B (2009) The Warburg effect returns to the cancer stage. Semin Cancer Biol 19:1–3

    Article  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

  • Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

  • Zotin AI (1990) Thermodynamic bases of biological processes: physiological reactions and adaptations. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Zotin AA, Zotin AI (1997) Phenomenological theory of ontogenesis. Int J Dev Biol 41:917–921

    CAS  PubMed  Google Scholar 

  • Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bizzarri, M., Dinicola, S., Manetti, C. (2012). Systems Biology Approach to Metabolomics in Cancer Studies. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_1

Download citation

Publish with us

Policies and ethics