Anisotropic Metamaterials for Transformation Acoustics and Imaging

  • Jensen LiEmail author
  • Zixian Liang
  • Jie Zhu
  • Xiang Zhang
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 166)


Metamaterials are becoming a prominent class of artificial materials that allow us to have very precise and specific optical properties. Its associated engineering flexibility opens up a wide range of applications and provides an effective route in molding the flow of energy. By drawing analogies between electromagnetic and acoustic wave frameworks, many concepts like invisibility cloaking and subwavelength imaging can be transplanted from electromagnetic to acoustic waves easily. However, we need quite different ways of constructing the artificial materials and devices for acoustics. Here, we show how anisotropic metamaterials can be constructed to control the constitutive parameters of the effective medium through positioning hard plates in different preferred directions. We will then use them to construct an acoustic carpet cloak, an acoustic hyperlens and a superlens as examples.


Bulk Modulus Evanescent Wave Phononic Crystal Density Tensor Angular Momentum Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JL and ZL thank the support from the City University of Hong Kong (SRG grant number 7002598). JZ and XZ acknowledge support from the Office of Naval Research (grant number N00014-07-1-0626).


  1. 1.
    Ambati, M., Fang, N., Sun, C., Zhang, X.: Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007) CrossRefGoogle Scholar
  2. 2.
    Ao, X., Chan, C.T.: Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601(R) (2008) CrossRefGoogle Scholar
  3. 3.
    Cai, F., Liu, F., He, Z., Liu, Z.: High refractive-index sonic material based on periodic subwavelength structure. Appl. Phys. Lett. 91, 203515 (2007) CrossRefGoogle Scholar
  4. 4.
    Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007) CrossRefGoogle Scholar
  5. 5.
    Chen, X., Luo, Y., Zhang, J., Jiang, K., Pendry, J.B., Zhang, S.: Macroscopic invisibility cloaking of visible light. Nat. Commun. 2, 176 (2011) CrossRefGoogle Scholar
  6. 6.
    Cheng, Y., Yang, F., Xu, J.Y., Liu, X.J.: A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008) CrossRefGoogle Scholar
  7. 7.
    Christensen, J., Fernandez-Dominguez, A.I., de Leon-Perez, F., Martin-Moreno, L., Garcia-Vidal, F.J.: Collimation of sound assisted by acoustic surface waves. Nat. Phys. 3, 851–852 (2007) CrossRefGoogle Scholar
  8. 8.
    Christensen, J., Huidobro, P.A., Martin-Moreno, L., Garcia-Vidal, F.J.: Confining and slowing airborne sound with a corrugated metawire. Appl. Phys. Lett. 93, 083502 (2008) CrossRefGoogle Scholar
  9. 9.
    Christensen, J., Martin-Moreno, L., Garcia-Vidal, F.J.: Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101, 014301 (2008) CrossRefGoogle Scholar
  10. 10.
    Cervera, F., Sanchis, L., Sanchez-Perez, J.V., Martinez-Sala, R., Rubio, C., Meseguer, F.: Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2002) CrossRefGoogle Scholar
  11. 11.
    Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007) CrossRefGoogle Scholar
  12. 12.
    Cummer, S.A., Popa, B.-I., Schurig, D., Smith, D.R., Pendry, J.B., Rahm, M., Starr, A.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008) CrossRefGoogle Scholar
  13. 13.
    de Rosny, J., Fink, M.: Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002) CrossRefGoogle Scholar
  14. 14.
    Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337 (2010) CrossRefGoogle Scholar
  15. 15.
    Estrada, H., Candelas, P., Uris, A., Belmar, F., Garcia de Abajo, F.J., Meseguer, F.: Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101, 084302 (2008) CrossRefGoogle Scholar
  16. 16.
    Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005) CrossRefGoogle Scholar
  17. 17.
    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006) CrossRefGoogle Scholar
  18. 18.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A., Zolla, F., Nicolet, A.: A homogenization route towards square cylindrical acoustic cloaks. New J. Phys. 10, 115030 (2008) CrossRefGoogle Scholar
  19. 19.
    Fok, L., Zhang, X.: Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011) CrossRefGoogle Scholar
  20. 20.
    Gabrielli, L.H., Cardenas, J., Poitras, C.B., Lipson, M.: Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics 3, 461 (2009) CrossRefGoogle Scholar
  21. 21.
    Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685 (2003) Google Scholar
  22. 22.
    Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413 (2003) CrossRefGoogle Scholar
  23. 23.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275, 749–789 (2007) CrossRefGoogle Scholar
  24. 24.
    Guenneau, S., Movchan, A., Petursson, G., Ramakrishna, S.A.: Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9, 399 (2007) CrossRefGoogle Scholar
  25. 25.
    He, Z., Cai, F., Ding, Y., Liu, Z.: Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Appl. Phys. Lett. 93, 233503 (2008) CrossRefGoogle Scholar
  26. 26.
    Ikonen, P., Simovski, C.R., Tretyakov, S., Belov, P., Hao, Y.: Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. 91, 104102 (2007) CrossRefGoogle Scholar
  27. 27.
    Jacob, Z., Alekseyev, L.V., Narimanov, E.: Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006) CrossRefGoogle Scholar
  28. 28.
    Jia, H., Ke, M., Hao, R., Ye, Y., Liu, F., Liu, Z.: Subwavelength imaging by a simple planar acoustic superlens. Appl. Phys. Lett. 97, 173507 (2010) CrossRefGoogle Scholar
  29. 29.
    Jung, J., Garcia-Vidal, F.J., Martin-Moreno, L., Pendry, J.B.: Holey metal films make perfect endoscopes. Phys. Rev. B 79, 153407 (2009) CrossRefGoogle Scholar
  30. 30.
    Kawata, S., Ono, A., Verma, P.: Subwavelength colour imaging with a metallic nanolens. Nat. Photonics 2, 438–442 (2008) CrossRefGoogle Scholar
  31. 31.
    Ke, M., Liu, Z., Cheng, Z., Li, J., Peng, P., Shi, J.: Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. 142, 177–180 (2007) CrossRefGoogle Scholar
  32. 32.
    Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006) CrossRefGoogle Scholar
  33. 33.
    Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004) Google Scholar
  34. 34.
    Li, J., Fok, L., Yin, X., Bartal, G., Zhang, X.: Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931 (2009) CrossRefGoogle Scholar
  35. 35.
    Li, J., Pendry, J.B.: Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008) CrossRefGoogle Scholar
  36. 36.
    Liang, Z., Li, J.: Bandwidth and resolution of super-resolution imaging with perforated solids. AIP Adv. 1, 041503 (2011) CrossRefGoogle Scholar
  37. 37.
    Liu, Z., Durant, S., Lee, H., Pikus, Y., Fang, N., Xiong, Y., Sun, C., Zhang, X.: Far-field optical superlens. Nano Lett. 7, 403 (2007) CrossRefGoogle Scholar
  38. 38.
    Liu, Z., Lee, H., Xiong, Y., Sun, C., Zhang, X.: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007) CrossRefGoogle Scholar
  39. 39.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000) CrossRefGoogle Scholar
  40. 40.
    Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323, 366 (2009) CrossRefGoogle Scholar
  41. 41.
    Lu, M., Liu, X., Feng, L., Li, J., Huang, C., Chen, Y., Zhu, Y., Zhu, S., Ming, N.: Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys. Rev. Lett. 99, 174301 (2007) CrossRefGoogle Scholar
  42. 42.
    Luo, Y., Zhang, J., Chen, H., Ran, L., Wu, B.-I., Kong, J.A.: A rigorous analysis of plane-transformed invisibility cloaks. IEEE Trans. Antennas Propag. 57, 3926 (2009) CrossRefGoogle Scholar
  43. 43.
    Ma, H.F., Cui, T.J.: Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010) Google Scholar
  44. 44.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006) CrossRefGoogle Scholar
  45. 45.
    Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009) CrossRefGoogle Scholar
  46. 46.
    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000) CrossRefGoogle Scholar
  47. 47.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) CrossRefGoogle Scholar
  48. 48.
    Pendry, J.B., Li, J.: An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 10, 115032 (2008) CrossRefGoogle Scholar
  49. 49.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006) CrossRefGoogle Scholar
  50. 50.
    Salandrino, A., Engheta, N.: Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006) CrossRefGoogle Scholar
  51. 51.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006) CrossRefGoogle Scholar
  52. 52.
    Shvets, G., Trendafilov, S., Pendry, J.B., Sarychev, A.: Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007) CrossRefGoogle Scholar
  53. 53.
    Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788 (2004) CrossRefGoogle Scholar
  54. 54.
    Soukoulis, C.M., Linden, S., Wegener, M.: Negative refractive index at optical wavelengths. Science 315, 47 (2007) CrossRefGoogle Scholar
  55. 55.
    Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008) CrossRefGoogle Scholar
  56. 56.
    Sukhovich, A., Merheb, B., Muralidharan, K., Vasseur, J.O., Pennec, Y., Deymier, P.A., Page, J.H.: Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009) CrossRefGoogle Scholar
  57. 57.
    Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R.: Near-field microscopy through a SiC superlens. Science 313, 1595 (2006) CrossRefGoogle Scholar
  58. 58.
    Torrent, D., Sanchez-Dehesa, J.: Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008) CrossRefGoogle Scholar
  59. 59.
    Torrent, D., Sanchez-Dehesa, J.: Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008) CrossRefGoogle Scholar
  60. 60.
    Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X.: An optical cloak made of dielectrics. Nat. Mater. 8, 568 (2009) CrossRefGoogle Scholar
  61. 61.
    Yang, S., Page, J.H., Liu, Z., Cowan, M.L., Chan, C.T., Sheng, P.: Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004) CrossRefGoogle Scholar
  62. 62.
    Yang, Z., Mei, J., Yang, M., Chan, N.H., Sheng, P.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008) CrossRefGoogle Scholar
  63. 63.
    Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009) CrossRefGoogle Scholar
  64. 64.
    Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., Zhang, X., Garcia-Vidal, F.J.: A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7, 52 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and Materials ScienceCity University of Hong KongHong Kong SARThe People’s Republic of China
  2. 2.NSF Nanoscale Science and Engineering Center (NSEC)University of CaliforniaBerkeleyUSA

Personalised recommendations