Ultrasound Transmission Through Periodically Perforated Plates

  • Héctor Estrada
  • F. Javier García de Abajo
  • Pilar Candelas
  • Antonio Uris
  • Francisco Belmar
  • Francisco MeseguerEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 166)


We study sound transmission through plates perforated with subwavelength holes. Experimental results are analyzed in the light of both a rigid solid model as well as a full elasto-acoustic theory. A discussion comparing sound and optics is given based upon an analytical framework. We show that, unlike light, sound is transmitted through individual subwavelength holes, in a perfectly rigid thin film approximately in proportion to their area. Moreover, hole arrays in perfectly rigid thin films do not exhibit full sound transmission due to the absence of lattice resonances. Therefore, the resonant full transmission observed in hole arrays is not extraordinary in the case of sound. However extraordinary sound screening well beyond that predicted by the mass law is observed. Finally, we find a strong interplay between Wood anomaly minima and intrinsic plate modes (Lamb modes), which results in fundamentally unique behavior of sound as compared to light.


Lamb Wave Transmission Peak Perforated Plate Filling Fraction Sound Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge financial support from projects MICINN MAT2010-16879, Consolider CSD-2007-0046 of the Spanish Education and Science Ministry, and project PROMETEO/2010/043 of Generalitat Valenciana. H.E. acknowledges a CSIC-JAE scholarship.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Dover printing, 10th GPO printing edn. Dover, New York (1964) Google Scholar
  2. 2.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt Brace, Orlando (1976) Google Scholar
  3. 3.
    Barbara, A., Quémerais, P., Bustarret, E., Lopez-Rios, T.: Optical transmission through subwavelength metallic gratings. Phys. Rev. B 66(16), 161403 (2002). doi: 10.1103/PhysRevB.66.161403 CrossRefGoogle Scholar
  4. 4.
    Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). CrossRefGoogle Scholar
  5. 5.
    Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66(7–8), 163–182 (1944). doi: 10.1103/PhysRev.66.163 CrossRefGoogle Scholar
  6. 6.
    Bouwkamp, C.J.: Theoretische en numerieke behandeling van de buiging door een ronde opening. Ph.D. thesis, University of Groningen (1941) Google Scholar
  7. 7.
    Bouwkamp, C.J.: Diffraction theory. Rep. Prog. Phys. 17(1), 35–100 (1954). CrossRefGoogle Scholar
  8. 8.
    Brekhovskikh, L.M., Godin, O.A.: Acoustics of Layered Media. Springer Series on Wave Phenomena, vol. I, 2nd edn. Springer, Berlin (1998) Google Scholar
  9. 9.
    Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953) Google Scholar
  10. 10.
    Christensen, J., Fernandez-Dominguez, A.I., de Leon-Perez, F., Martin-Moreno, L., Garcia-Vidal, F.J.: Collimation of sound assisted by acoustic surface waves. Nat. Phys. 3, 851–852 (2007). doi: 10.1038/nphys774, CrossRefGoogle Scholar
  11. 11.
    Christensen, J., Martin-Moreno, L., Garcia-Vidal, F.J.: Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101(1), 014301 (2008). doi: 10.1103/PhysRevLett.101.014301, CrossRefGoogle Scholar
  12. 12.
    Christensen, J., Martín-Moreno, L., García-Vidal, F.J.: All-angle blockage of sound by an acoustic double-fishnet metamaterial. Appl. Phys. Lett. 97(13), 134106 (2010). doi: 10.1063/1.3491289, CrossRefGoogle Scholar
  13. 13.
    Christensen, J., Martín-Moreno, L., García-Vidal, F.J.: Enhanced acoustical transmission and beaming effect through a single aperture. Phys. Rev. B 81(17), 174104 (2010). doi: 10.1103/PhysRevB.81.174104 CrossRefGoogle Scholar
  14. 14.
    Cremer, L., Möser, M.: Technische Akustik, 5th edn. Springer, Berlin (2003) Google Scholar
  15. 15.
    Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007). CrossRefGoogle Scholar
  16. 16.
    Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668), 667–669 (1998). CrossRefGoogle Scholar
  17. 17.
    Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F.J., Meseguer, F.: Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101(8), 084302 (2008). doi: 10.1103/PhysRevLett.101.084302, CrossRefGoogle Scholar
  18. 18.
    Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F.J., Meseguer, F.: Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Appl. Phys. Lett. 95(5), 051906 (2009). doi: 10.1063/1.3196330, CrossRefGoogle Scholar
  19. 19.
    Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., García de Abajo, F.J.: Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Appl. Phys. Lett. 93(1), 011907 (2008). doi: 10.1063/1.2955825, CrossRefGoogle Scholar
  20. 20.
    Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., García de Abajo, F.J.: Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion 48(3), 235–242 (2011). doi: 10.1016/j.wavemoti.2010.10.008, CrossRefGoogle Scholar
  21. 21.
    Estrada, H., García de Abajo, F.J, Candelas, P., Uris, A., Belmar, F., Meseguer, F.: Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays. Phys. Rev. Lett. 102(14), 144301 (2009). doi: 10.1103/PhysRevLett.102.144301, CrossRefGoogle Scholar
  22. 22.
    Fei, D., Chimenti, D.E., Teles, S.V.: Material property estimation in thin plates using focused, synthetic-aperture acoustic beams. J. Acoust. Soc. Am. 113(5), 2599–2610 (2003). doi: 10.1121/1.1561496, CrossRefGoogle Scholar
  23. 23.
    García de Abajo, F.J.; Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79(4), 1267 (2007). doi: 10.1103/RevModPhys.79.1267, CrossRefGoogle Scholar
  24. 24.
    García de Abajo, F.J., Estrada, H., Meseguer, F.J.: Diacritical study of light, electrons, and sound scattering by particles and holes. New J. Phys. 11(9), 093013 (2009). CrossRefGoogle Scholar
  25. 25.
    Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature 445, 39–46 (2007). CrossRefGoogle Scholar
  26. 26.
    Gómez Rivas, J., Schotsch, C., Haring Bolivar, P., Kurz, H.: Enhanced transmission of the radiation through subwavelength holes. Phys. Rev. B 68(20), 201,306 (2003). doi: 10.1103/PhysRevB.68.201306 CrossRefGoogle Scholar
  27. 27.
    He, Z., Jia, H., Qiu, C., Peng, S., Mei, X., Cai, F., Peng, P., Ke, M., Liu, Z.: Acoustic transmission enhancement through a periodically structured stiff plate without any opening. Phys. Rev. Lett. 105(7), 074301 (2010). doi: 10.1103/PhysRevLett.105.074301 CrossRefGoogle Scholar
  28. 28.
    Holland, S.D., Chimenti, D.E.: Air-coupled acoustic imaging with zero-group-velocity lamb modes. Appl. Phys. Lett. 83(13), 2704–2706 (2003). doi: 10.1063/1.1613046, CrossRefGoogle Scholar
  29. 29.
    Hou, B., Mei, J., Ke, M., Liu, Z., Shi, J., Wen, W.: Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays. J. Appl. Phys. 104(1), 014909 (2008). doi: 10.1063/1.2951457, CrossRefGoogle Scholar
  30. 30.
    Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., Sheng, P.: Tuning Fabry-Perot resonances via diffraction evanescent waves. Phys. Rev. B 76(5), 054303 (2007). doi: 10.1103/PhysRevB.76.054303, CrossRefGoogle Scholar
  31. 31.
    Ingard, U., Bolt, R.H.: Absorption characteristics of acoustic material with perforated facings. J. Acoust. Soc. Am. 23(5), 533–540 (1951). CrossRefGoogle Scholar
  32. 32.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995) Google Scholar
  33. 33.
    Jocker, J., Smeulders, D.: Minimization of finite beam effects in the determination of reflection and transmission coefficients of an elastic layer. Ultrasonics 46, 42–50 (2007). CrossRefGoogle Scholar
  34. 34.
    John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987). doi: 10.1103/PhysRevLett.58.2486 CrossRefGoogle Scholar
  35. 35.
    Jun, K.H., Eom, H.J.: Acoustic scattering from a circular aperture in a thick hard screen. J. Acoust. Soc. Am. 98(4), 2324–2327 (1995). doi: 10.1121/1.414404, CrossRefGoogle Scholar
  36. 36.
    Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84(22), 4400–4402 (2004). doi: 10.1063/1.1757642, CrossRefGoogle Scholar
  37. 37.
    Kinsler, L.E.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000) Google Scholar
  38. 38.
    Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996) Google Scholar
  39. 39.
    Kundu, T.: Ultrasonic Nondestructive Evaluation. CRC, Boca Raton (2004) Google Scholar
  40. 40.
    Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 93(648), 114–128 (1917). CrossRefGoogle Scholar
  41. 41.
    Lamb, H.: On the vibrations of an elastic plate in contact with water. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 98(690), 205–216 (1920). CrossRefGoogle Scholar
  42. 42.
    Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006). doi: 10.1126/science.1126493, CrossRefGoogle Scholar
  43. 43.
    Liu, F., Cai, F., Ding, Y., Liu, Z.: Tunable transmission spectra of acoustic waves through double phononic crystal slabs. Appl. Phys. Lett. 92(10), 103504 (2008). doi: 10.1063/1.2896146, CrossRefGoogle Scholar
  44. 44.
    Liu, Z., Jin, G.: Resonant acoustic transmission through compound subwavelength hole arrays: The role of phase resonances. J. Phys. Condens. Matter 21(44), 445,401 (2009). CrossRefGoogle Scholar
  45. 45.
    Liu, Z., Jin, G.: Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays. J. Phys. Condens. Matter 22(30), 305003 (2010). CrossRefGoogle Scholar
  46. 46.
    Lu, M.H., Liu, X.K., Feng, L., Li, J., Huang, C.P., Chen, Y.F., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Extraordinary acoustic transmission through a 1d grating with very narrow apertures. Phys. Rev. Lett. 99(17), 174301 (2007). doi: 10.1103/PhysRevLett.99.174301, CrossRefGoogle Scholar
  47. 47.
    Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86(6), 1114–1117 (2001). doi: 10.1103/PhysRevLett.86.1114 CrossRefGoogle Scholar
  48. 48.
    Martinez-Sala, R., Sancho, J., Sanchez, J.V., Gomez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378, 241 (1995). CrossRefGoogle Scholar
  49. 49.
    Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77(18), 3787–3790 (1996). doi: 10.1103/PhysRevLett.77.3787 CrossRefGoogle Scholar
  50. 50.
    Nomura, Y., Inawashiro, S.: On the transmission of acoustic waves through a circular channel of a thick wall. Res. Inst. Elec. Commun. 2, 57–71 (1960) Google Scholar
  51. 51.
    Norris, A.N., Luo, H.A.: Acoustic radiation and reflection from a periodically perforated rigid solid. J. Acoust. Soc. Am. 82(6), 2113–2122 (1987). doi: 10.1121/1.395656, CrossRefGoogle Scholar
  52. 52.
    Osborne, M.F.M., Hart, S.D.: Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. Theory. J. Acoust. Soc. Am. 17(1), 1–18 (1945). CrossRefGoogle Scholar
  53. 53.
    Pendry, J.B.: Low Energy Electron Diffraction: The Theory and Its Application to Determination of Surface Structure. Academic Press, London (1974) Google Scholar
  54. 54.
    Porto, J.A., García-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83(14), 2845–2848 (1999). doi: 10.1103/PhysRevLett.83.2845 CrossRefGoogle Scholar
  55. 55.
    Rayleigh, L.: On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen. Philos. Mag. 44, 28–52 (1897) CrossRefGoogle Scholar
  56. 56.
    Rayleigh, L.: On the passage of waves through apertures in plane screens, and allied problems. Philos. Mag. 43, 259–272 (1897) CrossRefGoogle Scholar
  57. 57.
    Rayleigh, L.: On the dynamical theory of gratings. Proc. R. Soc. A 79, 399–416 (1907) CrossRefGoogle Scholar
  58. 58.
    Rayleigh, L.: The Theory of Sound, vol. II, 2nd edn. Courier Dover Publications (1945) Google Scholar
  59. 59.
    Royer, D., Dieulesaint, E.: Elastic Waves in Solids, vol. I. Springer, Berlin (2000) Google Scholar
  60. 60.
    Sánchez-Pérez, J.V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., Llinares, J., Gálvez, F.: Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80(24), 5325–5328 (1998). doi: 10.1103/PhysRevLett.80.5325 CrossRefGoogle Scholar
  61. 61.
    Selcuk, S., Woo, K., Tanner, D.B., Hebard, A.F., Borisov, A.G., Shabanov, S.V.: Trapped electromagnetic modes and scaling in the transmittance of perforated metal films. Phys. Rev. Lett. 97(6), 067403 (2006). doi: 10.1103/PhysRevLett.97.067403, CrossRefGoogle Scholar
  62. 62.
    Sgard, F., Nelisse, H., Atalla, N.: On the modeling of the diffuse field sound transmission loss of finite thickness apertures. J. Acoust. Soc. Am. 122(1), 302–313 (2007). doi: 10.1121/1.2735109, CrossRefGoogle Scholar
  63. 63.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001). doi: 10.1126/science.1058847, CrossRefGoogle Scholar
  64. 64.
    Sigalas, M., Kushwaha, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E., Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220(9–10), 765–809 (2005). CrossRefGoogle Scholar
  65. 65.
    Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77(1), 014301 (2008). doi: 10.1103/PhysRevB.77.014301, CrossRefGoogle Scholar
  66. 66.
    Takakura, Y.: Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86(24), 5601–5603 (2001). doi: 10.1103/PhysRevLett.86.5601 CrossRefGoogle Scholar
  67. 67.
    Torres, M., Montero de Espinosa, F.R., García-Pablos, D., García, N.: Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82(15), 3054–3057 (1999). doi: 10.1103/PhysRevLett.82.3054 CrossRefGoogle Scholar
  68. 68.
    Treacy, M.M.J.: Dynamical diffraction in metallic optical gratings. Appl. Phys. Lett. 75(5), 606–608 (1999). doi: 10.1063/1.124455, CrossRefGoogle Scholar
  69. 69.
    Trompette, N., Barbry, J.L., Sgard, F., Nelisse, H.: Sound transmission loss of rectangular and slit-shaped apertures: Experimental results and correlation with a modal model. J. Acoust. Soc. Am. 125(1), 31–41 (2009). doi: 10.1121/1.3003084, CrossRefGoogle Scholar
  70. 70.
    Viktorov, I.A.: Rayleigh and Lamb Waves. Plenum Press, New York (1967) Google Scholar
  71. 71.
    Wang, X.: Acoustical mechanism for the extraordinary sound transmission through subwavelength apertures. Appl. Phys. Lett. 96(13), 134104 (2010). doi: 10.1063/1.3378268, CrossRefGoogle Scholar
  72. 72.
    Wang, X.: Theory of resonant sound transmission through small apertures on periodically perforated slabs. J. Appl. Phys. 108(6), 064903 (2010). doi: 10.1063/1.3481434, CrossRefGoogle Scholar
  73. 73.
    Wauer, J., Rother, T.: Considerations to Rayleigh’s hypothesis. Opt. Commun. 282, 339–350 (2009). doi: 10.1016/j.optcom.2008.10.023 CrossRefGoogle Scholar
  74. 74.
    Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, San Diego (1999) Google Scholar
  75. 75.
    Wilson, G.P., Soroka, W.W.: Approximation to the diffraction of sound by a circular aperture in a rigid wall of finite thickness. J. Acoust. Soc. Am. 37(2), 286–297 (1965). CrossRefGoogle Scholar
  76. 76.
    Wood, R.W.: Philos. Mag. 4, 396 (1902) CrossRefGoogle Scholar
  77. 77.
    Wood, R.W.: Anomalous diffraction gratings. Phys. Rev. 48(12), 928–936 (1935). doi: 10.1103/PhysRev.48.928 CrossRefGoogle Scholar
  78. 78.
    Yablonovitch, E., Gmitter, T.J.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950–1953 (1989). doi: 10.1103/PhysRevLett.63.1950 CrossRefGoogle Scholar
  79. 79.
    Yang, F., Sambles, J.R.: Resonant transmission of microwaves through a narrow metallic slit. Phys. Rev. Lett. 89(6), 063901 (2002). doi: 10.1103/PhysRevLett.89.063901 CrossRefGoogle Scholar
  80. 80.
    Zhang, X.: Acoustic resonant transmission through acoustic gratings with very narrow slits: Multiple-scattering numerical simulations. Phys. Rev. B 71(24), 241102 (2005). doi: 10.1103/PhysRevB.71.241102 CrossRefGoogle Scholar
  81. 81.
    Zhou, L., Kriegsmann, G.A.: Complete transmission through a periodically perforated rigid slab. J. Acoust. Soc. Am. 121(6), 3288–3299 (2007). doi: 10.1121/1.2721878, CrossRefGoogle Scholar
  82. 82.
    Zhou, Y., Lu, M.H., Feng, L., Ni, X., Chen, Y.F., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound. Phys. Rev. Lett. 104(16), 164301 (2010). doi: 10.1103/PhysRevLett.104.164301 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Héctor Estrada
    • 1
    • 2
  • F. Javier García de Abajo
    • 3
  • Pilar Candelas
    • 1
  • Antonio Uris
    • 1
  • Francisco Belmar
    • 1
  • Francisco Meseguer
    • 1
    • 2
    Email author
  1. 1.Centro de Tecnologías Físicas, Unidad Asociada ICMM-CSIC/UPVUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain
  3. 3.Instituto de Óptica CSICUnidad Asociada CSIC-Universidade de VigoMadridSpain

Personalised recommendations