Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications

  • Abdelkrim KhelifEmail author
  • Younes Achaoui
  • Boujemaa Aoubiza
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 166)


In this chapter we investigate the propagation of acoustic waves in a two-dimensional array of cylindrical pillars on the surface of a semi-infinite substrate. Through the computation of the acoustic band diagram and transmission spectra of periodic pillars arranged in different symmetries, we show that these structures possess acoustic metamaterial features for surface acoustic waves. The pillars on the top of the surface introduce new guided modes in the non-radiative region of the substrate outside the sound cone. The modal shape and polarization of these guided modes are more complex than those of classical surface waves propagating on a homogeneous surface. Significantly, an in-plane polarized wave and a transverse wave with sagittal polarization appear that are not supported by the free surface. In addition, the band diagram of the guided modes defines band gaps that appear at frequencies markedly lower than those expected from the Bragg mechanism. We identify them as originating from local resonances of the individual cylindrical pillar and we show their dependence on the geometrical parameters, in particular with the height of the pillars. The frequency positions of these band gaps are invariant with the symmetry, and thereby the period, of the lattices, which is unexpected in band gaps based on Bragg mechanism. However, the role of the period remains important for defining the non-radiative region limited by the slowest bulk modes and influencing the existence of new surface modes of the structures. The surface acoustic wave transmission across a finite array of pillars corroborates the signature of the locally resonant band gaps for surface modes and their link with the symmetry of the source and its polarization. Numerical simulations based on an efficient finite element method and considering Lithium Niobate pillars on a Lithium Niobate substrate are used to illustrate the theory.


Surface Acoustic Wave Lithium Niobate Band Diagram Fano Resonance Filling Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Prof. Vincent Laude and Dr. Sarah Benchabane for fruitful discussions.


  1. 1.
    Achaoui, Y., Khelif, A., Benchabane, S., Robert, L., Laude, V.: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 83, 104201 (2011) CrossRefGoogle Scholar
  2. 2.
    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 (1994) CrossRefGoogle Scholar
  3. 3.
    Dühring, M.B., Laude, V., Khelif, A.: Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators. J. Appl. Phys. 105, 093504 (2009) CrossRefGoogle Scholar
  4. 4.
    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452 (2006) CrossRefGoogle Scholar
  5. 5.
    Goffaux, C., Sánchez-Dehesa, J., Levy Yeyati, A., Khelif, A., Lambin, P., Vasseur, J.O., Djafari-Rouhani, B.: Evidence of Fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88, 225502 (2002) CrossRefGoogle Scholar
  6. 6.
    Hsu, J.C., Wu, T.T.: Lamb waves in binary locally resonant phononic plates with two dimensional lattices. Appl. Phys. Lett. 90, 201904 (2007) CrossRefGoogle Scholar
  7. 7.
    Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Kolodziejski, L.A.: Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999) CrossRefGoogle Scholar
  8. 8.
    Khelif, A., Achaoui, Y., Benchabane, S., Laude, V., Aoubiza, B.: Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys. Rev. B 81, 214303 (2010) CrossRefGoogle Scholar
  9. 9.
    Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., Laude, V.: Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74, 046610 (2006) CrossRefGoogle Scholar
  10. 10.
    Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84(22), 4400–4402 (2004) CrossRefGoogle Scholar
  11. 11.
    Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., Laude, V.: Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003) CrossRefGoogle Scholar
  12. 12.
    Khelif, A., Wilm, M., Laude, V., Ballandras, S., Djafari-Rouhani, B.: Guided elastic waves along a rod-defect of a two-dimensional phononic crystal. Phys. Rev. E 69, 067601 (2004). doi: 10.1103/PhysRevE.69.067601 CrossRefGoogle Scholar
  13. 13.
    Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993). doi: 10.1103/PhysRevLett.71.2022 CrossRefGoogle Scholar
  14. 14.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734 (2000) CrossRefGoogle Scholar
  15. 15.
    Martínez-Sala, R., Sancho, J., Sanchez, J.V., Gomez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378, 241 (1995) CrossRefGoogle Scholar
  16. 16.
    Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82(3), 2257 (2010). doi: 10.1103/RevModPhys.82.2257 CrossRefGoogle Scholar
  17. 17.
    Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Larabi, H., Khelif, A., Choujaa, A., Benchabane, S., Laude, V.: Acoustic channel drop tunneling in a phononic crystal. Appl. Phys. Lett. 87(26), 261912 (2005). doi: 10.1063/1.2158019 CrossRefGoogle Scholar
  18. 18.
    Robillard, J.F., Devos, A., Roch-Jeune, I.: Time-resolved vibrations of two-dimensional hypersonic phononic crystals. Phys. Rev. B 76(9), 092301 (2007). doi: 10.1103/PhysRevB.76.092301 CrossRefGoogle Scholar
  19. 19.
    Sigalas, M.M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86(3), 141–143 (1993) CrossRefGoogle Scholar
  20. 20.
    Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86(14), 3012–3015 (2001) CrossRefGoogle Scholar
  21. 21.
    Wang, G., Wen, X., Wen, J., Shao, L., Liu, Y.: Two dimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett. 93, 154302 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Abdelkrim Khelif
    • 1
    Email author
  • Younes Achaoui
    • 2
  • Boujemaa Aoubiza
    • 3
  1. 1.International Joint LaboratoryGeorgiaTech-CNRS UMI 2958MetzFrance
  2. 2.Institut FEMTO-STUniversité de Franche-Comté, CNRSBesançonFrance
  3. 3.Laboratoire de MathématiquesUniversité de Franche-ComtéBesançon CedexFrance

Personalised recommendations