Fundamentals of Acoustic Metamaterials

  • Sébastien GuenneauEmail author
  • Richard V. CrasterEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 166)


This chapter introduces the field of acoustic metamaterials in light of correspondences with related phenomena in electromagnetics. The semantic frontier between phononic/photonic crystals (PCs) and metamaterials is underpinned by low-frequency high-contrast and high-frequency homogenization models for periodic structures, the former being well suited for metamaterials, while the latter unveils the band structure and associated anomalous dispersion of PCs. We find it therefore worthwhile to outline the corresponding asymptotic models for waves propagating in such structured media. The mathematics behind the physical scene are illustrated by numerical simulations including cloaking, lensing and confinement effects via artificial anisotropy (motivated by transformational optics and acoustics), negative refraction and slow waves.


Photonic Crystal Fibre Negative Refraction Stop Band Phononic Crystal Split Ring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alú, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005) CrossRefGoogle Scholar
  2. 2.
    Bigoni, D., Serkov, S., Valentini, M., Movchan, A.B.: Asymptotic models of dilute composites with imperfectly bonded inclusions. Int. J. Solids Struct. 35, 3239 (1998) CrossRefGoogle Scholar
  3. 3.
    Bouchitté, G., Schweizer, B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8(3), 717–750 (2010) CrossRefGoogle Scholar
  4. 4.
    Brun, M., Guenneau, S., Movchan, A.B.: Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009) CrossRefGoogle Scholar
  5. 5.
    Brun, M., Guenneau, S., Movchan, A.B., Bigoni, D.: Dynamics of structural interfaces: Filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58, 1212–1224 (2010) CrossRefGoogle Scholar
  6. 6.
    Chakrabarti, S., Ramakrishna, S.A., Guenneau, S.: Finite checkerboards of dissipative negative refractive index. Opt. Express 14, 12950 (2006) CrossRefGoogle Scholar
  7. 7.
    Cherednichenko, K.D., Smyshlyaev, V.P., Zhikov, V.V.: Non-local homogenised limits for composite media with highly anisotropic periodic fibres. Proc. R. Soc. Edinb. A 136, 87–114 (2006) CrossRefGoogle Scholar
  8. 8.
    Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: High frequency homogenization for checkerboard structures: Defect modes, ultra-refraction and all-angle-negative refraction. J. Opt. Soc. Amer. A 28, 1032–1041 (2011) CrossRefGoogle Scholar
  9. 9.
    Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49, 333–346 (2012). CrossRefGoogle Scholar
  10. 10.
    Craster, R.V., Kaplunov, J., Pichugin, A.V.: High frequency homogenization for periodic media. Proc. R. Soc. Lond. A 466, 2341–2362 (2010) CrossRefGoogle Scholar
  11. 11.
    Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007) CrossRefGoogle Scholar
  12. 12.
    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nature 5, 452 (2006) CrossRefGoogle Scholar
  13. 13.
    Farhat, M., Enoch, S., Guenneau, S., Movchan, A.B.: Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008) CrossRefGoogle Scholar
  14. 14.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A.: Cloaking bending waves propagating in thin plates. Phys. Rev. B 79, 033102 (2009) CrossRefGoogle Scholar
  15. 15.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators. Phys. Rev. E 80, 046309 (2009) CrossRefGoogle Scholar
  16. 16.
    Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003) Google Scholar
  17. 17.
    Guenneau, S., Enoch, S., McPhedran, R.C.: L’invisibilite en vue. Pour Sci. (French edn. of Sci. Am.) 382, 42–49 (2009) Google Scholar
  18. 18.
    Guenneau, S., Gralak, B., Pendry, J.B.: Perfect corner reflector. Opt. Lett. 30, 1204–1206 (2005) CrossRefGoogle Scholar
  19. 19.
    Guenneau, S., Movchan, A.B., Ramakrishna, S.A., Petursson, G.: Acoustic meta-materials for sound focussing and confinement. New J. Phys. 9, 399 (2007) CrossRefGoogle Scholar
  20. 20.
    Guenneau, S., Poulton, C.G., Movchan, A.B.: Oblique propagation of electromagnetic and elastic waves for an array of cylindrical fibres. Proc. R. Soc. Lond. A 459, 2215–2263 (2003) CrossRefGoogle Scholar
  21. 21.
    Guenneau, S., Ramakrishna, S.A.: Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces. C. R. Phys. 10, 352–378 (2009) CrossRefGoogle Scholar
  22. 22.
    Guenneau, S., Vutha, A.C., Ramakrishna, S.A.: Negative refraction in 2d checkerboards related by mirror anti-symmetry and 3d corner lenses. New J. Phys. 7, 164 (2005) CrossRefGoogle Scholar
  23. 23.
    He, S., Jin, Y., Ruan, Z., Kuang, J.: On subwavelength and open resonators involving metamaterials of negative refraction index. New J. Phys. 7, 210 (2005) CrossRefGoogle Scholar
  24. 24.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994) CrossRefGoogle Scholar
  25. 25.
    Kohn, R.V., Shipman, S.P.: Magnetism and the homogenization of micro-resonators. Multiscale Model. Simul. 7, 62–92 (2008) CrossRefGoogle Scholar
  26. 26.
    Kozlov, V., Mazya, V., Movchan, A.B.: Asymptotic Analysis of Fields in Multistructures. Oxford Science Publications, Oxford (1999) Google Scholar
  27. 27.
    Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006) CrossRefGoogle Scholar
  28. 28.
    Li, J., Chan, C.T.: Double negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004) CrossRefGoogle Scholar
  29. 29.
    Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734 (2000) CrossRefGoogle Scholar
  30. 30.
    Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  31. 31.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006) CrossRefGoogle Scholar
  32. 32.
    Milton, G.W., Nicorovici, N.A.: On the cloaking effects associated with localized anomalous resonances. Proc. R. Soc. Lond. A 462, 3027 (2006) CrossRefGoogle Scholar
  33. 33.
    Movchan, A.B., Guenneau, S.: Localised modes in split ring resonators. Phys. Rev. B 70, 125,116 (2004) CrossRefGoogle Scholar
  34. 34.
    Movchan, A.B., Movchan, N.V., Guenneau, S., McPhedran, R.C.: Asymptotic estimates for localized electromagnetic modes in doubly periodic structures with defects. Proc. R. Soc. A 463, 1045 (2007) CrossRefGoogle Scholar
  35. 35.
    Nicorovici, N.A., McPhedran, R.C., Milton, G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994) CrossRefGoogle Scholar
  36. 36.
    Norris, A., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48, 525–538 (2011) CrossRefGoogle Scholar
  37. 37.
    Notomi, N.: Superprism phenomena in photonic crystals. Opt. Quantum Electron. 34, 133 (2002) CrossRefGoogle Scholar
  38. 38.
    O’Brien, S., Pendry, J.B.: Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002) CrossRefGoogle Scholar
  39. 39.
    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000) CrossRefGoogle Scholar
  40. 40.
    Pendry, J.B.: Negative refraction. Contemp. Phys. 45, 191 (2004) CrossRefGoogle Scholar
  41. 41.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4763 (1996) CrossRefGoogle Scholar
  42. 42.
    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1996) CrossRefGoogle Scholar
  43. 43.
    Pendry, J.B., Ramakrishna, S.A.: Focussing light with negative refractive index. J. Phys. Condens. Matter 15, 6345 (2003) CrossRefGoogle Scholar
  44. 44.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006) CrossRefGoogle Scholar
  45. 45.
    Ramakrishna, S.A.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449 (2005) CrossRefGoogle Scholar
  46. 46.
    Ramakrishna, S.A., Guenneau, S., Enoch, S., Tayeb, G., Gralak, B.: Light confinement through negative refraction in photonic crystal and metamaterial checkerboards. Phys. Rev. A 75, 063830 (2007) CrossRefGoogle Scholar
  47. 47.
    Russell, P.S., Marin, E., Diez, A., Guenneau, S., Movchan, A.B.: Sonic band gap PCF preforms: enhancing the interaction of sound and light. Opt. Express 11, 2555 (2003) CrossRefGoogle Scholar
  48. 48.
    Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin (1980) Google Scholar
  49. 49.
    Smith, D.R., Padilla, W.J., Vier, V.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000) CrossRefGoogle Scholar
  50. 50.
    Torrent, D., Sanchez-Dehesa, J.: Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008) CrossRefGoogle Scholar
  51. 51.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968) CrossRefGoogle Scholar
  52. 52.
    Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sb. Math. 191, 973–1014 (2000) CrossRefGoogle Scholar
  53. 53.
    Zolla, F., Renversez, G., Nicolet, A., Kuhlmey, B., Guenneau, S., Felbacq, D.: Foundations of Photonic Crystal Fibres. Imperial College Press, London (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut Fresnel, UMR CNRS 7249Aix-Marseille UniversitéMarseilleFrance
  2. 2.Imperial College LondonLondonUK

Personalised recommendations