Skip to main content

Role of Mesenchymal Stem Cells (MSC) in HIV-1 Associated Bone and Lipid Toxicities

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 8))

Abstract

In addition to its well-recognised impact on the immune system, HIV-1 infection has long been associated with disorders of other tissue types, and with the advent of long term anti-retroviral therapy specific toxicities of both bone and lipid tissues have emerged. These issues are of significant clinical importance in a population receiving life-time therapy. The mechanisms underpinning these toxicities have yet to be fully understood, and the relative contribution of virus and treatment (especially in the case of bone toxicities) fully elucidated.

Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into cells, amongst others, of osteoblast and adipocyte lineage. They are largely resident in the bone marrow – although mesenchymal/stromal precursor cell ‘pools’ can be found in other tissues including adipose tissue. Increasingly MSCs are considered to play an important role in tissue homeostasis, repair and response to injury. In addition to their roles as bone/fat progenitor cells, they can also express receptors which could allow their infection by HIV-1. This chapter will deal with the prevalence of HIV-1 associated toxicities of lipid and bone, and treat of the existing evidence for a role for MSCs in the pathogenesis of these phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avram MM, Avram AS, James WD (2007) Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56:472–492

    Article  PubMed  Google Scholar 

  • Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20:2165–2174

    Article  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J (2010) HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med 16:218–229

    Article  CAS  PubMed  Google Scholar 

  • Carr A (2007) Treatment strategies for HIV lipodystrophy. Curr Opin HIV AIDS 2:332–338

    Article  PubMed  Google Scholar 

  • Carr A, Miller J, Eisman JA, Cooper DA (2001) Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre- antiretroviral therapy. AIDS 15:703–709

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579

    Article  CAS  PubMed  Google Scholar 

  • Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP (2007) HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses 23:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • Cotter EJ, Ip HS, Powderly WG, Doran PP (2008) Mechanism of HIV protein induced modulation of mesenchymal stem cell osteogenic differentiation. BMC Musculoskelet Disord 9:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Cotter EJ, Doran PP, Powderly WG (2009a) Progenitor cell types in HIV-1 infection: bioactivity and emerging targets for treatment. Curr HIV Res 7:508–518

    Article  CAS  PubMed  Google Scholar 

  • Cotter EJ, Mallon PW, Doran PP (2009b) Is PPAR gamma a prospective player in HIV-1-associated bone disease? PPAR Res 2009:421376

    PubMed Central  PubMed  Google Scholar 

  • Cotter EJ, Chew N, Powderly WG, Doran PP (2011) HIV type 1 alters mesenchymal stem cell differentiation potential and cell phenotype ex vivo. AIDS Res Hum Retroviruses 27:187–199

    Article  CAS  PubMed  Google Scholar 

  • Feeney ER, Mallon PW (2011) HIV and HAART-associated dyslipidemia. Open Cardiovasc Med J 5:49–63

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibellini D, de Crignis E, Ponti C, Cimatti L, Borderi M, Tschon M, Giardino R, Re MC (2008) HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol 80:1507–1514

    Article  CAS  PubMed  Google Scholar 

  • Gibellini D, Alviano F, Miserocchi A, Tazzari PL, Ricci F, Clo A, Morini S, Borderi M, Viale P, Pasquinelli G, Pagliaro P, Bagnara GP, Re MC (2011) HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells. Retrovirology 8:40

    Article  PubMed  Google Scholar 

  • Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  CAS  PubMed  Google Scholar 

  • Jain RG, Lenhard JM (2002) Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem 277:19247–19250

    Article  CAS  PubMed  Google Scholar 

  • Keruly JC, Chaisson RE, Moore RD (2001) Increasing incidence of avascular necrosis of the hip in HIV-infected patients. J Acquir Immune Defic Syndr 28:101–102

    CAS  PubMed  Google Scholar 

  • Lagathu C, Caron-Debarle M, Capeau J (2010) HIV protease inhibitors selectively inhibit osteoblast differentiation and induce premature senescence in human bone marrow mesenchymal stem cells. Antivir Ther 15:A11–A12

    Google Scholar 

  • Lee CI, Cowan MJ, Kohn DB, Tarantal AF (2004) Simian immunodeficiency virus infection of hematopoietic stem cells and bone marrow stromal cells. J Acquir Immune Defic Syndr 36:553–561

    Article  PubMed  Google Scholar 

  • Mallon PW, Miller J, Cooper DA, Carr A (2003) Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS 17:971–979

    Article  CAS  PubMed  Google Scholar 

  • Mansilla E, Diaz Aquino V, Zambon D, Marin GH, Martire K, Roque G, Ichim T, Riordan NH, Patel A, Sturla F, Larsen G, Spretz R, Nunez L, Soratti C, Ibar R, Van Leeuwen M, Tau JM, Drago H, Maceira A (2011) Could metabolic syndrome, lipodystrophy, and aging be mesenchymal stem cell exhaustion syndromes? Stem Cells Int 2011:943216

    PubMed Central  PubMed  Google Scholar 

  • McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, Aldrovandi GM, Cardoso SW, Santana JL, Brown TT (2010) Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 51:937–946

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore AL, Vashisht A, Sabin CA, Mocroft A, Madge S, Phillips AN, Studd JW, Johnson MA (2001) Reduced bone mineral density in HIV-positive individuals. AIDS 15:1731–1733

    Article  CAS  PubMed  Google Scholar 

  • Richardson J, Hill AM, Johnston CJ, McGregor A, Norrish AR, Eastwood D, Lavy CB (2008) Fracture healing in HIV-positive populations. J Bone Joint Surg Br 90:988–994

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, van Hul W, Wan M, Cao X (2009) TGF-beta1- induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, Yarasheski KE (2000) Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 14:F63–F67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 93:3499–3504

    Article  CAS  PubMed  Google Scholar 

  • Troll JG (2011) Approach to dyslipidemia, lipodystrophy, and cardiovascular risk in patients with HIV infection. Curr Atheroscler Rep 13:51–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsekes G, Chrysos G, Douskas G, Paraskeva D, Mangafas N, Giannakopoulos D, Papanikolaou M, Georgiou E, Lazanas MC (2002) Body composition changes in protease inhibitor-naive HIV-infected patients treated with two nucleoside reverse transcriptase inhibitors. HIV Med 3:85–90

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Mondal D, la Russa VF, Agrawal KC (2002) Suppression of clonogenic potential of human bone marrow mesenchymal stem cells by HIV type 1: putative role of HIV type 1 tat protein and inflammatory cytokines. AIDS Res Hum Retroviruses 18:917–931

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin J. Cotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cotter, E.J., Maughan, R.T., Doran, P.P. (2012). Role of Mesenchymal Stem Cells (MSC) in HIV-1 Associated Bone and Lipid Toxicities. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 8. Stem Cells and Cancer Stem Cells, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4798-2_8

Download citation

Publish with us

Policies and ethics