Skip to main content

Epigenetic Modifiers and Stem Cell Differentiation

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 8

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 8))

Abstract

During stem cell differentiation, genes related to their unique characters should be silenced and genes related to the target lineage must be activated. Epigenetics is well known to control gene expression and changes of the epigenetic status during differentiation were reported. Epigenetic modifiers are chemical agents that can remove the epigenetic silencing markings and consequently activate the affected genes. The role of the epigenetic modifiers is well established in cancer treatment. Reports about enhancing stem cells differentiation (both murine and human) with treatment of the modifiers are accumulating. The modifiers have no differentiation ability by themselves but they enhance the differentiation upon culturing the cells in the corresponding conditions. This effect has been shown in monolayer culture as well as three-dimensional pellets. Epigenetic modifiers could be a valuable additive to the classical differentiation protocols, although various questions have yet to be answered including the safety of the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexanian AR (2007) Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J Cell Biochem 100:362–371

    Article  CAS  PubMed  Google Scholar 

  • Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  CAS  PubMed  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    CAS  PubMed  Google Scholar 

  • Crabb SJ, Howell M, Rogers H, Ishfaq M, Yurek-George A, Carey K, Pickering BM, East P, Mitter R, Maeda S, Johnson PWM, Townsend P, Shin-ya K, Yoshida M, Ganesan A, Packham G (2008) Characterisation of the in vitro activity of the depsipeptide histone deacetylase inhibitor spiruchostatin A. Biochem Pharmacol 6:463–475

    Article  Google Scholar 

  • Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones PA, Lubbert M (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964

    Article  CAS  PubMed  Google Scholar 

  • El-Serafi AT, Oreffo RO, Roach HI (2011a) Epigenetic modifiers influence lineage commitment of human bone marrow stromal cells: differential effects of 5-aza-deoxycytidine and trichostatin A. Differentiation 81:35–41

    Article  CAS  PubMed  Google Scholar 

  • El-Serafi AT, Wilson DI, Roach HI, Oreffo RO (2011b) Developmental plasticity of human foetal femur-derived cells in pellet culture: self assembly of an osteoid shell around a cartilaginous core. Eur Cell Mater 21:558–567

    CAS  PubMed  Google Scholar 

  • Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  Google Scholar 

  • Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671

    Article  CAS  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS (2009) Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 5:401–408

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Oreffo R, Gibson M, Goldring and Roach H (2009) DNA Demethylation at Specific CpG Sites in the IL1B Promoter in Response to Inflammatory Cytokines in Human Articular Chondrocytes. Arthritis Rheum 60:3303–3313

    Google Scholar 

  • Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279:17063–17069

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q, Copelan E, Singh H, Maciejewski JP, Saunthararajah Y (2010) Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 9:1536–1543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto K, Okino ST, Place RF, Urakami S, Hirata H, Kikuno N, Kawakami T, Tanaka Y, Pookot D, Chen Z, Majid S, Enokida H, Nakagawa M, Dahiya R (2007) Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin Cancer Res 13:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Sandoval J, Doh ST, Cai L, Lopez-Rodas G, Casaccia P (2010) Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS One 5:e13023

    Article  PubMed Central  PubMed  Google Scholar 

  • Makki MS, Heinzel T, Englert C (2008) TSA downregulates Wilms tumor gene 1 (Wt1) expression at multiple levels. Nucleic Acids Res 36:4067–4078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14(Spec No 1):R121–R132

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Matzke AJM, Kooter JM (2001) RNA: guiding gene silencing. Science 293:1080–1083

    Article  CAS  PubMed  Google Scholar 

  • Menendez L, Walker D, Matyunina LV, Dickerson EB, Bowen NJ, Polavarapu N, Benigno BB, McDonald JF (2007) Identification of candidate methylation-responsive genes in ovarian cancer. Mol Cancer 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piekarz RL, Bates SE (2009) Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 15:3918–3926

    Article  CAS  PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  CAS  PubMed  Google Scholar 

  • Sakuma M, Akahira J, Ito K, Niikura H, Moriya T, Okamura K, Sasano H, Yaegashi N (2007) Promoter methylation status of the cyclin D2 gene is associated with poor prognosis in human epithelial ovarian cancer. Cancer Sci 98:380–386

    Article  CAS  PubMed  Google Scholar 

  • Shang D, Ito N, Kamoto T, Ogawa O (2007) Demethylating agent 5-aza-2′-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel. Urology 69:1007–1012

    Article  PubMed  Google Scholar 

  • Szyf M (2008) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  Google Scholar 

  • Tayaramma T, Ma B, Rohde M, Mayer H (2006) Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858–2867

    Article  PubMed  Google Scholar 

  • Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48

    Article  CAS  PubMed  Google Scholar 

  • VanLint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253

    CAS  Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin-A and trapoxin – novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17:423–430

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Taher El-Serafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El-Serafi, A.T. (2012). Epigenetic Modifiers and Stem Cell Differentiation. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 8. Stem Cells and Cancer Stem Cells, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4798-2_14

Download citation

Publish with us

Policies and ethics