Skip to main content

Traveling Waves in Locally Connected Chaotic Neural Networks and Their Phenomenological Modeling

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (III)
  • 676 Accesses

Abstract

The emergence of traveling waves is a universal property of nervous systems. However, mechanisms of these waves and their functional roles have not yet been fully elucidated. Here, we numerically investigate traveling waves in a locally connected large-scale chaotic neural network (CNN) consisting of more than one million units. We simulate it by parallel computing and visualize the network output by using color images. If the refractoriness of neurons is sufficiently large, many local cell assemblies are generated and the boundaries between them move as traveling waves. We also develop a simplified phenomenological model for the CNN by adding a negative self-feedback mechanism to the Potts model. The proposed meso-scopic model can qualitatively reproduce complex wave patterns in the CNN. Because the model requires less computational resources, it may serve as a useful tool for investigating traveling waves in nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Meister et al. Science, 252(5008):939–943, 1991.

    Google Scholar 

  2. R. O. Wong Annu. Rev. Neurosci., 22:29–47, 1999.

    Google Scholar 

  3. D. Kleinfeld et al. J. Neurophysiol., 72(3):1402–1419, 1994.

    Google Scholar 

  4. M. V. Sanchez-Vives, D. A. McCormick Nat. Neurosci., 3(10):1027–1034, 2000.

    Google Scholar 

  5. A. Luczak et al. Proc. Natl. Acad. Sci. U.S.A., 104(1):347–352, 2007.

    Google Scholar 

  6. I. Nauhaus et al. Nat. Neurosci., 12(1):70–76, 2009.

    Google Scholar 

  7. E. V. Lubenov, A. G. Siapas Nature, 459(7256):534–539, 2009.

    Google Scholar 

  8. A. J. Watt et al. Nat. Neurosci., 12(4):463–473, 2009.

    Google Scholar 

  9. H. R. Wilson, J. D. Cowan Kybernetik, 13(2):55–80, 1973.

    Google Scholar 

  10. S. Amari Biol. Cybern., 27(2):77–87, 1977.

    Google Scholar 

  11. H. Liljenström Int. J. Intell. Syst., 10(1):119–153, 1995.

    Google Scholar 

  12. N. F. Rulkov, I. Timofeev, M. Bazhenov J. Comput. Neurosci., 17(2):203–223, 2004.

    Google Scholar 

  13. E. M. Izhikevich, G. M. Edelman Proc. Natl. Acad. Sci. U.S.A., 105(9):3593–3598, 2008.

    Google Scholar 

  14. M. Oku et al. IEICE Tech. Rep., 109(269):55–59, 2009. (in Japanese).

    Google Scholar 

  15. M. Oku, K. Aihara NOLTA, IEICE, 2011. (accepted).

    Google Scholar 

  16. K. Aihara, T. Takabe, M. Toyoda Phys. Lett. A, 144(6–7):333–340, 1990.

    Google Scholar 

  17. M. Adachi, K. Aihara Neural Netw., 10(1):83–98, 1997.

    Google Scholar 

  18. J. J. Hopfield Proc. Natl. Acad. Sci. U.S.A., 79(8):2554–2558, 1982.

    Google Scholar 

  19. M. Oku, K. Aihara in Proc. NOLTA’10, pp. 465–468, 2010.

    Google Scholar 

  20. F. Y. Wu Rev. Mod. Phys., 54(1):235–268, 1982.

    Google Scholar 

  21. J. C. Prechtl et al. Proc. Natl. Acad. Sci. U.S.A., 94(14):7621–7626, 1997.

    Google Scholar 

  22. X. Huang et al. J. Neurosci., 24(44):9897–9902, 2004.

    Google Scholar 

  23. J. Milton, J. Cowan Adv. Neural Info. Proc. Syst., 5:1001–1006, 1993.

    Google Scholar 

  24. M. Bazhenov et al. Nat. Neurosci., 2(2):168–174, 1999.

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Japan Society for the Promotion of Science, a Grant-in-Aid for JSPS Fellows (21 â‹…937) and the Aihara Project, the FIRST program from JSPS, initiated by CSTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makito Oku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Oku, M., Aihara, K. (2013). Traveling Waves in Locally Connected Chaotic Neural Networks and Their Phenomenological Modeling. In: Yamaguchi, Y. (eds) Advances in Cognitive Neurodynamics (III). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4792-0_29

Download citation

Publish with us

Policies and ethics