Distribution of the Distance Between Receptors of Ordered Micropatterned Substrates

  • Zbigniew DomańskiEmail author
  • Norbert Sczygiol
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 170)


We study the statistics of equally spaced pairs of receptors on a family of ordered flat microsubstrates whose adhesive centers form regular tessellations. We establish relationship between the symmetry of substrates and the probability density of the end-to-end polymer separation in terms of the so-called Manhattan distance.


Distance distribution Micropatterned substrates Polymer adhesion Surface chemistry Tessellations Zigzag path statistics 


  1. 1.
    See, e.g. Intelligent Substrate Inc., Micropatterned substrates: Highlights from the literature. Available:
  2. 2.
    Crosby AJ, Hageman M, Duncan A (2005) Controlling polymer adhesion with ‘Pancakes’. Langmuir 21:11738–11743CrossRefGoogle Scholar
  3. 3.
    Lee I, Zheng H, Rubner MF, Hammond PT (2002) Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces. Adv Mater 14(8):572–577CrossRefGoogle Scholar
  4. 4.
    Zheng H, Lee I, Rubner MF, Hammond PT (2002) Two component particle arrays on patterned polyelectrolyte multilayer template. Adv Mater 14(8):569–572CrossRefGoogle Scholar
  5. 5.
    Azioune A, Capri N, Tseng Q, Théry M, Piel M (2010) Protein micropatterns: a direct protocol using deep UVs. Methods Cell Biol 97:133–146CrossRefGoogle Scholar
  6. 6.
    Otsuka H (2010) Nanofabrication of nonfouling surfaces for micropatterning of cell and microtissue. Molecules 15:5525–5546. Available: Google Scholar
  7. 7.
    Tikhomirov G, Hoogland S, Lee PE, Fisher A, Sargent EH, Kelly SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490CrossRefGoogle Scholar
  8. 8.
    Lee I, Wool RP (2000) Polymer adhesion vs. substrate receptor group. Macromolecules 33:2680–2687CrossRefGoogle Scholar
  9. 9.
    Rana N, Kossow C, Eisenbraun ET, Greer RE, Koloyeros AE (2011) Controlling interfacial adhesion of self-assembled polypeptide fibrils for novel nanoelectromechanical systems (NEMS) applications. Micromachines 2:1–16. Available: Google Scholar
  10. 10.
    Raghavan S, Chen ChS (2004) Micropatterned Environments in Cell Biology. Adv Mater 16(15):1303–1313CrossRefGoogle Scholar
  11. 11.
    Amin R, Hwang S, Park SH (2011) Nanobiotechnology: an interaction between nanontechnology and biotechnology. NANO 6(2):101–111CrossRefGoogle Scholar
  12. 12.
    Pannier AK, Anderson BC, Shea LD (2005) Substrate-mediated delivery from self-assembled monolayers: effect of surface ionization, hydrophilicity, and patterning. Acta Biomater 1(5):511–522CrossRefGoogle Scholar
  13. 13.
    Grünbaum B, Shepard G (1986) Tilings and patterns. W. H. Freeman, New YorkGoogle Scholar
  14. 14.
    Janse van Rensburg EJ (2003) Statistical mechanics of directed models of polymer in the square lattice. J Phys A: Math Gen 36(15):R11–R61MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bender CM, Bender MA, Demaine ED, Fekete SP (2004) What is the optimal shape of a city? J Phys A: Math Gen 37(1):147–159MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Leung VJ et al (2002) Processor allocation on Cplant: achieving general processor locality using one-dimensional allocation strategies. In: Proceedings of the 4th IEEE international conference on cluster computing. Willey-Computer Society Press, Chicago, pp 296–304Google Scholar
  17. 17.
    Rakenburg IC, Zieve RJ (2001) Influence of shape on ordering of granular systems in two dimensions. Phys Rev E 63(6):61303CrossRefGoogle Scholar
  18. 18.
    Domański Z (2011) Geometry-induced transport properties of two dimensional networks. In: Schmidt M (ed) Advances in Computer Science and Engineering. InTech, Rijeka, 2011, pp 337–352. Available:
  19. 19.
    Domański Z, Sczygiol N (2011) Distribution of the End-to-End Distance of Polymers Trapped onto Ordered Substrates. Lecture Notes in Engineering and Computer Science 2011, WCECS 2011, 19–21 October, 2011, San Francisco, pp 604–608Google Scholar
  20. 20.
    Domański Z (2011) Efficiency of two-dimensional microfilters. AIP Conf Proc 1373:211–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of MathematicsCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Institute of Computer and Information SciencesCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations