Human-Wildlife Contact and Emerging Infectious Diseases

  • Michael P. MuehlenbeinEmail author
Part of the Human-Environment Interactions book series (HUEN, volume 1)


The majority of all emerging pathogens in humans are zoonotic (nonhuman animal) in origin. Population, ecological, and behavioral changes that increase contact with wildlife exacerbate emergence of these pathogens. Anthropogenic modification of the physical environment has altered not only our risk of zoonotic infection from wildlife but also the likelihood of pathogen transmission from human to nonhuman animal populations. This is particularly the case for primates that share a number of common infections with humans. In this chapter, I use a series of case studies involving SARS, HIV, Nipah virus, Lyme disease, malaria, and Ebola to exemplify how various anthropogenic factors have facilitated pathogen transmission between human and nonhuman animal populations. The costs and benefits of primate-based ecotourism are also reviewed to better illustrate how human-wildlife contact can affect both populations. Responsible health monitoring of human-wildlife interactions is a necessary prerequisite for prevention of the transmission of future emerging infectious diseases.


West Nile Virus Severe Acute Respiratory Syndrome Lyme Disease Simian Immunodeficiency Virus Dengue Hemorrhagic Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afrane, Y. A., Lawson, B. W., Githeko, A. K., & Yan, G. Y. (2005). Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: culicidae) in western Kenya highlands. Journal of Medical Entomology, 42(6), 974–980.CrossRefGoogle Scholar
  2. Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. K., & Yan, G. (2006). Effects of microclimate changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. The American Journal of Tropical Medicine and Hygiene, 74, 772–778.Google Scholar
  3. Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. K., & Yan, G. (2008). Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerging Infectious Diseases, 14, 1533–1538.CrossRefGoogle Scholar
  4. Apetrei, C., Metzger, M. J., Richardson, D., Ling, B., Telfer, P. T., Reed, P., et al. (2005). Detection and partial characterization of simian immunodeficiency virus SIVsm strains from bush meat samples from rural Sierra Leone. Journal of Virology, 79, 2631–2636.CrossRefGoogle Scholar
  5. Bailes, E., Gao, F., Bibollet-Ruche, F., Courgnaud, V., Peeters, M., Marx, P. A., et al. (2003). Hybrid origin of SIV in chimpanzees. Science, 300, 1713.CrossRefGoogle Scholar
  6. Barry, J. M. (2004). The great influenza: The epic story of the deadliest plague in history. New York: Viking Penguin.Google Scholar
  7. Bermejo, M., Rodríguez-Teijeiro, J. D., Illera, G., Barroso, A., Vilà, C., & Walsh, P. D. (2006). Ebola outbreak killed 5000 gorillas. Science, 314, 1564.CrossRefGoogle Scholar
  8. Bhattacharya, S., Sharma, C., Dhiman, R. C., & Mitra, A. P. (2006). Climate change and malaria in India. Current Science, 90, 369–375.Google Scholar
  9. Biek, R., Walsh, P. R., Leroy, E. M., & Real, L. A. (2006). Recent common ancestry of Ebola Zaire virus found in a bat reservoir. PLoS Pathogens, 2(10), e90. doi: 10.1371/journal.ppat.0020090.CrossRefGoogle Scholar
  10. Bloom, B. R. (2003). Lessons from SARS. Science, 300, 701.CrossRefGoogle Scholar
  11. Brack, M. (1987). Agents transmissible from simians to man. Berlin: Springer.CrossRefGoogle Scholar
  12. Brownstein, J. S., Holford, T. R., & Fish, D. (2003). A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives, 111, 1152–1157.CrossRefGoogle Scholar
  13. Brownstein, J. S., Holford, T. R., & Fish, D. (2005). Effect of climate change on Lyme disease risk in North America. EcoHealth, 2, 38–46.CrossRefGoogle Scholar
  14. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., & Schountz, T. (2006). Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19, 531–545.CrossRefGoogle Scholar
  15. Ceballos-Lascuráin, H. (1996). Tourism, ecotourism, and protected areas: The state of nature-based tourism around the world and guidelines for its development. Gland: World Conservation Union.Google Scholar
  16. Christ, C., Hillel, O., Matus, S., & Sweeting, J. (2003). Tourism and biodiversity: Mapping tourism’s global footprint. Washington, DC: Conservation International.Google Scholar
  17. Chua, K. B., Chua, B. H., & Wang, C. W. (2002). Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malaysian Journal of Pathology, 24, 15–21.Google Scholar
  18. Cleaveland, S., Laurenson, M. K., & Taylor, L. H. (2001). Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London Series B, 356, 991–999.CrossRefGoogle Scholar
  19. Coatney, R. G., Collins, W. E., Warren, M., & Contacos, P. G. (1971). The primate malarias. Bethesda: National Institutes of Health.Google Scholar
  20. Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406, 762–767.CrossRefGoogle Scholar
  21. Coluzzi, M. (1999). The clay feet of the malaria giant and its African roots: Hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia, 41, 277–283.Google Scholar
  22. Colwell, R. R. (1996). Global climate and infectious disease: The cholera paradigm. Science, 274, 2025–2031.CrossRefGoogle Scholar
  23. Cox-Singh, J., & Singh, B. (2008). Knowlesi malaria: Newly emergent and of public health importance? Trends in Parasitology, 24, 406–410.CrossRefGoogle Scholar
  24. Cyranoski, D. (2005). Tests in Tokyo reveal flaws in Vietnam’s bird flu surveillance. Nature, 433, 787.CrossRefGoogle Scholar
  25. Daily, G. C., & Ehrlich, P. R. (1996). Global change and human susceptibility to disease. Annual Review of Energy and the Environment, 21, 125–144.CrossRefGoogle Scholar
  26. Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – Threats to biodiversity and human health. Science, 287, 443–449.CrossRefGoogle Scholar
  27. Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 348, 1967–1976.CrossRefGoogle Scholar
  28. Eagles, P. F. J., McCool, S. F., & Haynes, C. D. (2002). Sustainable tourism in protected areas: Guidelines for planning and management. Gland: World Conservation Union.CrossRefGoogle Scholar
  29. Ebi, K. L., Hartman, J., Chan, N., McConnell, K. J., Schlesinger, M., & Weyant, J. (2005). Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Climate Change, 73, 375–393.CrossRefGoogle Scholar
  30. Engelthaler, D. M., Mosley, D. G., Cheek, J. E., Levy, C. E., Komatsu, K. K., Ettestad, P., et al. (1999). Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States. Emerging Infectious Diseases, 5, 87–94.CrossRefGoogle Scholar
  31. Epstein, P. R. (2001). Climate change and emerging infectious diseases. Microbes and Infection, 3, 747–754.CrossRefGoogle Scholar
  32. Epstein, J. H., & Price, J. T. (2009). The significant but understudied impact of pathogen transmission from humans to animals. The Mount Sinai Journal of Medicine, 76, 448–455.CrossRefGoogle Scholar
  33. Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R. C., & Daszak, P. (2006). Nipah virus: Impact, origins, and causes of emergence. Current Infectious Disease Reports, 8, 59–65.CrossRefGoogle Scholar
  34. Escalante, A. A., & Ayala, F. J. (1994). Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 11373–11377.CrossRefGoogle Scholar
  35. Field, H. E. (2009). Bats and emerging zoonoses: Henipaviruses and SARS. Zoonoses and Public Health, 56, 278–284.CrossRefGoogle Scholar
  36. Filion, F. L., Foley, J. P., & Jacqemot, A. J. (1994). The economics of global ecotourism. In M. Munasinghe & J. McNealy (Eds.), Protected area economics and policy: Linking conservation and sustainable development (pp. 235–252). Washington, DC: The World Bank.Google Scholar
  37. Galinski, M. R., & Barnwell, J. W. (2009). Monkey malaria kills four humans. Trends in Parasitology, 25, 200–204.CrossRefGoogle Scholar
  38. Gallup, J. L., & Sachs, J. D. (2001). The economic burden of malaria. The American Journal of Tropical Medicine and Hygiene, 64, 85–96.Google Scholar
  39. Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C. M., Michael, S. F., et al. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397, 436–441.CrossRefGoogle Scholar
  40. Garnham, P. C. C. (1966). Malaria parasites and other haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
  41. Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Wheeler, E., Estoff, E. L., & Chapman, C. A. (2007). Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biological Conservation, 135, 511–517.CrossRefGoogle Scholar
  42. Gould, E. A., & Higgs, S. (2009). Impact of climate change and other factors on emerging arbovirus diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103, 109–121.CrossRefGoogle Scholar
  43. Graczyk, T. K., Nizeyi, J. B., Ssebide, B., Thompson, R. C. A., Read, C., & Cranfield, M. R. (2002). Anthropozoonotic Giardia duodenalis genotype (assemblage) A infections in habitats of free-ranging human-habituated gorillas, Uganda. Journal of Parasitology, 88, 905–909.Google Scholar
  44. Greer, A., Ng, V., & Fisman, D. (2008). Climate change and infectious diseases in North America: The road ahead. Canadian Medical Association Journal, 178, 715–722.Google Scholar
  45. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., et al. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302, 276–278.CrossRefGoogle Scholar
  46. Guerra, C. A., Giandi, P. W., Tatem, A. J., Noor, A. M., Smith, D. L., Hay, S. I., et al. (2008). The limits and intensity of Plasmodium falciparum transmission: Implications for malaria control and elimination worldwide. PLoS Medicine, 5, e38.CrossRefGoogle Scholar
  47. Hahn, B. H., Shaw, G. M., De Cock, K. M., & Sharp, P. M. (2000). AIDS as a zoonosis: Scientific and public health implications. Science, 287, 607–614.CrossRefGoogle Scholar
  48. Hales, S., de Wet, N., Maindonald, J., & Woodward, A. (2002). Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. The Lancet, 360, 830–834.CrossRefGoogle Scholar
  49. Halpin, K., Hyatt, A. D., Plowright, R. K., Epstein, J. H., Daszak, P., Field, H. E., et al. (2007). Emerging viruses: Coming in a wrinkled wing and a prayer. Clinical Infectious Diseases, 44, 711–717.CrossRefGoogle Scholar
  50. Hartl, D. L. (2004). The origin of malaria: Mixed messages from genetic diversity. Nature Reviews Microbiology, 2, 15–22.CrossRefGoogle Scholar
  51. Hess, A. D., & Hayes, R. O. (1970). Relative potentials of domestic animals for zooprophylaxis against mosquito vectors of encephalitis. The American Journal of Tropical Medicine and Hygiene, 19, 327–334.Google Scholar
  52. Heymann, D. L. (2004). The international response to the outbreak of SARS in 2003. Philosophical Transactions of the Royal Society of London Series B, 1447, 1127–1129.CrossRefGoogle Scholar
  53. Higginbottom, K. (Ed.). (2004). Wildlife tourism: Impacts, management and planning. Altona: Cooperative Research Centre for Sustainable Tourism.Google Scholar
  54. Hughes, J. M. (2004). SARS: An emerging global microbial threat. Transactions of the American Clinical and Climatological Association, 115, 361–374.Google Scholar
  55. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature, 451, 990–994.CrossRefGoogle Scholar
  56. Jongwutiwes, S., Putaporntip, C., Iwasaki, T., Sata, T., & Kanbara, H. (2004). Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerging Infectious Diseases, 10, 2211–2213.CrossRefGoogle Scholar
  57. Kahn, J. (2003). It’s a small world after all: Ethics and the response to SARS. The Hastings Center Report, 33(3), 6.Google Scholar
  58. Kalish, M. L., Wolfe, N. D., Ndongmo, C. B., McNicholl, J., Robbins, K. E., Aidoo, M., et al. (2005). Central African hunters exposed to simian immunodeficiency virus. Emerging Infectious Diseases, 11, 1928–1930.CrossRefGoogle Scholar
  59. Karesh, W. B., & Noble, E. (2009). The bushmeat trade: Increased opportunities for transmission of zoonotic disease. The Mount Sinai Journal of Medicine, 76, 429–434.CrossRefGoogle Scholar
  60. Keele, B. F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M. L., et al. (2006). Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science, 313, 523–526.CrossRefGoogle Scholar
  61. Keiser, J., De Castro, M. C., Maltese, M. F., Bos, R., Tanner, M., Singer, B. H., et al. (2005). Effect of irrigation and large dams on the burden of malaria on a global and regional scale. The American Journal of Tropical Medicine and Hygiene, 72, 392–406.Google Scholar
  62. Kimball, A. M., Arima, Y., & Hodges, J. R. (2005). Trade related infections: Farther, faster, quieter. Globalization and Health, 1, 3.CrossRefGoogle Scholar
  63. Kiszewski, A., Mellinger, A., Spielman, A., Malaney, P., Sachs, S. E., & Sachs, J. (2004). A global index representing the stability of malaria transmission. The American Journal of Tropical Medicine and Hygiene, 70, 486–498.Google Scholar
  64. Köndgen, S., Kühl, H., N’Goran, P. K., Walsh, P. D., Schenk, S., Ernst, N., et al. (2008). Pandemic human viruses cause decline of endangered great apes. Current Biology, 18, 1–5.CrossRefGoogle Scholar
  65. Kuss, F. R., Graefe, A. R., & Vaske, J. J. (1990). Recreation impacts and carrying capacity (Vols. I and II). Washington, DC: National Parks and Conservation Association.Google Scholar
  66. Lau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Tsoi, H.-W., Wong, B. H. L., et al. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America, 102, 14040–14045.CrossRefGoogle Scholar
  67. Lederberg, J., Shope, R. E., & Oakes, S. C., Jr. (Eds.). (1992). Emerging infections: Microbial threats to health in the United States. Washington, DC: Institute of Medicine of the National Academies.Google Scholar
  68. Leroy, E. M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J.-M., et al. (2004). Multiple ebola virus transmission events and rapid decline of central African wildlife. Science, 303, 387–390.CrossRefGoogle Scholar
  69. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., et al. (2005). Fruit bats as reservoirs of Ebola virus. Nature, 438, 575–576.CrossRefGoogle Scholar
  70. Levine, N. D. (1988). The protozoan phylum apicomplexa (Vols. 1 and 2). Boca Raton: CRC Press.Google Scholar
  71. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676–679.CrossRefGoogle Scholar
  72. Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., & Wilson, M. L. (2000). Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical Medicine & International Health, 5, 263–274.CrossRefGoogle Scholar
  73. Lindgren, E., Tälleklint, L., & Polfeldt, T. (2000). Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European Ixodes ricinus. Environmental Health Perspectives, 108(2), 119–123.CrossRefGoogle Scholar
  74. Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast rift valley fever epidemics in Kenya. Science, 285, 397–400.CrossRefGoogle Scholar
  75. Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distribution in West Africa. American Anthropologist, 60, 533–562.CrossRefGoogle Scholar
  76. LoGiudice, K., Ostfeld, R. S., Schmidt, K. A., & Keesing, F. (2003). The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences of the United States of America, 100, 567–571.CrossRefGoogle Scholar
  77. Maillard, J. C., & Gonzalez, J. P. (2006). Biodiversity and emerging diseases. Annals of the New York Academy of Sciences, 1081, 1–16.CrossRefGoogle Scholar
  78. Mak, J. W., Cheong, W. H., Yen, P. K., Lim, P. K., & Chan, W. C. (1982). Studies on the epidemiology of subperiodic Brugia malayi in Malaysia: Problems in its control. Acta Tropica, 39, 237–245.Google Scholar
  79. Martens, P., & Hall, L. (2000). Malaria on the move: Human population movement and malaria transmission. Emerging Infectious Diseases, 6, 103–109.CrossRefGoogle Scholar
  80. Martens, W. J. M., Niessen, L. W., Rotmans, J., Jetten, T. H., & McMichael, A. J. (1995). Potential impact of global climate change on malaria risk. Environmental Health Perspectives, 103, 458–464.CrossRefGoogle Scholar
  81. McIntosh, B. M. (1970). Antibody against Chikungunya virus in wild primates in Southern Africa. South African Journal of Medical Sciences, 35, 65–74.Google Scholar
  82. McMichael, A. J. (2004). Environmental and social influences on emerging infectious diseases: Past, present and future. Philosophical Transactions of the Royal Society of London, Series B, 359, 1049–1058.CrossRefGoogle Scholar
  83. Monath, T. P. (1999). Ecology of Marburg and Ebola viruses: Speculations and directions for future research. Journal of Infectious Diseases, 179, S127–S138.CrossRefGoogle Scholar
  84. Monath, T. P. (2001). Yellow fever: An update. The Lancet Infectious Diseases, 1, 11–20.CrossRefGoogle Scholar
  85. Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re-emerging infectious diseases. Nature, 430, 242–249.CrossRefGoogle Scholar
  86. Muehlenbein, M. P., & Ancrenaz, M. (2009). Minimizing pathogen transmission at primate ecotourism destinations: The need for input from travel medicine. Journal of Travel Medicine, 16, 229–232.CrossRefGoogle Scholar
  87. Muehlenbein, M. P., Martinez, L. A., Lemke, A. A., Andau, P., Ambu, L., Nathan, S., et al. (2008). Perceived vaccination status in ecotourists and risks of anthropozoonoses. EcoHealth, 5, 371–378.CrossRefGoogle Scholar
  88. Muehlenbein, M. P., Martinez, L. A., Lemke, A. A., Ambu, L., Nathan, S., Alsisto, S., et al. (2010). Unhealthy travelers present challenges to sustainable ecotourism. Travel Medicine and Infectious Disease, 8, 169–175.CrossRefGoogle Scholar
  89. Munga, S., Minakawa, N., Zhou, G., Mushinzimana, E., Barrack, O. O. J., Githeko, A. K., et al. (2006). Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. The American Journal of Tropical Medicine and Hygiene, 74, 69–75.Google Scholar
  90. Normile, D. (2005). WHO faults China for lax outbreak response. Science, 309, 684.CrossRefGoogle Scholar
  91. Ogden, N. H., Maarouf, A., Barker, I. K., Bigras-Poulin, M., Lindsay, L. R., Morshed, M. G., et al. (2005). International Journal of Parasitology, 36, 63–70.CrossRefGoogle Scholar
  92. Ostfeld, R. S., & Holt, R. D. (2004). Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment, 2, 13–20.CrossRefGoogle Scholar
  93. Parkinson, A. J., & Evengård, B. (2009). Climate change, its impact on human health in the Arctic and the public health response to threats of emerging infectious diseases. Global Health Action. doi: 10.3402/gha.v2i0.2075.
  94. Parry, J. (2003). WHO is worried that China is under-reporting SARS. British Medical Journal, 326, 1110.CrossRefGoogle Scholar
  95. Pascual, M., Ahumada, J. A., Chaves, L. F., Rodo, X., & Bouma, M. (2006). Malaria resurgence in the East African highlands: Temperature trends revisited. Proceedings of the National Academy of Sciences of the United States of America, 103, 5829–5834.CrossRefGoogle Scholar
  96. Patz, J. A., Graczyk, T. K., Geller, N., & Vittor, A. Y. (2000). Effects of environmental change on emerging parasitic diseases. International Journal of Parasitology, 30, 1395–1405.CrossRefGoogle Scholar
  97. Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., et al. (2004). Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112, 1092–1098.CrossRefGoogle Scholar
  98. Patz, J. A., Olson, S. H., Uejio, C. K., & Gibbs, H. K. (2008). Disease emergence from global climate and land use change. Medical Clinics of North America, 92, 1472–1491.CrossRefGoogle Scholar
  99. Pedersen, A. B., Jones, K. E., Nunn, C. L., & Altizer, S. A. (2007). Infectious disease and mammalian extinction risk. Conservation Biology, 21, 1269–1279.CrossRefGoogle Scholar
  100. Peeters, M., Courgnaud, V., Abela, B., Auzel, P., Pourrut, X., Bibollet-Ruche, F., et al. (2002). Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerging Infectious Diseases, 8, 451–457.CrossRefGoogle Scholar
  101. Peterson, A. T., Carroll, D. S., Mills, J. N., & Johnson, K. M. (2004). Potential mammalian filovirus reservoirs. Emerging Infectious Diseases, 10, 2073–2081.CrossRefGoogle Scholar
  102. Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., et al. (2008). Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society of London, Series B, 275, 861–869.CrossRefGoogle Scholar
  103. Pongsiri, M. J., Roman, J., Ezenwa, V. O., Goldberg, T. L., Koren, H. S., Newbold, S. C., et al. (2009). Biodiversity loss affects global disease ecology. Bioscience, 59, 945–954.CrossRefGoogle Scholar
  104. Pourrut, X., Kumulungui, B., Wittmann, T., Moussavou, G., Délicat, A., Yaba, P., et al. (2005). The natural history of Ebola virus in Africa. Microbes and Infection, 7, 1005–1014.CrossRefGoogle Scholar
  105. Powers, A. M., & Logue, C. H. (2007). Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. Journal of General Virology, 88, 2363–2377.CrossRefGoogle Scholar
  106. Robinson, J. G., & Bennett, E. L. (Eds.). (2000). Hunting for sustainability in tropical forests. New York: Columbia University Press.Google Scholar
  107. Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300, 1394–1399.CrossRefGoogle Scholar
  108. Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R., & Goldberg, T. L. (2008). Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conservation Biology, 22, 1600–1607.CrossRefGoogle Scholar
  109. Santiago, M. L., Range, F., Keele, B. F., Li, Y., Bailes, E., Bibollet-Ruche, F., et al. (2005). Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. Journal of Virology, 79, 12515–12527.CrossRefGoogle Scholar
  110. Schipper, J., Chanson, J. S., Chiozza, F., Cox, N. A., Hoffmann, M., Katariya, V., et al. (2008). The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science, 322, 225–230.CrossRefGoogle Scholar
  111. Singh, B., Kim Sung, L., Matusop, A., Radhakrishnan, A., Shamsul, S., Cox-Singh, J., et al. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. The Lancet, 363, 1017–1024.CrossRefGoogle Scholar
  112. Smith, K. F., Acevedo-Whitehouse, K., & Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation, 12, 1–12.CrossRefGoogle Scholar
  113. Speight, M. C. D. (1973). Outdoor recreation and its ecological effects. London: Department of Botany, Westfield College.Google Scholar
  114. Steinmann, P., Keiser, J., Bos, R., Tanner, M., & Utzinger, J. (2006). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. The Lancet Infectious Diseases, 6, 411–425.CrossRefGoogle Scholar
  115. Suzán, G., Marcé, E., Giermakowski, J. T., Mills, J. N., Ceballos, G., Ostfeld, R. S., et al. (2009). Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS One, 4, e5461.CrossRefGoogle Scholar
  116. Swaddle, J. P., & Calos, S. E. (2008). Increased avian diversity is associated with lower incidence of human West Nile infection: Observation of the dilution effect. PLoS One, 3, e2488.CrossRefGoogle Scholar
  117. Taylor, L. H., Latham, S. M., & Woolhouse, M. E. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London, Series B, 356, 983–989.CrossRefGoogle Scholar
  118. Thresher, P. (1981). The economics of a lion. Unasylva, 33, 34–35.Google Scholar
  119. Trigg, P. I., & Kondrachine, A. V. (1998). The current global malaria situation. In I. W. Sherman (Ed.), Malaria: Parasite biology, pathogenesis and protection (pp. 11–22). Washington, DC: ASM Press.Google Scholar
  120. Tuno, N., Wilberforce, O., Minakawa, N., Takagi, M., & Yan, G. (2005). Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. Journal of Medical Entomology, 42, 270–277.CrossRefGoogle Scholar
  121. UNAIDS (Joint United National Programme on HIV/AIDS). (2008). Report on the global AIDS epidemic. Geneva: World Health Organization.Google Scholar
  122. UNEP/WTO (United Nations Environment Programme and the World Tourism Organization). (2005). Making tourism more sustainable: A guide for policy makers. Madrid: World Tourism Organization.Google Scholar
  123. Van Heuverswyn, F., Li, Y., Neel, C., Bailes, E., Keele, B. F., Lie, W., et al. (2006). SIV infection in wild gorillas. Nature, 444, 164.CrossRefGoogle Scholar
  124. Vijaykrishna, D., Smith, G. J. D., Zhang, J. X., Peiris, J. S. M., Chen, H., & Guan, Y. (2007). Evolutionary insights into the ecology of coronaviruses. Journal of Virology, 81, 4012–4020.CrossRefGoogle Scholar
  125. Vittor, A. Y., Gilman, R. H., Tielsch, J., Glass, G., Shields, T. I. M., Lozano, W. S., et al. (2006). The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. The American Journal of Tropical Medicine and Hygiene, 74, 3–11.Google Scholar
  126. Vythilingam, I., NoorAzian, Y. M., Huat, T. C., Jiram, A. I., Yusri, Y. M., Azahari, A. H., et al. (2008). Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasites and Vectors, 1, 26.CrossRefGoogle Scholar
  127. Walsh, J. F., Molyneux, D. H., & Birley, M. H. (1993). Deforestation: Effects on vector-borne disease. Parasitology, 106, 55–75.CrossRefGoogle Scholar
  128. Walsh, P. D., Abernethy, K. A., Bermejo, M., Beyers, R., De Wachter, P., Ella Akou, M., et al. (2003). Catastrophic ape decline in western equatorial Africa. Nature, 422, 611–614.CrossRefGoogle Scholar
  129. Wang, L.-F., Shi, Z., Shang, S., Field, H., Daszak, P., & Eaton, B. T. (2006). Review of bats and SARS. Emerging Infectious Diseases, 12, 1834–1840.CrossRefGoogle Scholar
  130. Watson, J. T., Gayer, M., & Connolly, M. A. (2007). Epidemics after natural disasters. Emerging Infectious Diseases, 13, 1–5.CrossRefGoogle Scholar
  131. Weiss, R. A., & McMichael, A. J. (2004). Social and environmental risk factors in the emergence of infectious diseases. Nature Medicine, 10, S70–S76.CrossRefGoogle Scholar
  132. WHO (World Health Organization). (1999). World health report. Geneva: World Health Organization.Google Scholar
  133. Wilson, M. E. (2003). The traveler and emerging infections: Sentinel, courier, transmitter. Journal of Applied Microbiology, 94, 1S–11S.CrossRefGoogle Scholar
  134. Wolfe, N. D., Switzer, W. M., Carr, J. K., Bhullar, V. B., Shanmugam, V., Tamoufe, U., et al. (2004). Naturally acquired simian retrovirus infections in central African hunters. The Lancet, 363, 932–937.CrossRefGoogle Scholar
  135. Wong, S., Lau, S., Woo, P., & Yuen, K.-Y. (2007). Bats as a continuing source of emerging infections in humans. Reviews in Medical Virology, 17, 67–91.CrossRefGoogle Scholar
  136. Wood, M. E. (2002). Ecotourism: Principles, practices and policies for sustainability. Paris: United Nations Environment Programme.Google Scholar
  137. Woolhouse, M., & Gaunt, E. (2007). Ecological origins of novel human pathogens. Critical Reviews in Microbiology, 33, 1–12.CrossRefGoogle Scholar
  138. Worobey, M., Gemmel, M., Teuwen, D. E., Haselkorn, T., Kunstman, K., Bunce, M., et al. (2008). Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature, 455, 661–664.CrossRefGoogle Scholar
  139. Yu, D., Li, H., Xu, R., He, J., Lin, J., Li, L., et al. (2003). Prevalence of IgG antibody to SARS-associated coronavirus in animal traders – Guangdong Province, China, 2003. Morbidity and Mortality Weekly Report, 52, 986–987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of AnthropologyIndiana UniversityBloomingtonUSA

Personalised recommendations