Skip to main content

Modeling Light-Induced Thrust

  • Chapter
  • First Online:
Fast Solar Sailing

Part of the book series: Space Technology Library ((SPTL,volume 30))

  • 1606 Accesses

Abstract

Translating the (scalar) solar radiation pressure into a (vector) acceleration field. Models of radiation-pressure thrust acceleration could contain many and more small effects, therefore resulting in a very sophisticated algorithm to be verified in flight. First-generation sailcraft exhibits very low thrust acceleration, and small effects may result non-measurable: after all, they are beyond the mission’s critical aims. On the other side, sailcraft for advanced missions will request the modeling of many relevant effects. Thus, this chapter contains a detailed model of sail thrust acceleration, which takes into account many factors related to the source of light and the sail. To such aim, the physical nature of a real surface and its related mathematical representation are described here, also considering the various methods of surface manufacturing. A special emphasis is put on the fact that sailcraft thrust, stemming from the interaction between solar photons and sail materials, is driven essentially by the diffraction of light. Here, various scalar and vector scattering theories are considered. Global and local sail’s topography is taken into account in the thrust model. An additional section is devoted to an important generalization of the conventional flat-sail model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sidereal speed of ds contributes about (1/2)(4.8×10−11) to the \(\tilde {\gamma}\) value.

  2. 2.

    This feature is greatly enhanced when a sail is close to a planet (e.g. the Earth), which perturbs the sailcraft in a complicated manner also because its radiance can be highly time-dependent.

  3. 3.

    Also referred to as back-sputtering or spluttering.

  4. 4.

    We are not considering sails from in-space manufacturing, and this for a number of reasons related to (big) space infrastructures, although one may not exclude such facilities in the long term.

  5. 5.

    Normally, a true membrane is defined as having a bending stiffness exactly zero, whereas membranes exhibiting very low, but finite, bending rigidity are named elastic sheets. However, in this book, because the term sheet is used in a more general context, we use the name membrane for the real thin sheets, i.e. with tiny bending stiffness.

  6. 6.

    This one is not the only modification, proposed and tested, to the original theory of Beckmann-Kirchhoff; for instance, see [84].

  7. 7.

    Very shortly, at incidence angles greater than the critical angle of total internal reflection, transmitted electromagnetic waves describable by wave vectors with an imaginary component are observed. These waves are called evanescent, and are characterized by an exponential damping in the less dense medium. The decay distance is of the order of a wavelength. Important experiments and theoretical consequences stem from evanescent waves. A good short introduction can be found in [45], whereas the topic is dealt with extensively in devoted monographs, e.g. [23].

  8. 8.

    Discussing specific numerical results from Eq. (6.94) is beyond the aim of this chapter. The reader is invited to implement this equation by a CAS in order to visualize how sunlight is diffracted by smooth and medium-smooth surfaces. As an exercise, this can be done easily enough with the BK formulations without determining the area PSD.

  9. 9.

    The algorithm described here may be applied to any sail configuration provided only that the logical regions are orientable, in the sense of the Local Theory of Surfaces.

  10. 10.

    In membrane stress analysis, mechanical engineers are used to calculate the half wavelength denoted by λ.

  11. 11.

    This is like the center of pressure of an aerofoil, which varies on the chord with the angle of attack, in general [3].

References

  1. Abel, N. H. (1826), Auflosung einer mechanischen Aufgabe. Journal für die Reine und Angewandte Mathematik, 1, 153–157.

    MATH  Google Scholar 

  2. Adler, R., Bazin, M., & Schiffer, M. (1975), Introduction to General Relativity (2nd edn.). New York: McGraw-Hill. ISBN 0-07-000423-4.

    Google Scholar 

  3. Anderson, J. D. Jr. (2001), Fundamentals of Aerodynamics (3rd edn.). New York: McGraw-Hill. ISBN 0-07-237335-0.

    Google Scholar 

  4. Barrick, D. E. (1970), Radar Cross Section Handbook. New York: Plenum (Chap. 9).

    Google Scholar 

  5. Beckmann, P., Spizzichino, A. (1963/1987), The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon. 1963; new edition by Artech House Publishers, March 1987, ISBN 0890062382, ISBN 978-0890062388.

    Google Scholar 

  6. Bennett, J. M. (1976), Measurement of the rms roughness, autocovariance function and other statistical properties of optical surfaces using a FECO scanning interferometer. Applied Optics 15, 2705–2721.

    Google Scholar 

  7. Bennett, J. M., Mattsson, L. (Eds.) (1989), Introduction to Surface Roughness and Scattering. Washington: Optical Society of America.

    Google Scholar 

  8. Bennett, J. M. (2010), Polarization. In Handbook of Optics: Vol. I. Geometrical and Physical Optics, Polarized Light, Components and Instruments (3rd edn.). New York: McGraw-Hill. ISBN 978-0-07-163598-1, ISBN 978-0-07-162925-6, MHID 0-07-162925-4.

    Google Scholar 

  9. Bergmann, P. G. (1976), Introduction to the Theory of Relativity. New York: Dover. ISBN 0-486-63282-2.

    Google Scholar 

  10. Bohren, C. F. (2007), Scattering by particles. In Handbook of Optics: Vol. I. Geometrical and Physical Optics, Polarized Light, Components and Instruments (3rd edn.). New York: McGraw-Hill. ISBN 978-0-07-163598-1, ISBN 978-0-07-162925-6, MHID 0-07-162925-4.

    Google Scholar 

  11. Born, M., Wolf, E. (2005), Principles of Optics (7th edn.). Cambridge: Cambridge University Press. ISBN 0-521-642221.

    Google Scholar 

  12. Bracewell, R. N. (2000), The Fourier Transform and Its Applications. New York: McGraw-Hill. ISBN 007-303-938-1.

    Google Scholar 

  13. Callister, W. D. (2010), Materials Science and Engineering: An Introduction (8th edn.). New York: Wiley. ISBN 978-0-470-41997-7.

    Google Scholar 

  14. Carniglia, C. K. (1979), Scalar scattering theory for multilayer optical coatings. Optical Engineering, 18, 104115.

    Google Scholar 

  15. Çengel, Y. A. (2007), Introduction to Thermodynamics and Heat Transfer. New York: McGraw-Hill.

    Google Scholar 

  16. Chandrasekhar, S. (1950), Radiative Transfer. Oxford: Clarendon.

    MATH  Google Scholar 

  17. Church, E. L., Takacs, P. Z. (1994), Surface scattering. In Handbook of Optics (2nd edn.). New York: McGraw-Hill. ISBN 007047740X, ISBN 978-0070477407.

    Google Scholar 

  18. Church, E. L., Takacs, P. Z. (2010), Surface scattering. In Handbook of Optics: Vol. I. Geometrical and Physical Optics, Polarized Light, Components and Instruments (3rd edn.). New York: McGraw-Hill. ISBN 978-0-07-163598-1, ISBN 978-0-07-162925-6, MHID 0-07-162925-4.

    Google Scholar 

  19. Church, E. L., Takacs, P. Z., Leonard, T. A. (1989), The prediction of BRDF’s from surface profile measurements. Proceedings of SPIE, 1165, 136–150.

    Google Scholar 

  20. Church, E. L., Jenkinson, H. A., Zavada, J. M. (1979), Relationship between surface scattering and microtopographic features. Optical Engineering, 18, 125–136.

    Google Scholar 

  21. Chenmoganadam, T. K. (1919), On the specular reflection from rough surfaces. Physical Review, 13, 96–101.

    Google Scholar 

  22. Davies, H. (1954), The reflection of electromagnetic waves from a rough surface. Proceedings of IEEE Part IV, 101, 209–214.

    Google Scholar 

  23. de Fornel, F. (2010), Evanescent Waves: from Newtonian Optics to Atomic Optics. Berlin: Springer. ISBN 364208513X, ISBN 978-3642085130.

    Google Scholar 

  24. Elson, J. M., Bennett, J. M. (1979), Vector scattering theory. Optical Engineering, 18, 116–124.

    Google Scholar 

  25. Fano, U. (1941), The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces (Sommerfeld’s waves). Journal of the Optical Society of America, 31, 213–222.

    Google Scholar 

  26. Fornasini, P. (2005), Basic crystallography. In African School and Workshop on X-Rays in Materials, Dakar, Senegal, December 12–17, 2005.

    Google Scholar 

  27. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., Nayar, S. (2009), An empirical BSSRDF model. ACM Transactions on Graphics, 28(3). ISSN 0730-0301.

    Google Scholar 

  28. Fang, T.-H., Chang, W.-J. (2003), Effects of AFM-based nanomachining process on aluminum surface. Journal of Physics and Chemistry of Solids, 64, 913–918.

    Google Scholar 

  29. Franceschetti, G., Riccio, D. (2007), Scattering, Natural Surfaces, and Fractals. New York: Academic Press. ISBN 978-0-12-265655-2, ISBN 0-12-265655-5.

    MATH  Google Scholar 

  30. Freund, L. B., Suresh, S. (2009), Thin Film Materials—Stress, Defect Formation and Surface Evolution, Cambridge: Cambridge University Press. ISBN 978-0-521-52977-8.

    MATH  Google Scholar 

  31. van Ginneken, B., Stavridi, M., Koenderink, J. J. (1998), Diffuse and specular reflectance from rough surfaces. Applied Optics, 37(1).

    Google Scholar 

  32. Goldstein, D. (2007), Polarized Light (2nd edn.). Revised and expanded. New York: Marcel Dekker. ISBN 0-8247-4053-X.

    Google Scholar 

  33. Graziani, F. (Ed.) (2006), Computational Methods in Transport, Granlibakken 2004. Berlin: Springer. ISBN 3-540-28122-3, ISBN 978-3-540-28122-1.

    MATH  Google Scholar 

  34. Greschik, G., Mikulas, M. M. (2002), Design study of a square solar sail architecture. Journal of Spacecraft and Rockets, 39(5).

    Google Scholar 

  35. Grimaldi, F. M. (1665), Physico Mathesis de Lumine, Coloribus, et Iride, aliisque Annexis Libri Duo, Ed. V. Bonati, Bologna, Italy; http://fermi.imss.fi.it/rd/bdv?/bdviewer/bid=300682#.

    Google Scholar 

  36. Guenther, R. D. (1990), Modern Optics. New York: Wiley. ISBN 0-471-60538-7.

    Google Scholar 

  37. Harvey, J. E. (1976), Light-scattering characteristics of optical surfaces. Ph.D. Dissertation, University of Arizona.

    Google Scholar 

  38. Harvey, J. E., Vernold, C. L., Krywonos, A., Thompson, P. L. (1999), Diffracted radiance: a fundamental quantity in non-paraxial scalar diffraction theory. Applied Optics, 38, 6469–6481.

    Google Scholar 

  39. Harvey, J. E., Krywonos, A. (2004), A global view of diffraction: revisited. Proceedings of SPIE, AM100-26.

    Google Scholar 

  40. Harvey, J. E., Krywonos, A., Stover, J. C. (2007), Unified scatter model for rough surfaces at large incident and scatter angles. Proceedings of SPIE, 6672, 66720C-1. doi:10.1117/12.739139.

    Google Scholar 

  41. Harvey, J. E., Krywonos, A., Vernold, C. L. (2007), Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles. Optical Engineering, 46(7), 078002.

    Google Scholar 

  42. Harvey, J. E., Choi, N., Krywonos, A., Marcen, J. (2009), Calculating BRDFs from surface PSDs for moderately rough optical surfaces. Proceedings of SPIE, 7426, 74260I. doi:10.1117/12.831302.

    Google Scholar 

  43. Harvey, J. E. Choi, N., Krywonos, A., Schröder, S., Penalver, D. H. (2010), Scattering from moderately rough interfaces between two arbitrary media. Proceedings of SPIE 7794, 77940V. doi:10.1117/12.863995.

    Google Scholar 

  44. He, X. D., Torrance, K. E., Sillion, F. X., Greenberg, D. P. (1991), A comprehensive physical model for light reflection. Computer Graphics, 25(4), 175–186.

    Google Scholar 

  45. Hecht, E. (2002), Optics (4th edn.). Reading: Addison Wesley. ISBN 0-321-18878-0.

    Google Scholar 

  46. Heavens, O. S. (1965), Optical Properties of Thin Solid Films. Constable and Company, Ltd., Dover edition (1991), ISBN 0-486-66924-6.

    Google Scholar 

  47. Helrich, C. S. (2009), Modern Thermodynamics with Statistical Mechanics. Berlin: Springer. ISBN 978-3-540-85417-3, e-ISBN 978-3-540-85418-0. doi:10.1007/978-3-540-85418-0.

    MATH  Google Scholar 

  48. Huang, R., Stafford, C. M., Vogt, B. D. (2007), Effect of surfaces properties on wrinkling of ultrathin films. Journal of Aerospace Engineering, 20(1).

    Google Scholar 

  49. IUPAC (2006–2009), Compendium of Chemical Terminology, 2nd edn. Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. Last update: 2009-09-07; version: 2.1.5. doi:10.1351/goldbook.

  50. Jackson, J. D. (1999), Classical Electrodynamics (3rd edn.). New York: Wiley. ISBN 0-471-30932-X.

    MATH  Google Scholar 

  51. Jazwinski, A. H. (1970), In Mathematics in Science and Engineering: Vol. 64. Stochastic Processes and Filtering Theory. New York: Academic Press.

    Google Scholar 

  52. Jenkins, C. H. M. (2001), In AIAA Progress in Astronautics and Aeronautics: Vol. 191. Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications. ISBN 1-56347-403-4.

    Google Scholar 

  53. Jenkins, C. H. M., Gough, A. R., Pappa, R. S., Carroll, J., Blandino, J. R., Miles, J. J., Racoczy, J. (2004), Design considerations for an integrated solar sail diagnostics system. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, 19–22 April 2004. AIAA-2004-1510.

    Google Scholar 

  54. Jenkins, C. H. M. (2006), In AIAA Progress in Astronautics and Aeronautics: Vol. 212. Recent Advances in Gossamer Spacecraft. ISBN 1-56347-777-7.

    Google Scholar 

  55. Koblik, V., Polyakhova, E., Sokolov, L. (2011), Solar sail near the Sun: point-like and extended models of radiation source. Advances in Space Research, 48(11), 1717–1739.

    Google Scholar 

  56. Kong, J. A. (2008), Electromagnetic Wave Theory. New York: EMW. Last edition ISBN 0-9668143-9-8.

    Google Scholar 

  57. Krywonos, A. (2006), Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction. Ph.D. Dissertation, College of Optics and Photonics, University of Central Florida.

    Google Scholar 

  58. Lawrie, I. D. (2001), A Unified Grand Tour of Theoretical Physics (2nd edn.). Bristol: Institute of Physics (IOP) Publishing. ISBN 0-7503-0604-1.

    MATH  Google Scholar 

  59. Li, Q. (2008), Light scattering of semitransparent media. M.S. Thesis, Georgia Institute of Technology, May 2008. http://smartech.gatech.edu/handle/1853/22686.

  60. Lichodziejewski, D., Derbès, B., West, J., Reinert, R. (2003), Bringing an Effective Solar Sail Design toward TRL 6. AIAA 2003-4659.

    Google Scholar 

  61. Lichodziejewski, D., Derbès, B., West, J., Reinert, R., Belvin, K., Slade, K., Troy, M. (2004), Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail. AIAA 2004-1507.

    Google Scholar 

  62. Li Voti, R., Lehau, G. L., Gaetani, S., Sibilia, C., Violante, V., Castagna, E., Bertolotti, M. (2009), Light scattering from a rough metal surface: theory and experiment. Journal of the Optical Society of America B, 26(8).

    Google Scholar 

  63. Lord, E. A. (1976), Tensors, Relativity and Cosmology. New Delhi: Tata McGraw-Hill

    Google Scholar 

  64. Maradudin, A. A., Mills, D. L. (1975), Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Physical Review B, 11(4), 1392–1415.

    Google Scholar 

  65. Maradudin, A. A. (2007), Light Scattering and Nanoscale Surface Roughness. Berlin: Springer. ISBN 0-387-25580-X, ISBN 978-0387-25580-4, e-ISBN 0-387-35659-2, e-ISBN 978-0387-35659-4.

    Google Scholar 

  66. Matloff, G. L., Vulpetti, G., Bangs, C., Haggerty, R. (2002), The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holography. NASA/CR-2002-211730.

    Google Scholar 

  67. Maybeck, P. S. (1979), Stochastic Models, Estimation and Control (Vol. 1). New York: Academic Press. ISBN 0-12-480701-1.

    MATH  Google Scholar 

  68. McInnes, C. R. (2004), Solar Sailing: Technology, Dynamics and Mission Applications (2nd edn.). Berlin: Springer-Praxis. ISBN 3540210628, ISBN 978-3540210627.

    Google Scholar 

  69. Mengali, G., Quarta, A., Dachwald, B. (2007), Refined solar sail force model with mission application. Journal of Guidance, Control, and Dynamics, 30(2), 512–520.

    Google Scholar 

  70. Modest, M. F. (2003), Radiative Heat Transfer (2nd edn.). New York: Academic Press. ISBN 0-12-503163-7.

    Google Scholar 

  71. Möller, K. D. (2007), Optics, Learning by Computing with Examples Using Mathcad, Matlab, Mathematica, and Maple (with CD-ROM) (2nd edn.). New York: Springer. ISBN 978-0-387-26168-3, e-ISBN 978-0-387-69492-4.

    MATH  Google Scholar 

  72. Murphy, D. M., Murphey, T. W., Gierow, P. A. (2003), Scalable solar-sail subsystem design concept. Journal of Spacecraft and Rockets, 40(4).

    Google Scholar 

  73. Nicodemus, F. E. (1970), Reflectance nomenclature and directional reflectance and emissivity. Applied Optics, 9, 1474–1475.

    Google Scholar 

  74. O’Donnell, K. A., Mendez, E. R. (1987), Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A, 4(7), 1194–1205.

    Google Scholar 

  75. O’Donnell, K. A. (2001), High order perturbation theory for light scattering from a rough metal surface. Journal of the Optical Society of America A, 18, 1507–1518.

    Google Scholar 

  76. Ogilvy, J. A. (1991), Theory of Wave Scattering from Random Rough Surfaces. Bristol: Adam Hilger.

    MATH  Google Scholar 

  77. Ohring, M. (2002), Materials Science of Thin Films (2nd edn.). New York: Academic Press. ISBN 0-12-524975-6.

    Google Scholar 

  78. Oren, M., Nayar, S. K. (1994), Generalization of Lambert’s reflectance model. In SIGGRAPH’94, Orlando, FL, 24–29 July 1994. New York: ACM. ISBN 0-89791-667-0.

    Google Scholar 

  79. Palik, E. A. (Ed.) (1998), Handbook of Optical Constants of Solids. New York: Academic Press. ISBN 0-12-544420-6.

    Google Scholar 

  80. Palmer, J. M., Grant, B. G. (2009), SPIE Press Monograph. The Art of Radiometry. PM184, ISBN 9780819472458, e-ISBN 9780819479167.

    Google Scholar 

  81. Palmer, J. M. (2010), The measurement of transmission, absorption, emission and reflection. In Handbook of Optics: Vol. II. Design, Fabrication, and Testing, Sources and Detectors, Radiometry and Photometry (3rd edn.) New York: McGraw-Hill. ISBN 978-0-07162927-0.

    Google Scholar 

  82. Pappa, R. S., Black, J. T., Blandino, J. R. (2003), Photogrammetric Measurement of Gossamer Spacecraft Membrane Wrinkling. doi:10.1.1.6.8337

    Google Scholar 

  83. Petty, G. W. (2006), A First Course in Atmospheric Radiation (2nd edn.). New York: Sundog. ISBN 978-0-9729033-1-8, ISBN 0-9729033-1-3.

    Google Scholar 

  84. Ragheb, H., Hancock, E. R. (2006), Testing new variants of the Beckmann-Kirchhoff model against radiance data. Computer Vision and Image Understanding, 102(2), 145–168. doi:10.1016/j.cviu.2005.11.004.

    Google Scholar 

  85. Ragheb, H., Hancock, E. R. (2007), The modified Beckmann-Kirchhoff scattering theory for rough surface analysis. Pattern Recognition, 40(7), 2004–2020. doi:10.1016/j.patcog.2006.10.007.

    MATH  Google Scholar 

  86. Rakić, A. D. (1995), Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Applied Optics, 34(22).

    Google Scholar 

  87. Rastogi, P. K. (Ed.) (1997), Optical Measurement Techniques and Applications. Boston: Artec House.

    Google Scholar 

  88. Rice, S. O. (1951), Reflection of electromagnetic waves from slightly rough surfaces. Communications on Pure and Applied Mathematics, 4, 351.

    MATH  MathSciNet  Google Scholar 

  89. Rios-Reyes, L., Scheeres, D. J. (2005), Generalized model for solar sails. Journal of Spacecraft and Rockets, 42, 182–185.

    Google Scholar 

  90. Ryder, L. (2009), Introduction to General Relativity. Cambridge: Cambridge University Press, ISBN 978-0-511-58004-8 eBook (EBL), ISBN 978-0-521-84563-2.

    MATH  Google Scholar 

  91. Sharkov, E. A. (2003), Passive Microwave Remote Sensing of the Earth, Physical Foundations. Berlin: Springer Praxis. ISBN 978-3-540-43946-2.

    Google Scholar 

  92. Schlick, C. (1994), An inexpensive BRDF model for physically-based rendering. In Eurographics ’94, Computer Graphics Forum (Vol. 13, pp. 233–246).

    Google Scholar 

  93. Schwarzschild, K. (1916), Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Physik-Math Klasse, pp. 189–196.

    Google Scholar 

  94. Smith, D. L. (1995), Thin-Films Deposition, Principles and Practice. New York: McGraw-Hill. ISBN 0-07-058502-4.

    Google Scholar 

  95. Snell, J. F. (1978), Radiometry and photometry. In Handbook of Optics. New York: McGraw-Hill.

    Google Scholar 

  96. Simonsen, I., Maradudin, A. A., Leskova, T. A. (2010), The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces. CERN Document Server, record#1240240. arXiv:1002.2200v1 [physics.optics] 10 Feb 2010.

  97. Stenzel, O. (2005), The Physics of Thin Film Optical Spectra—An Introduction. Berlin: Springer. ISBN 3-540-23147-1, ISBN 978-3-540-23147-9, ISSN 0931-5195.

    Google Scholar 

  98. Stover, J. C. (1995), Optical Scattering: Measurement and Analysis (2nd edn.). New York: SPIE. ISBN 9780819477767, e-ISBN 9780819478443.

    Google Scholar 

  99. Tanaka, K., Soma, E., Yokota, R., Shimazaki, K., Tsuda, Y., Kawaguchi, J. (IKAROS demonstration team) (2010), Develpment of thin film solar array for small solar power demonstrator IKAROS. In 61st International Astronautical Congress. IAC-10.C3.4.3.

    Google Scholar 

  100. Tessler, A., Sleight, D. W., Wang, J. T. (2005), Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling. AIAA Journal of Spacecraft and Rockets, 42(2), 287–298.

    Google Scholar 

  101. Tsang, L., Kong, J. A., Ding, K.-H. (2000), Scattering of Electromagnetic Waves: Theories and Applications. Berlin: Wiley. ISBN 0-471-38799-1, e-ISBN 0-471-22428-6.

    Google Scholar 

  102. Vickerman, J. C., Gilmore, I. S. (Eds.) (2009), Surface Analysis, the Principal Techniques (2nd edn.). New York: Wiley. ISBN 978-0-470-01763-0.

    Google Scholar 

  103. Vulpetti, G., Scaglione, S. (1999), The Aurora project: estimation of the optical sail parameters. Acta Astronautica, 44(2–4), 123–132.

    Google Scholar 

  104. Vulpetti, G., Johnson, L., Matloff, G. L. (2008), Solar Sails, a Novel Approach to Interplanetary Travel. New York: Springer/Copernicus Books-Praxis. ISBN 978-0-387-34404-1. doi:10.1007/978-0-387-68500-7.

    Google Scholar 

  105. Vulpetti, G. (2010), Effect of the total solar irradiance variations on solar-sail low-eccentricity orbits. Acta Astronautica, 67(1–2), 279–283.

    Google Scholar 

  106. Vulpetti, G. (2011), Total solar irradiance fluctuation effect on sailcraft-Mars rendezvous. Acta Astronautica, 68, 644–650.

    Google Scholar 

  107. Wald, R. M. (1984), General Relativity. Chicago: The University of Chicago Press. ISBN 0-226-87033-2.

    MATH  Google Scholar 

  108. Walter, B., Marschner, S. R., Li, H., Torrance, K. E. (2007), Microfacet models for refraction through rough surfaces. In Eurographics Symposium on Rendering, Grenoble, France.

    Google Scholar 

  109. Wang, L. V. Wu, H. I. (2007), Biomedical Optics: Principles and Imaging. New York: Wiley. ISBN 978-0-471-74304-0.

    Google Scholar 

  110. Wasa, K., Kitabatake, M., Adachi, H. (2004), Thin Film Materials Technology—Sputtering of Compound Materials. New York: William Andrew. ISBN 0-8155-1483-2, also Springer, ISBN 3-540-21118-7.

    Google Scholar 

  111. Weisstein, E. W. (2010), Plancherel’s Theorem, from MathWorld, a Wolfram Web Resource. http://mathworld.wolfram.com/PlancherelsTheorem.html.

  112. Weisstein, E. W. (2010), Delta Function, from MathWorld, a Wolfram Web Resource. http://mathworld.wolfram.com/DeltaFunction.html.

  113. Weisstein, E. W. (2011), Abel Transform, from MathWorld, a Wolfram Web Resource, http://mathworld.wolfram.com/AbelTransform.html.

  114. Wolf, E. (2010), Progress in Optics (Vol. 55). Amsterdam: Elsevier. ISBN 978-0-444-53705-8, ISSN 0079-6638.

    Google Scholar 

  115. Wolff, L. B., Nayar, S. K., Oren, M. (1998), Improved diffuse reflection models for computer vision. International Journal of Computer Vision, 30(1), 55–71.

    Google Scholar 

  116. Wong, Y. W., Pellegrino, S. (2003), Prediction of Wrinkle Amplitudes in Square Solar Sails. AIAA 2003-1982.

    Google Scholar 

  117. Wong, Y. W., Pellegrino, S. (2006), Wrinkled membranes, part I: experiments. Journal of Mechanics of Materials and Structures, 1(1), 3–25.

    Google Scholar 

  118. Wong, Y. W., Pellegrino, S. (2006), Wrinkled membranes, part II: analytical models. Journal of Mechanics of Materials and Structures, 1(1), 27–61.

    Google Scholar 

  119. Wong, Y. W., Pellegrino, S. (2006), Wrinkled membranes, part III: numerical simulations. Journal of Mechanics of Materials and Structures, 1(1), 63–95.

    Google Scholar 

  120. Woo, K., Jenkins, C. H. (2004), Effect of crease orientation on wrinkle-crease interaction in thin sheets. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, 4–7 May 2009. AIAA 2009-2162.

    Google Scholar 

  121. Wright, J. L. (1993), Space Sailing. New York: Gordon and Breach, ISBN 2-88124-842-X, ISBN 2-88124-803-9.

    Google Scholar 

  122. Xu, H., Sun, Y. (2008), A physically based transmission model of rough surfaces. Journal of Virtual Reality and Broadcasting, 5(9).

    Google Scholar 

  123. Yamaguchi, T., Mimasu, Y., Tsuda, Y., Funase, R., Sawada, H., Mori, O., Morimoto, M. Y., Takeuchi, H., Yoshikawa, M. (2010), Trajectory analysis of small solar sail demonstration spacecraft IKAROS considering the uncertainty of solar radiation pressure. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 8, 37–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vulpetti, G. (2013). Modeling Light-Induced Thrust. In: Fast Solar Sailing. Space Technology Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4777-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4777-7_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4776-0

  • Online ISBN: 978-94-007-4777-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics