Skip to main content

Amorphous State

  • Chapter
  • First Online:
Introduction to Structural Chemistry

Abstract

Below certain grain size, estimated from X-ray diffraction or thermodynamic calculations as 1 to 5 nm, a crystal loses its long-range order due to increased fraction of surface atoms with incomplete and distorted coordination. If a sharp freezing or a chemical reaction under shock compression precludes the growth of bigger particles, an amorphous solid (glass) will result. The structural chemistry of melting is discussed in terms of average bond distances and effective coordination numbers. For binary compounds and metals, these usually decrease on melting, but for low-coordinate non-metals tend to increase. The structural science of liquid water and aqueous solutions is briefly reviewed, from the Bernal–Fowler model (1933) to the recent computer simulations and extreme-conditions experiments on dynamic ionization. In diluted solutions of salts, ions replace water molecules and are 4-coordinate, while in concentrated solutions ions coordinate water molecules around them in structures similar to solid hydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy R (1970) Classification of non-crystalline solids. J Non-Cryst Solids 3:33–40

    Google Scholar 

  2. Stace AJ (2002) Metal ion solvation in the gas phase: the quest for higher oxidation states. J Phys Chem A 106:7993–6005

    CAS  Google Scholar 

  3. Batsanov SS, Bokarev VP (1980) The limit of crushing of inorganic substances. Inorg Mater 16:1131–1133

    Google Scholar 

  4. Palosz B, Grzanka E, Gierlotka S et al (2002) Analysis of short and long range atomic order in nanocrystalline diamonds with application of powder diffractometry. Z Krist 217:497–509

    CAS  Google Scholar 

  5. Rempel A, Magerl A (2010) Non-periodicity in nanoparticles with close-packed structures. Acta Cryst A 66:479–483

    Google Scholar 

  6. Bokarev VP (1986) Geometric estimate of the atomic coordination numbers in defect crystals of inorganic substances. Inorg Mater 22:306–307

    Google Scholar 

  7. Batsanov SS (2008) Experimental foundations of structural chemistry. Moscow Univ Press, Moscow

    Google Scholar 

  8. Pirkkalainen K, Serimaa R (2009) Non-periodicity in nanoparticles with close-packed structures. J Appl Cryst 42:442–447

    CAS  Google Scholar 

  9. Seyller Th, Diehl RD, Jona F (1999) Low-energy electron diffraction study of the multilayer relaxation of Cu(211). J Vacuum Sci Techn A 17:1635–1638

    CAS  Google Scholar 

  10. Parkin SR, Watson PR, McFarlane RA, Mitchell KAR (1991) A revised LEED determination of the relaxations present at the (311) surface of copper. Solid State Commun 78:841–843

    CAS  Google Scholar 

  11. Tian Y, Quinn J, Lin K-W, Jona F (2000) Cu{320} Structure of stepped surfaces. Phys Rev B 61:4904–4909

    CAS  Google Scholar 

  12. Nascimento VB, Soares EA, de Carvalho VE et al (2003) Thermal expansion of the Ag(110) surface studied by low-energy electron diffraction and density-functional theory. Phys Rev B 68:245408

    Google Scholar 

  13. Davis HL, Hannon JB, Ray KB, Plummer FW (1992) Anomalous interplanar expansion at the (0001) surface of Be. Phys Rev Lett 68:2632–2635

    PubMed  CAS  Google Scholar 

  14. Li YS, Quinn J, Jonna F, Marcus PM (1989) Low-energy electron diffraction study of multilayer relaxation on a Pb{110} surface. Phys Rev B 40:8239–8244

    CAS  Google Scholar 

  15. Lin RF, Li YS, Jonna F, Marcus PM (1990) Low-energy electron diffraction study of multilayer relaxation on a Pb{001} surface. Phys Rev B 42:1150–1155

    CAS  Google Scholar 

  16. Li YS, Jonna F, Marcus PM (1991) Multilayer relaxation of a Pb{111} surface. Phys Rev B 43:6337–6341

    CAS  Google Scholar 

  17. Teeter G, Erskine JL (1999) Studies of clean metal surface relaxation experiment-theory discrepancies. Surf Rev Lett 6:813–817

    CAS  Google Scholar 

  18. Geng WT, Kim M, Freeman AJ (2001) Multilayer relaxation and magnetism of a high-index transition metal surface: Fe(310). Phys Rev B 63:245401

    Google Scholar 

  19. Over H, Kleinle G, Ertl G et al (1991) A LEED structural analysis of the Co(10\(\overline 1 \)0) surface. Surf Sci 254:L469–L474

    CAS  Google Scholar 

  20. Geng WT, Freeman AJ, Wu RQ (2001) Magnetism at high-index transition-metal surfaces and the effect of metalloid impurities: Ni (210). Phys Rev B 63:064427

    Google Scholar 

  21. Zhang X-G, Van Hove MA, Somorjai GA et al (1991) Efficient determination of multilayer relaxation in the Pt(210) stepped and densely kinked surface. Phys Rev Lett 67:1298–1301

    PubMed  CAS  Google Scholar 

  22. Härtel S, Vogt J, Weiss H (2010) Relaxation and thermal vibrations at the NaF(100) surface. Surf Sci 604:1996–2001

    Google Scholar 

  23. Vogt J (2007) Tensor LEED study of the temperature dependent dynamics of the NaCl(100) single crystal surface. Phys Rev B 75:125423

    Google Scholar 

  24. Okazawa T, Nishimura T, Kido Y (2002) Surface structure and lattice dynamics of KI(001) studied by high-resolution ion scattering combined with molecular dynamics simulation. Phys Rev B 66:125402

    Google Scholar 

  25. Palosz B, Pantea C, Grazanka E et al (2006) Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diamond Relat Mater 15:1813–1817

    CAS  Google Scholar 

  26. Sun CQ, Tay BK, Zeng XT et al (2002) Bond-order–bond-length–bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J Phys Cond Matter 14:7781–7796

    CAS  Google Scholar 

  27. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159

    Google Scholar 

  28. Feibelman PJ (1996) Relaxation of hcp(0001) surfaces: a chemical view. Phys Rev B 53:13740–13746

    CAS  Google Scholar 

  29. Batsanov SS (1987) Effect of high dynamic pressure on the structure of solids. Propellants Explosives Pyrotechnics 12:206–208

    CAS  Google Scholar 

  30. Batsanov SS (1994) Effects of explosions on materials. Springer-Verlag, New York

    Google Scholar 

  31. Batsanov SS, Bоkаrеv VP, Моrоz IK (1982) Solid solution in the KCl-CsCl system. Russ J Inorg Chem 26:1557–1559

    Google Scholar 

  32. Kinugawa K, Othori N, Kadono K et al (1993) Pulsed neutron diffraction study on the structures of glassy LiX–KX–CsX–BaX2 (X=Cl, Br, I). J Chem Phys 99:5345–5351

    CAS  Google Scholar 

  33. Noda Y, Nakao H, Terauchi H (1995) Neutron incoherent scattering of structural glass NH4I–KI mixed crystal. Physica B 213–214:564–566

    Google Scholar 

  34. Micoulaut M, Cormier L, Henderson GS (2006) The structure of amorphous, crystalline and liquid GeO2. J Phys Conden Matter 18:R753–R784

    CAS  Google Scholar 

  35. Delaplane RG, Dahlborg U, Howells WS, Lundström T (1988) A neutron diffraction study of amorphous boron. J Non-Cryst Solids 106:66–69

    CAS  Google Scholar 

  36. Degtyareva VF, Degtyareva O, Mao H-K, Hemley RJ (2006) High-pressure behavior of CdSb: compound decomposition, phase formation, and amorphization. Phys Rev B 73:214108

    Google Scholar 

  37. Marks NA, McKenzie DR, Pailthorpe BA et al (1996) Microscopic structure of tetrahedral amorphous carbon. Phys Rev Lett 76:768–771

    PubMed  CAS  Google Scholar 

  38. Sinclair RN, Stone CE, Wright AC et al (2001) The structure of vitreous boron sulphide. J Non-Cryst Solids 293–295:383–388

    Google Scholar 

  39. Yao W, Martin SW, Petkov V (2005) Structure determination of low-alkali-content Na2S + B2S3 glasses using neutron and synchrotron X-ray diffraction. J Non-Cryst Solids 351:1995–2002

    CAS  Google Scholar 

  40. Boswell FWC (1951) Precise determination of lattice constants by electron diffraction and variations in the lattice constants of very small crystallites. Proc Phys Soc London A 64:465–475

    Google Scholar 

  41. Yamanaka T, Sugiyama K, Ogata K (1992) Kinetic study of the GeO2 transition under high pressures using synchrotron X-radiation. J Appl Cryst 25:11–15

    CAS  Google Scholar 

  42. Batsanov SS, Bokarev VP (1987) Existence of polymorphic modifications in the amorphous state. Inorg Mater 23:946–947

    Google Scholar 

  43. Hoppe U, Walter G, Barz A et al (1998) The P-O bond lengths in vitreous P2O5 probed by neutron diffraction with high real-space resolution. J Phys Cond Matter 10:261–270

    CAS  Google Scholar 

  44. Brazhkin VV, Gavrilyuk AG, Lyapin AG et al (2007) AsS: bulk inorganic molecular-based chalcogenide glass. Appl Phys Lett 91:031912

    Google Scholar 

  45. Kajihara Y, Inui M, Matsuda K et al (2007) X-ray diffraction measurement of liquid As2Se3 by using third-generation synchrotron radiation. J Non-Cryst Solids 353:1985–1989

    CAS  Google Scholar 

  46. Dongo M, Gerber Th, Hafiz M et al (2006) On the structure of As2Te3 glass. J Phys Cond Matter 18:6213–6224

    Google Scholar 

  47. Tanaka K (1988) Layer structures in chalcogenide glasses. J Non-Cryst Solids 103:149–150

    CAS  Google Scholar 

  48. Tanaka K (1989) Structural phase transitions in chalcogenide glasses. Phys Rev B 39:1270–1279

    CAS  Google Scholar 

  49. Suzuki M, Okazaki H (1977) The structure of α-AgI. Phys Stat Solidi 42a:133–140

    Google Scholar 

  50. Keen DA, Hayes W, McGreevy RL (1990) Structural disorder in AgBr on the approach to melting. J Phys Cond Matter 2:2773–2786

    CAS  Google Scholar 

  51. Ubbelodе АR (1978) The molted state of matter. Wiley, New York

    Google Scholar 

  52. Tosi MP (1994) Structure of covalent liquids. J Phys Cond Matter 6:A13–A28

    CAS  Google Scholar 

  53. Waseda Y, Tamaki S (1975) Structural study of Pt and Cr in the liquid state by X-ray diffraction. High Temp-High Press 7:215–220

    CAS  Google Scholar 

  54. Waseda Y (1980). The structure of non-crystalline materials: liquids and amorphous solids. McGraw Hill, New York.

    Google Scholar 

  55. Vahvaselkä KS (1978) X-ray diffraction analysis of liquid Hg, Sn, Zn, Al and Cu. Phys Scripta 18:266–274

    Google Scholar 

  56. Krishnan S, Ansell S, Feleten JJ et al (1998) Structure of liquid boron. Phys Rev Lett 81:586–589

    CAS  Google Scholar 

  57. Anselm A, Krishnan Sh, Felten JJ, Price DL (1998) Structure of supercooled liquid silicon. J Phys Cond Matter 10:L73–L78

    Google Scholar 

  58. Di Cicco A, Aquilanti G, Minicucci M et al (1999) Short-range interaction in liquid rhodium probed by x-ray absorption spectroscopy. J Phys Cond Matter 11:L43–L50

    CAS  Google Scholar 

  59. Wei S, Oyanagi H, Liu W et al (2000) Local structure of liquid gallium studied by X-ray absorption fine structure. J Non-Cryst Solids 275:160–168

    CAS  Google Scholar 

  60. Katayama Y, Mizutani T, Utsumi W et al (2000) A first-order liquid–liquid phase transition in phosphorus. Nature 403:170–173

    PubMed  CAS  Google Scholar 

  61. Holland-Moritz D, Schenk T, Bellisent R et al (2002) Short-range order in undercooled Co melts. J Non-Cryst Solids 312–314:47–51

    Google Scholar 

  62. Schenk T, Holland-Moritz D, Simonet V et al (2002) Icosahedral short-range order in deeply undercooled metallic melts. Phys Rev Lett 89:075507

    PubMed  CAS  Google Scholar 

  63. Jakse N, Hennet L, Price DL et al (2003) Structural changes on supercooling liquid silicon. Appl Phys Lett 83:4734–4736

    CAS  Google Scholar 

  64. Salmon PS, Petri I, de Jong PHK et al (2004) Structure of liquid lithium. J Phys Cond Matter 16:195–222

    CAS  Google Scholar 

  65. Wasse JC, Salmon PS (1999) Structure of molten lanthanum and cerium tri-halides by the method of isomorphic substitution in neutron diffraction. J Phys Cond Matter 11:1381–1396

    CAS  Google Scholar 

  66. Iwadate, Suzuki, K, Onda, N et al (2006) Structural changes on supercooling liquid silicon. J Alloys Compd 408–412:248–252

    Google Scholar 

  67. Ensico E, Lombardero M, Dore JC (1986) A RISM analysis of neutron diffraction data for SiCl4/TiCl4 and SnCl4/TiCl4 liquid mixtures. Mol Phys 59:941–952

    Google Scholar 

  68. Funamori N, Tsuji K (2002) Pressure-induced structural change of liquid silicon. Phys Rev Lett 88:255508

    Google Scholar 

  69. Cahoon JR (2004) The first coordination number for liquid metal. Canad J Phys 82:291–301

    CAS  Google Scholar 

  70. Santiso E, Müller EA (2002) Dense packing of binary and polydisperse hard spheres. Mol Phys 100:2461–2469

    CAS  Google Scholar 

  71. Katayama Y, Tsuji K (2003) X-ray structural studies on elemental liquids under high pressures. J Phys Cond Matter 15:6085–6104

    CAS  Google Scholar 

  72. Sanloup C, Guyot F, Gillet P et al (2000) Structural changes in liquid Fe at high pressures and high temperatures from Synchrotron X-ray diffraction. Europhys Lett 52:151–157

    CAS  Google Scholar 

  73. Shen G, Sata N, Taberlet N et al (2002) Melting studies of indium: determination of the structure and density of melts at high pressures and high temperatures. J Phys Cond Matter 14:10533–10540

    CAS  Google Scholar 

  74. Takeda S, Tamaki S, Waseda Y (1985) Electron-ion correlation in liquid metals. J Phys Soc Japan 54:2552–2258

    CAS  Google Scholar 

  75. Takeda S, Tamaki S, Waseda Y, Harada S (1986) Electron’s distribution in liquid zinc and lead. J Phys Soc Japan 55:184–192

    CAS  Google Scholar 

  76. Takeda S, Harada S, Tamaki S, Waseda Y (1988) Electron charge distribution in liquid metals. Z phys Chem NF 157:459–463

    CAS  Google Scholar 

  77. Takeda S, Inui M, Tamaki S et al (1993) Electron charge distribution in liquid Te. J Phys Soc Japan 62:4277–4286

    CAS  Google Scholar 

  78. Takeda S, Inui M, Tamaki S et al (1994) Electron-ion correlation in liquid magnesium. J Phys Soc Japan 63:1794–1802

    CAS  Google Scholar 

  79. Tao DP (2005) Prediction of the coordination numbers of liquid metals. Metallurg Mater Trans A 36:3495–3497

    Google Scholar 

  80. Regan MJ, Kawamoto EH, Lee S et al (1995) Surface layering in liquid gallium: an X-ray reflectivity study. Phys Rev Lett 75:2498–2501

    PubMed  CAS  Google Scholar 

  81. Tostmann H, DiMasi E, Pershan PS et al (1999) X-ray studies on liquid indium:Surface structure of liquid metals and the effect of capillary waves. Phys Rev B 59:783–791

    CAS  Google Scholar 

  82. Shpyrko OG, Grigoriev AY, Steimer Ch et al (2004) Anomalous layering at the liquid Sn surface. Phys Rev B 70:224206

    Google Scholar 

  83. Magnussen OM, Ocko BM, Regan MJ et al (1995) X-ray reflectivity measurements of surface layering in liquid mercury. Phys Rev Lett 75:4444–4447

    Google Scholar 

  84. Shpyrko O, Fukuto M, Pershan P et al (2004) Surface layering of liquids: the role of surface tension. Phys Rev B 69:245423

    Google Scholar 

  85. Stolz M, Winter R, Howells WS (1994) The structural properties of liquid and quenched sulphur II. J Phys Cond Matter 6:3619–3628

    CAS  Google Scholar 

  86. Raty J-Y, Gaspard J-P, Bionducci N et al (1999) On the structure of liquid IV–VI semiconductors. J Non-Cryst Solids 250–252:277–280

    Google Scholar 

  87. Thomas JM (2004) Ultrafast electron crystallography: the dawn of a new era. Angew Chem Int Ed 43:2606–2610

    CAS  Google Scholar 

  88. Sokolowski-Tinten K, Blome C, Dietrich C et al (2001) Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys Rev Lett 87:225701

    PubMed  CAS  Google Scholar 

  89. Rousse A, Rischel C, Fourmaux S et al (2001) Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65–68

    PubMed  CAS  Google Scholar 

  90. Sаmоylоv ОYa (1957) Structure of water solutions of electrolytes and hydration of ionics. Academy of Science of the USSR, Мoscow (in Russian)

    Google Scholar 

  91. Bernal JD, Fowler RH (1933) A theory of water and ionic solution. J Chem Phys 1:515–548

    CAS  Google Scholar 

  92. Hattori T, Taga N, Takasugi Y et al (2002) Structure of liquid GaSb under pressure. J Non-Cryst Solids 312–314:26–29

    Google Scholar 

  93. Malenkov GG (2006) Sructure and dynamics of liquid water. J Struct Chem 47:S1–S31

    CAS  Google Scholar 

  94. Goncharov AF, Goldman N, Fried LE et al (2005) Dynamic ionization of water under extreme conditions. Phys Rev Lett 94:125508

    PubMed  Google Scholar 

  95. Markus Y (1988) Ionic radii in aqueous solutions. Chem Rev 88:1475–1498

    Google Scholar 

  96. Johansson G (1992) Structures of complexes in solution derived from X-ray diffraction measurements. Adv Inorg Chem 39:159–232

    CAS  Google Scholar 

  97. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204

    CAS  Google Scholar 

  98. Blixt J, Glaster J, Mink J et al (1995) Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution. J Am Chem Soc 117:5089–5104

    CAS  Google Scholar 

  99. D’Angelo P, Bottari E, Festa MR et a (1997) Structural investigation of copper(II) chloride solutions using X-ray absorption spectroscopy. J Chem Phys 107:2807–2812

    Google Scholar 

  100. Ramos S, Neilson GW, Barnes AC, Buchanan P (2005) An anomalous x-ray diffraction study of the hydration structures of Cs+ and I in concentrated solutions. J Chem Phys 123:214501

    PubMed  CAS  Google Scholar 

  101. Hofer TS, Randolf BR, Rode BM, Persson I (2009) The hydrated platinum (II) ion in aqueous solution—a combined theoretical and EXAFS spectroscopic study. Dalton Trans 1512–1515

    Google Scholar 

  102. Persson I (2010) Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl Chem 82:1901–1917

    CAS  Google Scholar 

  103. Mähler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425−438

    PubMed  Google Scholar 

  104. Näslund L-Å, Edwards DC, Wernet P et al (2005) X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions. J Phys Chem A 109:5995–6002

    PubMed  Google Scholar 

  105. Drаkin SI (1963) Me−H2O distances in crystal hydrates and radii of ions in aqueous solution. J Struct Chem 4:472–478

    Google Scholar 

  106. Friedman HL, Lewis L (1976) The coordination geometry of water in some salt hydrates. J Solution Chem 5:445–455

    CAS  Google Scholar 

  107. Persson I, Sandström M, Yokoyama H, Chaudhry M (1995) Structure of the solvated strontium and barium ions in aqueous, dimethyl-sulfoxide and pyridine solution, and crystal-structure of strontium and barium hydroxide octahydrate. Z Naturforsch 50:21–37

    CAS  Google Scholar 

  108. Schmid R, Miah AM, Sapunov VN (2000) A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy-entropy compensation and Born radii). Phys Chem Chem Phys 2:97–102

    CAS  Google Scholar 

  109. Torapava N, Persson I, Eriksson L, Lundberg D (2009) Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) hydrates. Inorg Chem 48:11712–11723

    PubMed  CAS  Google Scholar 

  110. Inada Y, Sugimoto K, Ozutsumi K, Funahashi S (1994) Solvation structures of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), and indium(III) ions in 1,1,3,3-tetramethylurea as studied by EXAFS and electronic spectroscopy. Variation of coordination number. Inorg Chem 33:1875–1880

    CAS  Google Scholar 

  111. Ulvenlund S, Wheatley A, Bengtsson L (1995) Spectroscopic investigation of concentrated solutions of gallium(III) chloride in mesitylene and benzene. Dalton Trans 255–263

    Google Scholar 

  112. Inada Y, Hayashi H, Sugimoto K-I, Funahashi S (1999) Solvation structures of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and gallium(III) ions in methanol, ethanol, dimethyl sulfoxide, and trimethyl phosphate as studied by EXAFS and electronic spectroscopy. J Phys Chem A 103:1401–1406

    CAS  Google Scholar 

  113. Lundberg D, Ullström A-S, D’Angelo P, Persson I (2007) A structural study of the hydrated and the dimethylsulfoxide, N, N′-dimethylpropyleneurea, and N, N-dimethylthioformamide solvated iron(II) and iron(III) ions in solution and solid state. Inorg Chim Acta 360:1809–1818

    CAS  Google Scholar 

  114. Thompson H, Wasse JC, Skipper NT et al (2003) Structural studies of ammonia and metallic lithium–ammonia solutions. J Am Chem Soc 125:2572–2581

    PubMed  CAS  Google Scholar 

  115. Hayama S, Skipper NT, Wasse JC, Thompson H (2002) X-ray diffraction studies of solutions of lithium in ammonia: the structure of the metal–nonmetal transition. J Chem Phys 116:2991–2996

    CAS  Google Scholar 

  116. Jacobs H, Barlage H, Friedriszik M (2004) Vergleich der kristallstrukturen der tetraammoniakate von lithiumhalogeniden, LiBr·4NH3 und LiI·4NH3, mit der struktur von tetramethylammoniumiodid, N(CH3)4I. Z anorg allgem Chem 630:645–648

    CAS  Google Scholar 

  117. Wasse JC, Hayama S, Skipper NT et al (2000) The structure of saturated lithium- and potassium-ammonia solutions as studied by neutron diffraction. J Chem Phys 112:7147–7151

    CAS  Google Scholar 

  118. Wasse JC, Howard CA, Thompson H et al (2004) The structure of calcium–ammonia solutions by neutron diffraction. J Chem Phys 121:996–1004

    PubMed  CAS  Google Scholar 

  119. Tokushima T, Harada Y, Takahashi O et al (2008) High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs. Chem Phys Lett 460:387–400

    CAS  Google Scholar 

  120. Röntgen WC (1892) Über die Konstitution des flüssigen Wassers. Ann Phys Chem 45:91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendices

Appendix

7.1.1 Supplementary Tables

Table S7.1 Particle sizes (upper lines, nm) and unit cell volumes per atom or formula unit (in Å3) for macro (V 1) and nano (V 2) crystals
Table S7.2 Structures of liquid МХ halides [7.20–7.28]
Table S7.3 Structures of the liquid halides, oxides, and chalcogenides of the МnХm type
Table S7.4 Bond lengths (Å) of metal halides in aqueous solutions

Supplementary References

  • 7.1 Gu QF, Krauss G, Steurer W et al (2008) Phys Rev Lett 100:045502

  • 7.2 Yu XF, Liu X, Zhang K, Hu ZQ (1999) J Phys Cond Matt 11:937

  • 7.3 Lamber R, Wetjen S, Jaeger NI (1995) Phys Rev B 51:10968

  • 7.4 Solliard C, Flueli M (1985) Surface Sci 156:487

  • 7.5 Boswell FWC (1951) Proc Phys Soc London A 64:465

  • 7.6 Chen B, Penwell D, Benedetti LR et al (2002) Phys Rev B 66:144101

  • 7.7 Wang H, He Y, Chen W et al (2010) J Appl Phys 107:033520

  • 7.8 Zhang J-Y, Wang X-Y, Xiao M et al (2002) Appl Phys Lett 81:2076

  • 7.9 Zhao YH, Zhang K, Lu K (1997) Phys Rev B 56:14322

  • 7.10 Kozhevnikova NS, Rempel AA, Hergert F, Mager A (2009) Thin Solid Films 517:2586

  • 7.11 Ma Y, Cui Q, Shen L, He Zh (2007) J Appl Phys 102:013525

  • 7.12 Lan YC, Chen XL, Xu YP et al (2000) Mater Res Bull 35:2325

  • 7.13 Anspoks A, Kuzmin A, Kalinko A, Timoshenko J (2010) Solid State Commun 150:2270

  • 7.14 Beck Ch, Ehses KH, Hempelmann R, Bruch Ch (2001) Scripta Mater 44:2127

  • 7.15 Kuznetsov AY, Machado R, Gomes LS et al (2009) Appl Phys Lett 94:193117

  • 7.16 Acuna LM, Lamas DG, Fuentes RO et al (2010) J Appl Cryst 43:227

  • 7.17 Cisneros-Morales MC, Aita CR (2010) Appl Phys Lett 96:191904

  • 7.18 Smith MB, Page K, Siegrist T et al (2008) J Am Chem Soc 130:6955

  • 7.19 Biswas KS, Muthu DV, Sood AK et al (2007) J Phys Cond Matt 19:436214

  • 7.20 Аntоnоv BD (1976) Zh Struct Khim 17:46

  • 7.21 Ohno H, Fuzukawa K, Takagi R et al (1983) J Chem Soc Faraday Trans II 79:463

  • 7.22 Rovere M, Tosi MP (1986) Rep Progr Phys 49:1001

  • 7.23 Li J-C, Titman J, Carr G et al (1989) Physica B 156–157:168

  • 7.24 Shirakawa Y, Saito M, Tamaki S et al (1991) J Phys Soc Japan 60:2678

  • 7.25 Takeda S, Inui M, Tamaki S et al (1994) J Phys Soc Japan 63:1794

  • 7.26 Stolz M, Winter R, Howells WS (1994) J Phys Cond Matter 6:3619

  • 7.27 Di Cicco A, Rosolen MJ, Marassi R et al (1996) J Phys Cond Matter 8:10779

  • 7.28 Drewitt JWE, Salmon PS, Takeda S, Kawakita Y (2009) J Phys Cond Matt 21:755104

  • 7.29 Enderby JE, Barnes AC (1990) Rep Progr Phys 53:85

  • 7.30 Allen DA, Howe RA, Wood ND, Howells WS (1991) J Chem Phys 94:5071

  • 7.31 Takagi Y, Itoh N, NakamuraT (1989) J Chem Soc Faraday Trans I 85:493

  • 7.32 Biggin S, Gray M, Enderby JE (1984) J Phys C 17:977

  • 7.33 Wood N D, Howe RA (1988) J Phys C 21:3177

  • 7.34 Badyal YS, Allen DA, Howe RA (1994) J Phys Cond Matter 6:10193

  • 7.35 Saboungi M-L, Howe MA, Price DL (1993) Mol Phys 79:847

  • 7.36 Wasse JC, Salmon PS (1999) J Phys Cond Matter 11:2171

  • 7.37 Wasse JC, Salmon PS (1999) J Phys Cond Matter 11:1381

  • 7.38 Misawa M, Fukunaga T, Suzuki K (1990) J Chem Phys 92:5486

  • 7.39 Batsanov SS (1986) Experimental foundations of structural chemistry. Stаndаrty Мoscow (in Russian)

  • 7.40 Okamoto Y, Kobayashi F, Ogawa T (1998) J Alloys Comp 271–273:355

  • 7.41 Mort KA, Johnson KA, Cooper DL et al (1998) J Chem Soc Faraday Trans 94:765

  • 7.42 Bakó I, Dore JC, Huxley DW (1997) Chem Phys 216:119

  • 7.43 Ensico E, Lombardero M, Dore JC (1986) Mol Phys 59:941

  • 7.44 Ludwig KF, Warburton WK, Wilson L, Bienenstock AI (1987) J Chem Phys 87:604

  • 7.45 Fuchizaki K, Kohara S, Ohishi Y, Hamaya N (2007) J Chem Phys 127:064504

  • 7.46 Le Coq D, Bytchkov A, Honkimäki V, Bytchkov E (2008) J Non-Cryst Solids 354:259

  • 7.47 Price DL, Saboungi M-L, Susman S et al (1993) J Phys Cond Matter 5:3087

  • 7.48 Barnes AC, Guo C (1994) J Phys Cond Matter 6:A229

  • 7.49 Gaspard J-P, Raty J-Y, Céolin R, Bellissent R (1996) J Non-Cryst Solids 205–207:75

  • 7.50 Raty J-Y, Gaspard J-P, Bionducci N et al (1999) J Non-Cryst Solids 250–252:277

  • 7.51 Nguyen VT, Gay M, Enderby JE et al (1982) J Phys C 15:4627

  • 7.52 Hattori T, Taga N, Takasugi Y et al (2002) J Non-Cryst Solids 312–314:26

  • 7.53 Hattori T, Tsuji K, Taga N et al (2003) Phys Rev B 68:224106

  • 7.54 Misawa M (1990) J Non-Cryst Solids 122:33

  • 7.55 Landron C, Hennet L, Jenkins TE et al (2001) Phys Rev Lett 86:4839

  • 7.56 Buchanan P, Barnes AC, Whittle KR et al (2001) Mol Phys 99:767

  • 7.57 Kamiya K, Yoko T, Itoh Y, Sakka S (1986) J Non-Cryst Solids 79:285

  • 7.58 Susman S, Volin KJ, Montague DG, Price DL (1990) J Non-Cryst Solids 125:168

  • 7.59 Takeda S, Inui M, Kawakita Y et al (1995) Physica B 213–214:499

  • 7.60 Qi J, Liu JF, He Y et al (2011) J Appl Phys 109:063520

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Amorphous State. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_7

Download citation

Publish with us

Policies and ethics