Skip to main content

Crystal Structure: Real

  • Chapter
  • First Online:
  • 2914 Accesses

Abstract

An ideal crystal is thought of as an infinite repetition of an elementary unit cell in three dimensions, described by the crystal lattice. The real structure of even a good-quality crystal is far from this ideal picture; the periodicity is perturbed by thermal motion of atoms, static disorder (local or ‘global’) in the arrangement of atoms, chemical impurities and/or violations of stoichiometry of the main component, and defects of various types. Thermal motion is discussed in relation to thermal expansion (normal and negative) and melting of solids, which occurs (according to Lindemann’s hypothesis) when the amplitude reaches certain critical fraction (L-factor) of interatomic distances. A similar approach can be extended to boiling. Defects are classified according to their dimensionality: point (vacancy or interstitial atom), linear (edge or screw dislocation), planar (e.g. phase boundary) and bulk (e.g. voids) and type (Frenkel or Shottky). High concentration of defects created by shock compression, can affect the symmetry of crystals. All defects tend to depress and blur the melting point, as illustrated by nano-materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys Cond Matt 17:R217–R252

    CAS  Google Scholar 

  2. Miller W, Smith CW, Mackenzie DS, Evans KE (2009) Negative thermal expansion: a review. J Mater Sci 44:5441–5451

    CAS  Google Scholar 

  3. Blackman M (1958) On negative volume expansion coefficients. Phil Mag 3:831–838

    CAS  Google Scholar 

  4. Goodman RM, Farrell HH, Samorjai GA (1968) Mean displacement of surface atoms in palladium and lead single crystals. J Chem Phys 48:1046

    CAS  Google Scholar 

  5. Van Hove MA (2004) Enhanced vibrations at surfaces with back-bonds nearly parallel to the surface. J Phys Chem B108:14265–14269

    Google Scholar 

  6. Vogt J (2007) Tensor LEED study of the temperature dependent dynamics of the NaCl(100) single crystal surface. Phys Rev B75:125–423

    Google Scholar 

  7. Härtel S, Vogt J, Weiss H (2010) Relaxation and thermal vibrations at the NaF(100) surface. Surf Sci 604:1996–2001

    Google Scholar 

  8. Hazen RM, Downs RT, Prewitt CT (2000) Principles of comparative crystal chemistry. Rev Miner Geochem 41:1–33

    Google Scholar 

  9. Hazen RM, Finger IW (1982) Comparative crystal chemistry: temperature, composition and the variation of crystal structure. Wiley, New York

    Google Scholar 

  10. Hazen RM, Finger IW (1987) High-temperature crystal chemistry of phenakite and chrysoberyl. Phys Chem Minerals 14:426–434

    Google Scholar 

  11. Sun CC (2007) Thermal expansion of organic crystals and precision of calculated crystal density. J Pharm Sci 96:1043–1052

    PubMed  CAS  Google Scholar 

  12. Hofmann DWM (2002) Fast estimation of crystal densities. Acta Cryst B57:489–493

    Google Scholar 

  13. Sutherland W (1891) A kinetic theory of solids, with an experimental introduction. Philos Mag 32:31–43, 215–225, 524–553

    Google Scholar 

  14. Lindemann FA (1910) The calculation of molecular natural frequencies. Phys Z 11:609–612

    CAS  Google Scholar 

  15. Ledbetter H (1991) Atomic frequency and elastic constants. Z Metallkunde 82:820–822

    CAS  Google Scholar 

  16. Batsanov SS (2009) The dynamic criteria of melting-crystallization. Russ J Phys Chem A83:1836–1841

    Google Scholar 

  17. Batsanov SS (2005) Metal electronegativity calculations from spectroscopic data. Russ J Phys Chem 79:725–731

    CAS  Google Scholar 

  18. Smirnov BM (1993) Mechanisms of melting of rare gas solids. Physica Scripta 48:483–486

    CAS  Google Scholar 

  19. Runeberg N, Pyykko P (1998) Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: the van der Waals properties of radon. Int J Quantum Chem 66:131–140

    CAS  Google Scholar 

  20. Batsanov SS (1998) Some characteristics of van der Waals interaction of atoms. Russ J Phys Chem 72:894–897

    Google Scholar 

  21. Simon F (1934) Behaviour of condensed helium near absolute zero. Nature 133:529

    CAS  Google Scholar 

  22. Slater JC, Kirkwood JG (1931) The van der Waals forces in gases. Phys Rev 37:682–697

    CAS  Google Scholar 

  23. Cambi R, Cappelletti D, Liuti G, Pirani F (1991) Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J Chem Phys 95:1852–1861

    CAS  Google Scholar 

  24. Minemoto S, Tanji H, Sakai H (2003) Polarizability anisotropies of rare gas van der Waals dimers studied by laser-induced molecular alignment. J Chem Phys 119:7737–7740

    CAS  Google Scholar 

  25. Deiglmayr J, Aymar M, Wester R et al (2008) Calculations of static dipole polarizabilities of alkali dimers. J Chem Phys 129:064–309

    Google Scholar 

  26. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  27. Allen MJ, Tozer DJ (2002) Helium dimer dispersion forces and correlation potentials in density functional theory. J Chem Phys 117:11113–11120

    CAS  Google Scholar 

  28. Slater JC (1972) Hellmann-Feynman and virial theorems in the Xα method. J Chem Phys 57:2389–2396

    CAS  Google Scholar 

  29. Bader RFW, Hernandez-Trujillo J, Cortes-Guzman F (2007) Chemical bonding: from Lewis to atoms in molecules. J Comput Chem 28:4–14

    PubMed  CAS  Google Scholar 

  30. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A113:10391–10396

    Google Scholar 

  31. Bader RFW (2010) Definition of molecular structure: by choice or by appeal to observation? J Phys Chem A114:7431–7444

    Google Scholar 

  32. Waseda Y (1980) The structure of non-crystalline materials, McGraw-Hill, New York

    Google Scholar 

  33. Blairs S (2006) Correlation between surface tension, density, and sound velocity of liquid metals. J Coll Interface Sci 302:312–314

    CAS  Google Scholar 

  34. Blairs S (2006) Temperature dependence of sound velocity in liquid metals. Phys Chem Liquids 44:597–606

    CAS  Google Scholar 

  35. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Cond Matter 1:1941–1963

    CAS  Google Scholar 

  36. Rose JH, Smith JR, Guinea F, Ferrante J (1984) Universal features of the equation of state of metals. Phys Rev B29:2963–2969

    Google Scholar 

  37. Batsanov SS (2011) Thermodynamic determination of van der Waals radii of metals. J Molec Struct 990:63–66

    CAS  Google Scholar 

  38. Gitis MB, Mikhailov IG (1968) Calculating velocity of sound in liquid metals. Sov Phys-Acoust 13:473–476

    Google Scholar 

  39. Rodean HC (1974) Evaluation of relations among stress-wave parameters and cohesive energy of condensed materials. J Chem Phys 61:4848–4859

    CAS  Google Scholar 

  40. Frenkel JI (1926) Thermal movement in solid and liquid bodies. Z Phys 35:652–669

    CAS  Google Scholar 

  41. Wagner C, Schottky W (1930) Theory of controlled mixed phases. Z phys Chem 11:163–210

    CAS  Google Scholar 

  42. Kraftmakher Y (1998) Equilibrium vacancies and thermophysical properties of metals. Phys Rep 299:80–188

    Google Scholar 

  43. Batsanov SS (1972) Syntheses under shock-wave pressures. In: Hagenmuller P (ed) Preparative methods in solid state chemistry. Academic, New York

    Google Scholar 

  44. Batsanov SS (1994) Effects of explosions on materials. Springer, New York

    Google Scholar 

  45. Batsanov SS, Zhdan PA, Kolomiichuk VN (1968) Action of explosion on matter. Dynamic compression of single-crystal NaCl. Comb Expl Shock Waves 4:161–163

    Google Scholar 

  46. Batsanov SS, Malyshev EM, Kobets LI, Ivanov VA (1969) Preservation and study of fluorite single-crystals under conditions of dynamic compression. Comb Expl Shock Waves 5:306–308

    Google Scholar 

  47. Decarli PS, Jamieson JC (1959) Formation of an amorphous form of quartz under shock conditions. J Chem Phys 31:1675–1676

    CAS  Google Scholar 

  48. Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    PubMed  CAS  Google Scholar 

  49. Stöffler D (1972) Behavior of minerals under shock compression. Fortschr Miner 49:50–113

    Google Scholar 

  50. Stöffler D (1974) Physical properties of shocked minerals. Fortschr Miner 51:256–289

    Google Scholar 

  51. Moroz EM, Svinina SV, Batsanov SS (1972) Changes in the real structure of certain fluorides as a result of compressive impact. J Struct Chem 13:314–316

    Google Scholar 

  52. Batsanov SS, Kiselev YuM, Kopaneva LI (1979) Polymorphic transformation of ThF4 in shock compression. Russ J Inorg Chem 24:1573–1573

    Google Scholar 

  53. Batsanov SS, Kiselev YuM, Kopaneva LI (1980) Polymorphic transformation of UF4 and CeF4 in shock compression. Russ J Inorg Chem 25:1102–1103

    Google Scholar 

  54. Adadurov GA, Breusov ON, Dremin AN et al (1971) Phase-transitions of shock-compressed t-Nb2O5 and h-Nb2O5. Comb Expl Shock Waves 7:503–506

    Google Scholar 

  55. Adadurov GA, Breusov ON, Dremin AN et al (1972) Formation of a Nb x O2 (0.8 ≤ x ≤1.0) phase under shock compression of niobium pentoxide. Doklady Akademii Nauk SSSR 202:864–867

    Google Scholar 

  56. Syono Y, Kikuchi M, Goto T, Fukuoka K (1983) Formation of rutile-type Ta(IV)O2 by shock reduction and cation-deficient Ta0.8O2 by subsequent oxidation. J Solid State Chem 50:133–137

    CAS  Google Scholar 

  57. Kikuchi M, Kusaba K, Fukuoka K, Syono Y (1986) Formation of rutile-type Nb0.94O2 by shock reduction of Nb2O5. J Solid State Chem 63:386–390

    CAS  Google Scholar 

  58. Batsanov SS, Bokarev VP, Lazarev EV (1989) Influence of shock-wave action on chemical activity. Comb Expl Shock Waves 25:85–86

    Google Scholar 

  59. Batsanov SS, Sazonov VE, Sekoyan SS, Shmakov AS (1989) Effect of shock-thermal treatment on mechanical properties of steels. Propell Expl Pyrotechn 14:238–240

    CAS  Google Scholar 

  60. Thomson W (1871) On the equilibrium of vapour at a curved surface of liquid. Phil Mag 42:448–452

    Google Scholar 

  61. Pawlow P (1909) The dependency of the melting point on the surface energy of a solid body. Z phys Chem 65:545–548

    CAS  Google Scholar 

  62. Ouyang G, Zhu WG, Sun CQ et al (2010) Atomistic origin of lattice strain on stiffness of nanoparticles. Phys Chem Chem Phys 12:1543–1549

    PubMed  CAS  Google Scholar 

  63. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    PubMed  CAS  Google Scholar 

  64. Sun J, Simon SL (2007) The melting behavior of aluminum nanoparticles. Thermochim Acta 463:32–40

    CAS  Google Scholar 

  65. Batsanov SS (2011) Size effect in the structure and properties of condensed matter. J Struct Chem 52:602–615

    CAS  Google Scholar 

  66. Buffat P, Borel J-P (1976) Size effect on melting temperature of gold particles. Phys Rev A13:2287–2298

    Google Scholar 

  67. Zhang DL, Hutchinson JL, Cantor B (1994) Melting behavior of cadmium particles embedded in an aluminum-matrix. J Mater Sci 29:2147–2151

    CAS  Google Scholar 

  68. Goldstein AN (1996) The melting of silicon nanocrystals. Appl Phys A62:33–37

    Google Scholar 

  69. Lai SL, Guo JY, Petrova V et al (1996) Size-dependent melting properties of small tin particles. Phys Rev Lett 77:99–102

    PubMed  CAS  Google Scholar 

  70. Jiang Q, Aya N, Shi FG (1997) Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl Phys A64:627–629

    Google Scholar 

  71. Zhang M, Efremov MY, Schittekatte F et al (2000) Size-dependent melting point depression of nanostructures. Phys Rev B 62:10548

    CAS  Google Scholar 

  72. Batsanov SS, Zolotova ES (1968) Impact synthesis of divalent chromium chalcogenides. Proc Acad Sci USSR Dokl Chem 180:93–96

    Google Scholar 

  73. Jackson CL, McKenna GB (1990) The melting behavior of organic materials confined in porous solids. J Chem Phys 93:9002–9011

    CAS  Google Scholar 

  74. Jackson CL, McKenna GB (1996) Vitrification and crystallization of organic liquids confined to nanoscale pores. Chem Mater 8:2128–2137

    CAS  Google Scholar 

  75. Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:2176–2180

    CAS  Google Scholar 

  76. Lonfat M, Marsen B, Sattler K (1999) The energy gap of carbon clusters studied by scanning tunneling spectroscopy. Chem Phys Lett 313:539–543

    CAS  Google Scholar 

  77. Guisbiers G, Buchaillot L (2009) Modeling the melting enthalpy of nanomaterials. J Phys Chem C113:3566–3568

    Google Scholar 

  78. Zhu YF, Lian JS, Jiang Q (2009) Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials. J Phys Chem C113:16896–16900

    Google Scholar 

  79. Ksiąžek K, Górecki T (2000) Vacancies and a generalised melting curve of alkali halides. High Temp-High Press 32:185–192

    Google Scholar 

  80. Goldschmidt VM (1926) Geochemische Verteilungsgesetze der Elemente. Skrifter Norske Videnskaps-Akad, Oslo

    Google Scholar 

  81. Batsanov SS (1973) Energetic aspect of isomorphism. J Struct Chem 14:72–75

    Google Scholar 

  82. Batsanov SS (1982) Chemical transformation of inorganic substances during shock compression. Zhurnal Neorganicheskoi Khimii 27:1903–1905

    CAS  Google Scholar 

  83. Parker LJ, Atou T, Badding JV (1996) Transition element-like chemistry for potassium under pressure. Science 273:95–97

    PubMed  CAS  Google Scholar 

  84. Vegard L (1921) The constitution of the mixed crystals and the filling of space of the atoms. Z Phys 5:17–26

    CAS  Google Scholar 

  85. Vegard L (1928) X-rays in the service of research on matter. Z Krist 67:239–259

    Google Scholar 

  86. Negrier P, Tamarit JL, Barrio M et al (2007) Monoclinic mixed crystals of halogenomethanes CBr4-nCln (n = 0,…, 4). Chem Phys 336:150–156

    CAS  Google Scholar 

  87. Urusov VS (1992) Geometric model for deviations from Vegard’s law. J Struct Chem 33:68–79

    Google Scholar 

  88. Batsanov SS (1986) Experimental foundation of structural chemistry. Standarty, Moscow (in Russian)

    Google Scholar 

  89. Mikkelsen JC, Boyce JB (1983) Extended X-ray-absorption fine structure study of Ga1 − xInxAs random solid solutions. Phys Rev B28:7130–7140

    Google Scholar 

  90. Boyce JB, Mikkelsen JC (1985) Local structure of ionic solid-solutions—extended x-ray absorption fine-structure study. Phys Rev B31:6903–6905

    Google Scholar 

  91. Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex materials. Pergamon, Amsterdam

    Google Scholar 

  92. Billinge SJL, Dykhne T, Juhas P et al (2010) Characterisation of amorphous and nanocrystalline molecular materials by total scattering. Cryst Eng Comm 12:1366–1368

    CAS  Google Scholar 

  93. Di Cicco A, Principi E, Filipponi A (2002) Short-range disorder in pseudobinary ionic alloys. Phys Rev B65:212106

    Google Scholar 

  94. Binsted N, Owens C, Weller MT (2007) Local structure in solid solutions revealed by combined XAFS/Neutron PD refinement. AIP Conf Proc 882:64

    CAS  Google Scholar 

  95. Batsanov SS (1978) Limiting values of ionic-radii. Doklady Acad Sci USSR 238:95–97 (in Russian)

    CAS  Google Scholar 

  96. Batsanov SS (1977) Calculation of the effective charges of atoms in solid solutions. Russ J Inorg Chem 22:941–943

    CAS  Google Scholar 

  97. Goldberg A, McClure D, Pedrini C (1982) Optical-absorption and emission-spectra of Cu+, NaF single-crystals. Chem Phys Lett 87:508–511

    CAS  Google Scholar 

  98. Yang M, Flynn C (1989) Growth of alkali-halides from molecular-beams. Phys Rev Lett 62:2476–2479

    PubMed  CAS  Google Scholar 

  99. Hellman E, Hartford E (1994) Epitaxial solid-solution films of immiscible MgO and CaO. Appl Phys Lett 64:1341–1343

    CAS  Google Scholar 

  100. Mao X, Perry D, Russo R (1993) Ca1−XNiXO catalytic thin-films prepared by pulsed-laser deposition. J Mater Res 8:2400–2403

    CAS  Google Scholar 

  101. Sekine T (1988) Diamond from shocked magnesite. Naturwissenschaften 75:462–463

    CAS  Google Scholar 

  102. Farrell SP, Fleet ME (2000) Evolution of local electronic structure in cubic Mg1−xFexS by S K-edge XANES spectroscopy. Solid State Comm 113:69–72

    Google Scholar 

  103. Pages O, Tite T, Chafi A et al (2006) Raman study of the random ZnTe-BeTe mixed crystal: percolation model plus multimode decomposition. J Appl Phys 99:063–507

    Google Scholar 

  104. Ohtomo A, Kawasaki M, Koida T et al (1998) MgxZn1−xO as a II-VI widegap semiconductor alloy. Appl Phys Lett 72:2466–2468

    CAS  Google Scholar 

  105. Paszkowicz W, Szuszkewicz W, Dunowska E et al (2004) High-pressure structural and optical properties of wurtzite-type Zn1−xMgxSe. J Alloys Compd 371:168–171

    CAS  Google Scholar 

  106. Shen WZ, Tang HF, Jiang LF et al (2002) Band gaps, effective masses and refractive indices of PbSrSe thin films. J Appl Phys 91:192–198

    CAS  Google Scholar 

  107. Shtukenberg AG (2005) Metastability of atomic ordering in lead-strontium nitrate solid solutions. J Solid State Chem 178:2608–2612

    CAS  Google Scholar 

  108. Kong LB, Ma J, Huang H (2002) Preparation of the solid solution Sn0.5Ti0.5O2 from an oxide mixture via a mechanochemical process. J Alloys Compd 336:315–319

    CAS  Google Scholar 

  109. Liferovich RP, Mitchell RH (2004) Geikielite-ecandrewsite solid solutions: synthesis and crystal structures of the Mg1−xZnxTiO3 (0 ≤ x ≤ 0.8) series. Acta Cryst B60:496–501

    CAS  Google Scholar 

  110. Bromiley FA, Boffa-Ballaran T, Zhang M, Langenhorst F (2004) A macroscopic and microscopic investigation of the MgCO3–CdCO3 solid solution. Geochim Cosmochim Acta 68:A87

    Google Scholar 

  111. Fu D, Itoh M, Koshihara S-y (2009) Dielectric, ferroelectric, and piezoelectric behaviors of AgNbO3–KNbO3 solid solution. J Appl Phys 106:104104

    Google Scholar 

  112. Pearson WB (1972) The crystal chemistry and physics of metals alloys. Wiley-Interscience, New York

    Google Scholar 

  113. Sobolev BP (2000) The rare earth trifluorides. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  114. Liu XQ, Wu YJ, Chen XM (2010) Giant dielectric response and polaronic hopping in charge-ordered Nd1.75Sr0.25NiO4 ceramics. Solid State Commun 150:1794–1797

    CAS  Google Scholar 

  115. Fersman AE (1936) Polar isomorphism. Comptes Rendus de l’Academie des Science de l’URSS 10:119–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendices

Appendix

6.1.1 Supplementary Tables

Table S6.1 Critical factors for the threshold of melting in metals, according to Lindemann (δL) and Batsanov (δB). [6.1]
Table S6.2 Experimental values of sound velocity at melting and boiling points (c m and c b in m/s), evaporation heats (ΔН v in kJ/g), coordination numbers of atoms in melts and critical amplitudes of atomic vibrations (as fractions of the bond lengths) at boiling temperatures
Table S6.3 Experimental atomization energies (kJ/mol), the negative pressures of rupture (GPa), the increase of volume V R/V o and the maximum amplitude of vibrations of atoms at the rupture pressure, δ P
Table S6.4 Thermal energy (kJ/mol) and the maximum amplitude of atomic vibrations at boiling points
Table S6.5 Minimum sizes of crystallites (D min), further reduction of which results in amorphization

Supplementary References

  • 6.1 Batsanov SS (2009) Russ J Phys Chem 83:1836

  • 6.2 Boivineau M, Arlès L, Vermeulen JM, Thévenin T (1993) Intern J Thermophysics 14:427

  • 6.3 Boivineau M, Arlès L, Vermeulen JM, Thévenin T (1993) Physica B190:31

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Crystal Structure: Real. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_6

Download citation

Publish with us

Policies and ethics