Skip to main content

Crystal Structure – Idealised

  • Chapter
  • First Online:
Introduction to Structural Chemistry

Abstract

Crystal structures of elements and inorganic compounds, as determined mainly by X-ray diffraction, are systematically reviewed, paying special attention to variable-pressure polymorphism. At ambient conditions, most metals have simple close-packed structures, elemental non-metals form open-framework or molecular crystals. On compression, the latter show strengthening of intermolecular and weakening of intramolecular interactions, leading to cluster, polymeric and ultimately metallic structures, although the predicted close-packed metallic hydrogen remains elusive. On the contrary, main-group metals pass through structures with lower coordination numbers, often of great complexity, due to rearrangement of their electron shells. Structures of binary and ternary compounds are classified by structural types, they can be rationalized in terms of bond valences related to bond distances, and the dependence of the latter on the coordination numbers. The concept of effective (non-integer) coordination number is useful to describe distorted structures. Structures of silicates are governed by silica chains accommodating to large cations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From ‘wurtzite’, because this form stands in the same relation to cubic diamond as wurtzite does to zinc blende.

References

  1. Naray-Szabo I (1969) Inorganic crystal chemistry. Akadémiai Kiado, Budapest

    Google Scholar 

  2. Donohue J (1982) The structure of the elements. RE Krieger Publ Co, Malabar Fl

    Google Scholar 

  3. Young DA (1991) Phase diagrams of the elements. Univ California Press, Oxford

    Google Scholar 

  4. Wells AF (1995) Structural inorganic chemistry, 6th edn. Clarendon Press, Oxford

    Google Scholar 

  5. Lide DR (ed) (2007–2008) Handbook of chemistry and physics, 88th edn. CRC Press, New York

    Google Scholar 

  6. Batsanov SS (1994) Metallic radii of nonmetals. Russ Chem Bull 43:199–201

    Article  Google Scholar 

  7. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell Univ Press, Ithaca

    Google Scholar 

  8. Pauling L (1989) The nature of metals. Pure Appl Chem 61:2171–2174

    Article  CAS  Google Scholar 

  9. Brewer L (1981) The role and significance of empirical and semiempirical correlations. O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals, vol 1. Academic Press, San Francisco

    Google Scholar 

  10. Trömel M, Alig H, Fink L, Lösel J (1995) Zur kristallchemie der Elemente: Schmelztemperatur, Atomvolumen, formale Wertigkeit und Bindungsvalenzen. Z Krist 210:817–825

    Article  Google Scholar 

  11. Trömel M (2000) Metallic radii, ionic radii, and valences of solid metallic elements. Z Naturforsch 55b:243–247

    Google Scholar 

  12. Coulson CA (1961) Valence. Oxford Univ Press, Oxford

    Google Scholar 

  13. Harrison WA (1980) Electronic structure and the properties of solids. The physics of the chemical bond. Freeman, San Francisco

    Google Scholar 

  14. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  15. Burdett J (1997) Chemical bond: a dialog. Wiley, Chichester

    Google Scholar 

  16. McMahon MI, Nelmes RJ (2006) High-pressure structures and phase transformations in elemental metals. Chem Soc Rev 35:943–963

    Article  PubMed  CAS  Google Scholar 

  17. Takemura K, Shimomura O, Fujiihisa H (1991) Cs(VI): a new high-pressure polymorph of cesium above 72 GPa. Phys Rev Lett 66:2014–2017

    Article  PubMed  Google Scholar 

  18. Takemura K, Christensen NE, Novikov DL et al (2000) Phase stability of highly compressed cesium. Phys Rev B61:14399–14404

    Google Scholar 

  19. Nelmes RJ, McMahon MI, Loveday JS, Rekhi S (2002) Structure of Rb-III: novel modulated stacking structures in alkali metals. Phys Rev Lett 88:155503

    Article  PubMed  CAS  Google Scholar 

  20. Shwarz U (2004) Metallic high-pressure modifications of main group elements. Z Krist 219:376–390

    Article  Google Scholar 

  21. Kleykamp H (2000) Thermal properties of beryllium. Thermochim Acta 345:179–1841

    Article  CAS  Google Scholar 

  22. McMahon MI, Bovornratanaraks T, Allan DR et al (2000) Observation of the incommensurate barium-IV structure in strontium phase V. Phys Rev B61:3135–3138

    Google Scholar 

  23. Nelmes RJ, Allan DR, McMahon MI, Belmonte SA (1999) Self-hosting incommensurate structure of barium IV. Phys Rev Lett 83:4081–4084

    Article  CAS  Google Scholar 

  24. Heine V (2000) Crystal structure: as weird as they come. Nature 403:836–837

    Article  PubMed  CAS  Google Scholar 

  25. Takemura K (1994) High-pressure structural study of barium to 90 GPa. Phys Rev B50:16238–16246

    Google Scholar 

  26. Schulte O, Holzapfel WB (1993) Phase diagram for mercury up to 67 GPa and 500 K. Phys Rev B48:14009–14012

    Google Scholar 

  27. Krishnan S, Anselt S, Felten JJ et al (1998) Structure of liquid boron. Phys Rev Lett 81:586–589

    Article  CAS  Google Scholar 

  28. Akahama Y, Nishimura M, Kinoshita K, Kawamura H (2006) Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. Phys Rev Lett 96:045505

    Article  PubMed  CAS  Google Scholar 

  29. Takemura K, Kobayashi K, Arai M (1998) High-pressure bct-fcc phase transition in Ga. Phys Rev B58:2482–2486

    Google Scholar 

  30. Takemura K, Fujihisa H (1993) High-pressure structural phase transition in indium. Phys Rev B47:8465–8470

    Google Scholar 

  31. Schulte O, Holzapfel WB (1997) Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa. Phys Rev B55:8122–8128

    Google Scholar 

  32. Vohra YK, Spencer PhT (2001) Novel γ-phase of titanium metal at megabar pressures. Phys Rev Lett 86:3068–3071

    Article  PubMed  CAS  Google Scholar 

  33. Takemura K, Schwarz U, Syassen K et al (2000) High-pressure Cmca and hcp phases of germanium. Phys Rev B62:R10603-R10606

    Google Scholar 

  34. Desgreniers S, Vohra YK, Ruoff AL (1989) Tin at high pressure: an energy-dispersive X-ray-diffraction study to 120 GPa. Phys Rev B39:10359–10361

    Google Scholar 

  35. Degtyareva O, McMahon MI, Nelmes RJ (2004) High-pressure structural studies of group 15 elements. High Pressure Research 24:319–356

    Article  CAS  Google Scholar 

  36. Ram S (2001) Allotropic phase transformations in hcp, fcc and bcc metastable structures in Co-nanoparticles. Mater Sci Engin A304–306:923–927

    Article  Google Scholar 

  37. Eremets MI, Hemley RJ, Mao H-K, Gregoryanz E (2001) Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411:170–174

    Article  PubMed  CAS  Google Scholar 

  38. Gregoryanz E, Goncharov AF, Hemley RJ, Mao H-K (2002) Raman, infrared, and X-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys Rev B66:224108

    Google Scholar 

  39. Errandonea D, Boehler R, Japel S et al (2006) Structural transformation of compressed solid Ar: an X-ray diffraction study to 114 GPa. Phys Rev B73:092106

    Google Scholar 

  40. Loubeyre P, Jean-Louis M, Silvera I (1991) Density dependence of the intramolecular distance in solid H2: spectroscopic determination. Phys Rev B43:10191–10196

    Google Scholar 

  41. Loubeyre P, Occelli F, LeToullec R (2002) Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416:613–617

    Article  PubMed  CAS  Google Scholar 

  42. Wigner E, Huntington HB (1935) On the possibility of a metallic modification of hydrogen.J Chem Phys 3:764–770

    Article  CAS  Google Scholar 

  43. Min BI, Jensen HJF, Freeman AJ (1986) Pressure-induced electronic and structural phase transitions in solid hydrogen. Phys Rev B33:6383–6390

    Google Scholar 

  44. Hemley RJ, Mao H-K (1988) Phase transition in solid molecular hydrogen at ultrahigh pressures. Phys Rev Lett 61:857–860

    Article  PubMed  CAS  Google Scholar 

  45. Hemley RJ, Dera P (2000) Molecular crystals. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Rev Min Geochem 41:355. MSA, Washington

    Google Scholar 

  46. Powell BM, Heal KM, Torrie BH (1984) The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine. Mol Phys 53:929–939

    Article  CAS  Google Scholar 

  47. San-Miguel A, Libotte H, Gauthier M et al (2007) New phase transition of solid bromine under high pressure. Phys Rev Lett 99:015501

    Article  PubMed  CAS  Google Scholar 

  48. Takemura K, Minomura S, Shimomura O (1982) Structural aspects of solid iodine associated with metallization and molecular dissociation under high pressure. Phys Rev B26:998–1004

    Google Scholar 

  49. Reichlin R, McMahan AK, Ross M et al (1994) Optical, X-ray, and band-structure studies of iodine at pressures of several megabars. Phys Rev B49:3725–3733

    Google Scholar 

  50. Fujihisa H, Fujii Y, Takemura K, Shimomura O (1995) Structural aspects of dense solid halogens under high pressure studied by x-ray diffraction – molecular dissociation and metallization. J Phys Chem Solids 56:1439–1444

    Article  CAS  Google Scholar 

  51. Miguel AS, Libotte H, Gaspard JP et al (2000) Bromine metallization studied by X-ray absorption spectroscopy. Eur Phys J B17:227–233

    Google Scholar 

  52. Takemura K, Sato K, Fujihisa H, Onoda M (2003) Modulated structure of solid iodine during its molecular dissociation under high pressure. Nature 423:971–974

    Article  CAS  Google Scholar 

  53. Kume T, Hiraoka T, Ohya Y et al (2005) High pressure raman study of bromine and iodine: soft phonon in the incommensurate phase. Phys Rev Lett 94:065506

    Article  PubMed  CAS  Google Scholar 

  54. Fujihisa H, Akahama Y, Kowamura H et al (2006) O8 cluster structure of the epsilon phase of solid oxygen. Phys Rev Lett 97:085503

    Article  PubMed  CAS  Google Scholar 

  55. Militzer B, Hemley RJ (2006) Crystallography: solid oxygen takes shape. Nature 443:150–151

    Article  PubMed  CAS  Google Scholar 

  56. Lundegaard B, Weck G, McMahon MI et al (2006) Observation of an O8 molecular lattice in the ε phase of solid oxygen. Nature 443:201–204

    Article  PubMed  CAS  Google Scholar 

  57. Shimizu K, Suhara K, Ikumo M et al (1998) Superconductivity in oxygen. Nature 393:767–769

    Article  CAS  Google Scholar 

  58. Goncharov AF, Gregoryanz E, Hemley RJ, Mao H-K (2003) Molecular character of the metallic high-pressure phase of oxygen. Phys Rev B68:100102 (R)

    Google Scholar 

  59. Akahama Y, Kowamura H, Häusermann D et al (1995) New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. Phys Rev Lett 74:4690–4693

    Article  PubMed  CAS  Google Scholar 

  60. Heiny C, Lundegaard LF, Falconi S, McMahon MI (2005) Incommensurate sulfur above 100 GPa. Phys Rev B71:020101(R)

    Google Scholar 

  61. Nakano K, Akahama Y, Kawamura H et al (2001) Pressure-induced metallization and structural transition of orthorhombic Se. Phys Stat Solidi b223:397–400

    Article  Google Scholar 

  62. Keller R, Holzapfel WB, Schulz H (1977) Effect of pressure on the atom positions in Se and Te. Phys Rev B16:4404–4412

    Google Scholar 

  63. Akahama Y, Kobayashi M, Kawamura H (1993) Structural studies of pressure-induced phase transitions in selenium up to 150 GPa. Phys Rev B47:20–26

    Google Scholar 

  64. Kawamura H, Matsui N, Nakahata I et al (1998) Pressure-induced metallization and structural transition of rhombohedral Se. Solid State Commun 108:677–680

    Article  CAS  Google Scholar 

  65. Parthasarathy G, Holzapfel WB (1988) High-pressure structural phase transitions in tellurium. Phys Rev B37:8499–8501

    Google Scholar 

  66. Luo H, Greene RG, Ruoff AL (1993) β-Po phase of sulfur at 162 GPa: X-ray diffraction study to 212 GPa. Phys Rev Lett 71:2943–2946

    Article  PubMed  CAS  Google Scholar 

  67. Eremets MI, Gavriliuk AG, Trojan IA et al (2004) Single-bonded cubic form of nitrogen. Nature Mater 3:558–563

    Article  CAS  Google Scholar 

  68. Eremets MI, Gavriliuk AG, Trojan IA (2007) Single-crystalline polymeric nitrogen. Appl Phys Lett 90:171904

    Article  CAS  Google Scholar 

  69. Ashcroft NW (2004) Hydrogen dominant metallic alloys: high-temperature superconductors? Phys Rev Lett 92:187002

    Article  PubMed  CAS  Google Scholar 

  70. Okudera H, Dinnebier RE, Simon A (2005) The crystal structure of γ-P4, a low temperature modification of white phosphorus. Z Krist 220:259–264

    Article  CAS  Google Scholar 

  71. Simon A, Borrmann H, Horakh J (1997) On the polymorphism of white phosphorus. Chem Ber 130:1235–1240

    Article  CAS  Google Scholar 

  72. Akahama Y, Kawamura H, Carlson S et al (2000) Structural stability and equation of state of simple-hexagonal phosphorus to 280 GPa: phase transition at 262 GPa. Phys Rev B61:3139–3142

    Google Scholar 

  73. Häussermann U (2003) High-pressure structural trends of group 15 elements. Chem Eur J 9:1471–1478

    Article  PubMed  Google Scholar 

  74. Kikegawa T, Iwasaki H (1983) An X-ray diffraction study of lattice compression and phase transition of crystalline phosphorus. Acta Cryst B39:158–164

    CAS  Google Scholar 

  75. Iwasaki H, Kikegawa T (1984) Simple cubic structure as a stable form of phosphorus under high pressure. In: Homan C, MacCrone RK, Whalley E (eds) High pressure in science and technology. North-Holland, New York

    Google Scholar 

  76. Katzke H, Bismayer U, Toledano P (2006) Reconstructive phase transitions between carbon polymorphs: limit states and periodic order-parameters. J Phys Condens Matter 18:5129–5134

    Article  CAS  Google Scholar 

  77. Goresy AE, Donnay G (1968) A new allotropic form of carbon from the Ries crater. Science 161:363–364

    Article  PubMed  CAS  Google Scholar 

  78. Whittaker AG (1978) Carbon: a new view of its high-temperature behavior. Science 200:763–764

    Article  PubMed  CAS  Google Scholar 

  79. Batsanov SS (1994) Equalization of interatomic distances in polymorphous transformations under pressure. J Struct Chem 35:391–393

    Article  Google Scholar 

  80. Grützmacher H, Fässler TF (2000) Topographical analyses of homonuclear multiple bonds between main group elements. Chem Eur J 6:2317–2325

    Article  PubMed  Google Scholar 

  81. Pearson WB (1972) The crystal chemistry and physics of metals alloys. Wiley, New York

    Google Scholar 

  82. Demchyna R, Leoni S, Rosner H, Schwarz U (2006) High-pressure crystal chemistry of binary intermetallic compounds. Z Krist 221:420–434

    Article  CAS  Google Scholar 

  83. Rao CNR, Pisharody KPR (1976) Transition metal sulfides. Progr Solid State Chem 10:207–270

    Article  Google Scholar 

  84. Franzen HF (1978) Structure and bonding in metal-rich compounds: Pnictides, chalcides and halides. Progr Solid State Chem 12:1–39

    Article  CAS  Google Scholar 

  85. Goedkoop JA, Anderson AF (1955) The crystal structure of copper hydride. Acta Cryst 8:118–119

    Article  CAS  Google Scholar 

  86. Yoshiasa A, Koto K, Kanamaru F et al (1987) Anharmonic thermal vibrations in wurtzite-type AgI. Acta Cryst B43:434–440

    CAS  Google Scholar 

  87. Brese NE, Squattrito PJ, Ibers JA (1985) Reinvestigation of the structure of PdS. Acta Cryst C41:1829–1830

    CAS  Google Scholar 

  88. Konczewicz L, Bigenwald P, Cloitre T et al (1996) MOVPE growth of zincblende magnesium sulphide. J Cryst Growth 159:117–120

    Article  CAS  Google Scholar 

  89. Dynowska E, Janik E, Bak-Misiuk J et al (1999) Direct measurement of the lattice parameter of thick stable zinc-blende MgTe layer. J Alloys Compd 286:276–278

    Article  CAS  Google Scholar 

  90. Iwanovski RJ (2001) Comment on the covalent radius of Mn. Chem Phys Lett 350:577–580

    Article  Google Scholar 

  91. Wentzcovitch RM, Cohen ML, Lam PK (1987) Theoretical study of BN, BP, and BAs at high pressures. Phys Rev B36:6058–6068

    Google Scholar 

  92. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815–5875

    Article  CAS  Google Scholar 

  93. Mavropoulos Th, Galanakis I (2007) A review of the electronic and magnetic properties of tetrahedrally bonded half-metallic ferromagnets. J Phys Cond Matter 19:315221

    Article  CAS  Google Scholar 

  94. Suzuki K, Morito H, Kaneko T et al (1993) Crystal structure and magnetic properties of the compound FeN. J Alloys Compd 201:11–16

    Article  CAS  Google Scholar 

  95. Witteman WG, Giorgi AL, Vier DT (1960) The preparation and identification of some intermetallic compounds of polonium. J Phys Chem 64:434–440

    Article  CAS  Google Scholar 

  96. Gregoryanz E, Sanloup Ch, Somayazulu M et al (2004) Synthesis and characterization of a binary noble metal nitride. Nature Mater 3:294–297

    Article  CAS  Google Scholar 

  97. Halder A, Kundu P, Ravishankar N, Ramanath G (2009) Directed synthesis of rocksalt AuCl crystals. J Phys Chem C113:5349–5351

    Google Scholar 

  98. Recio JM, Blanco MA, Luaña V et al (1998) Compressibility of the high-pressure rocksalt phase of ZnO. Phys Rev B58:8949–8954

    Google Scholar 

  99. Desgreniers S (1998) High-density phases of ZnO: structural and compressive parameters. Phys Rev B58:14102–1405

    Google Scholar 

  100. Duan C-G, Sabirianov RF, Mei WN et al (2007) Electronic, magnetic and transport properties of rare-earth monopnictides. J Phys Cond Matt 19:315220

    Article  CAS  Google Scholar 

  101. Pellicer-Porres J, Segura A, Muñoz V et al (2001) Cinnabar phase in ZnSe at high pressure. Phys Rev B65:012109

    Google Scholar 

  102. Christensen AN (1990) A neutron diffraction investigation on single crystals of titanium oxide, zirconium carbide, and hafnium nitride. Acta Chem Scand 44:851–852

    Article  CAS  Google Scholar 

  103. Vaitheeswaran G, Kanchana V, Heathman S et al (2007) Elastic constants and high-pressure structural transitions in lanthanum monochalcogenides from experiment and theory. Phys Rev B75:184108

    Google Scholar 

  104. Gerward L, Olsen JS, Steenstrup S et al (1990) The pressure-induced transformation B1 to B2 in actinide compounds. J Appl Cryst 23:515–519

    Article  CAS  Google Scholar 

  105. Wastin F, Spirlet JC, Rebizant J (1995) Progress on solid compounds of actinides. J Alloys Compd 219:232–237

    Article  CAS  Google Scholar 

  106. Hayashi J, Shirotani I, Hirano K et al (2003) Structural phase transition of ScSb and YSb with a NaCl-type structure at high pressures. Solid State Commun 125:543–546

    Article  CAS  Google Scholar 

  107. Shirotani I, Yamanashi K, Hayashi J et al (2003) Pressure-induced phase transitions of lanthanide monoarsenides LaAs and LuAs with a NaCl-type structure. Solid State Commun 127:573–576

    Article  CAS  Google Scholar 

  108. Menoni CS, Spain IL (1987) Equation of state of InP to 19 GPa. Phys Rev B35:7520–7525

    Google Scholar 

  109. Vohra YK, Weir ST, Ruoff AL (1985) High-pressure phase transitions and equation of state of the III-V compound InAs up to 27 GPa. Phys Rev B31:7344–7348

    Google Scholar 

  110. Uehara S, Masamoto T, Onodera A et al (1997) Equation of state of the rocksalt phase of III–V nitrides to 72 GPa or higher. J Phys Chem Solids 58:2093–2099

    Article  CAS  Google Scholar 

  111. Chen X, Koiwasaki T, Yamanaka S (2001) High-pressure synthesis and crystal structures of β-MNCl (M=Zr and Hf). J Solid State Chem 159:80–86

    Article  CAS  Google Scholar 

  112. Mashimo T, Tashiro S, Toya T et al (1993) Synthesis of the B1-type tantalum nitride by shock compression. J Mater Sci 28:3439–3443

    Article  CAS  Google Scholar 

  113. Yoshida M, Onodera A, Ueno M et al (1993) Pressure-induced phase transition in SiC. Phys Rev B48:10587–10590

    Google Scholar 

  114. Ono S, Kikegawa T, Ohishi Y (2005) A high-pressure and high-temperature synthesis of platinum carbide. Solid State Commun 133:55–59

    Article  CAS  Google Scholar 

  115. Zhou T Schwarz U Hanfland M et al (1998) Effect of pressure on the crystal structure, vibrational modes, and electronic excitations of HgO. Phys Rev B57:153–160

    Google Scholar 

  116. Feldmann C, Jansen M (1993) Cs3AuO, the first ternary oxide with anionic gold. Angew Chem Int Ed 32:1049–1050

    Article  Google Scholar 

  117. Zachwieja U (1993) Einkristallzüchtung und strukturverfeinerung von RbAu und CsAu. Z anorg allgem Chem 619:1095–1097

    Article  CAS  Google Scholar 

  118. Walter D, Karyasa IW (2005) Synthesis and characterization of cobalt monosilicide (CoSi) with CsCl structure stabilized by a β-SiC matrix. Z anorg allgem Chem 631:1285–1288

    Article  CAS  Google Scholar 

  119. Sato-Sorensen Y (1983) Phase transitions and equations of state for the sodium halides: NaF, NaCl, NaBr, and NaI. J Geophys Res B88:3543–3548

    Article  Google Scholar 

  120. Heinz D, Jeanloz R (1984) Compression of the B2 high-pressure phase of NaCl. Phys Rev B30:6045–6050

    Google Scholar 

  121. Hochheimer HD, Strössner K, Hönle V et al (1985) High pressure X-ray investigation of the alkali hydrides NaH, KH, RbH, and CsH. Z phys Chem 143:139–144

    Article  CAS  Google Scholar 

  122. Yagi T (1978) Experimental determination of thermal expansivity of several alkali halides at high pressures. J Phys Chem Solids 39:563–571

    Article  CAS  Google Scholar 

  123. Hofmeister AM (1997) IR spectroscopy of alkali halides at very high pressures: Calculation of equations of state and of the response of bulk moduli to the B1-B2 phase transition. Phys Rev B56:5835–5855

    Google Scholar 

  124. Köhler U, Johannsen PG, Holzapfel WB (1997) Equation-of-state data for CsCl-type alkali halides. J Phys Cond Matter 9:5581–5592

    Article  Google Scholar 

  125. Hull S, Berastegui P (1998) High-pressure structural behavior of silver(I) fluoride. J Phys Cond Matter 10:7945–7956

    Article  CAS  Google Scholar 

  126. Richet P, Mao H-K, Bell PM (1988) Bulk moduli of magnesiowüstites from static compression measurements. J Geophys Res B93:15279–15288

    Article  Google Scholar 

  127. Luo H, Greene RG, Ghandehari K et al (1994) Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys Rev B50:16232–16237

    Google Scholar 

  128. Zimmer H, Winzen H, Syassen K (1985) High-pressure phase transitions in CaTe and SrTe. Phys Rev B32:4066–4070

    Google Scholar 

  129. Luo H, Greene RG, Ruoff AL (1994) High-pressure phase transformation and the equation of state of SrSe. Phys Rev B49:15341–15345

    Google Scholar 

  130. Weir ST, Vohra YK, Ruoff AL (1986) High-pressure phase transitions and the equations of state of BaS and BaO. Phys Rev B33:4221–4226

    Google Scholar 

  131. Grzybowski T, Ruoff AL (1983) High-pressure phase transition in BaSe. Phys Rev B27:6502–6503

    Google Scholar 

  132. Grzybowski T, Ruoff AL (1984) Band-overlap metallization of BaTe. Phys Rev Lett 53:489–492

    Article  CAS  Google Scholar 

  133. Liu H, Mao H-K, Somayazulu M et al (2004) B1-to-B2 phase transition of transition-metal monoxide CdO under strong compression. Phys Rev B70:094114

    Google Scholar 

  134. Gerward L, Olsen JS, Steenstrup S et al (1990) The pressure-induced transformation B1 to B2 in actinide compounds. J Appl Cryst 23:515–519

    Article  CAS  Google Scholar 

  135. Meyer RR, Sloan J, Dunin-Borkowski RE et al (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326

    Article  PubMed  CAS  Google Scholar 

  136. Sloan J, Novotny MC, Bailey SR et al (2000) Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett 329:61–65

    Article  CAS  Google Scholar 

  137. Sloan J, Grosvenor SJ, Friedrichs S et al (2002) A one-dimensional BaI2 chain with five- and six-coordination, formed within a single-walled carbon nanotube. Angew Chem Int Ed 41:1156–1159

    Article  CAS  Google Scholar 

  138. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. Acc Chem Res 35:1054–1062

    Article  PubMed  CAS  Google Scholar 

  139. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun:1319–1332

    Google Scholar 

  140. Hirahara K, Bandow S, Suenaga K et al (2001) Electron diffraction study of one-dimensional crystals of fullerenes. Phys Rev B64:115420

    Google Scholar 

  141. Friedrichs S, Sloan J, Green MLH et al (2001) Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite. Phys Rev B64:045406

    Google Scholar 

  142. Ishikawa K, Isonaga T, Wakita S, Suzuki Y (1995) Structure and electrical properties of Au2S. Solid State Ionics 79:60–66

    Article  CAS  Google Scholar 

  143. von Schnering HG, Chang J-H, Peters K et al (2003) Structure and bonding of the hexameric platinum(II) dichloride, Pt6Cl12 (β-PtCl2). Z anorg allgem Chem 629:516–522

    Article  Google Scholar 

  144. Thiele G, Wegl W, Wochner H (1986) Die Platiniodide PtI2 und Pt3I8. Z anorg allgem Chem 539:141–153

    Article  CAS  Google Scholar 

  145. Thiele G, Steiert M, Wagner D, Wocher H (1984) Darstellung und Kristallstruktur von PtI3, einem valenzgemischten Platin (II, IV)-iodid. Z anorg allgem Chem 516:207–213

    Article  CAS  Google Scholar 

  146. Schnering HG von, Chang J-H, Freberg M et al (2004) Structure and bonding of the mixed-valent platinum trihalides, PtCl3 and PtBr3. Z anorg allgem Chem 630:109–116

    Article  CAS  Google Scholar 

  147. Senin MD, Akhachinski VV, Markushin YuE et al (1993) The production, structure, and properties of beryllium hydride. Inorg Mater 29:1416–1420

    Google Scholar 

  148. Sampath S, Lantzky KM, Benmore CJ et al (2003) Structural quantum isotope effects in amorphous beryllium hydride. J Chem Phys 119:12499–12502

    Article  CAS  Google Scholar 

  149. Wright AF, Fitch AN, Wright AC (1988) The preparation and structure of the α- and β-quartz polymorphs of beryllium fluoride. J Solid State Chem 73:298–304

    Article  CAS  Google Scholar 

  150. Troyanov SI (2000) Crystal modifications of beryllium dihalides BeCl2, BeBr2, and BeI2. Russ J Inorg Chem 45:1481–1486

    Google Scholar 

  151. Chieh C, White MA (1984) Crystal structure of anhydrous zinc bromide. Z Krist 166:189–197

    Article  CAS  Google Scholar 

  152. Fröhling B, Kreiner G, Jacobs H (1999) Synthese und Kristallstruktur von Mangan(II)- und Zinkamid, Mn(NH2)2 und Zn(NH2)2. Z anorg allgem Chem 625:211–216

    Article  Google Scholar 

  153. Hostettler M, Birkedal H, Schwarzenbach D (2002) The structure of orange HgI2. I. Polytypic layer structure. Acta Cryst B58:903–913

    CAS  Google Scholar 

  154. Grande T, Ishii M, Akaishi M et al (1999) Structural properties of GeSe2 at high pressures. J Solid State Chem 145:167–173

    Article  CAS  Google Scholar 

  155. Micoulaut M, Cormier L, Henderson G S (2006) The structure of amorphous, crystalline and liquid GeO2. J Phys Cond Matter 18:R753–R784

    Article  CAS  Google Scholar 

  156. Williams D, Pleune B, Leinenweber K, Kouvetakis J (2001) Synthesis and structural properties of the binary framework C–N compounds of Be, Mg, Al, and Tl. J Solid State Chem 159:244–250

    Article  CAS  Google Scholar 

  157. Jacobs H, Niemann A, Kockelmann W (2005) Tieftemperaturuntersuchungen von Wasserstoffbrückenbindungen in den Hydroxiden β-Be(OH)2 und ε-Zn(OH)2 mit Raman-Spektroskopie sowie Röntgen- und Neutronenbeugung. Z anorg allgem Chem 631:1247–1254

    Article  CAS  Google Scholar 

  158. Donald KJ, Hoffmann R (2006) Solid memory: structural preferences in group 2 dihalide monomers, dimers, and solids. J Am Chem Soc 128:11236–11249

    Article  PubMed  CAS  Google Scholar 

  159. Baur WH, Khan AA (1971) Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Cryst B27:2133–2139

    Google Scholar 

  160. Range K-J, Rau F, Klement U, Heys A (1987) β-PtO2: high pressure synthesis of single crystals and structure refinement. Mater Res Bull 22:1541–1547

    Article  CAS  Google Scholar 

  161. Bolzan AA, Fong C, Kennedy BJ, Howard CJ (1997) Structural studies of rutile-type metal dioxides. Acta Cryst B53:373–380

    CAS  Google Scholar 

  162. Bortz M, Bertheville B, Böttger G, Yvon K (1999) Structure of the high pressure phase γ-MgH2 by neutron powder diffraction. J Alloys Comp 287:L4–L6

    Article  CAS  Google Scholar 

  163. O’Toole NJ, Streltsov VA (2001) Synchrotron X-ray analysis of the electron density in CoF2 and ZnF2. Acta Cryst B57:128–135

    Google Scholar 

  164. Giester G, Lengauer CL, Tillmanns E, Zemann J (2002) Tl2S: Re-determination of crystal structure and stereochemical discussion. J Solid State Chem 168:322–330

    Article  CAS  Google Scholar 

  165. Müller BG (1987) Fluoride mit kupfer, silber, gold und palladium. Angew Chem 99:1120–1135

    Article  Google Scholar 

  166. Beck HP, Dausch W (1989) The refinement of α-USe2, twinning in a SrBr2-type structure. J Solid State Chem 80:3–39

    Article  Google Scholar 

  167. Sichla T, Jacobs H (1996) Single crystal X-ray structure determination on calcium and strontium deuteride. Eur J Solid State Inorg Chem 33:453–461

    CAS  Google Scholar 

  168. Schewe-Miller I, Bötcher P (1991) Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te. Z Krist 196:137–151

    Article  CAS  Google Scholar 

  169. Haines J, Leger JM (1993) Phase transitions in ruthenium dioxide up to 40 GPa: Mechanism for the rutile-to-fluorite phase transformation and a model for the high-pressure behavior of stishovite SiO2. Phys Rev B48:13344–13350

    Google Scholar 

  170. von Sommer H, Hoppe R (1977) Die Kristallstruktur von Cs2S. mit einer Bemerkung über Cs2Se, Cs2Te, Rb2Se und Rb2Te. Z anorg allgem Chem 429:118–130

    Article  CAS  Google Scholar 

  171. Stöwe K, Appel S (2002) Polymorphic forms of rubidium telluride Rb2Te. Angew Chem Int Ed 41:2725–2730

    Article  Google Scholar 

  172. Tzeng CT, Tsuei K-D, Lo W-S (1998) Experimental electronic structure of Be2C. Phys Rev B58:6837–6843

    Google Scholar 

  173. Batsanov SS, Egorov VA, Khvostov YuB (1976) Shock synthesis of difluorides of lantanides. Proc Acad Sci USSR Dokl Chem 227:251–252

    Google Scholar 

  174. Egorov VA, Temnitskii IN, Martynov AI, Batsanov SS (1979) Variation of lanthanides’ valences under shock compression of reacting systems. Russ J Inorg Chem 24:1881–1882

    Google Scholar 

  175. Ito M, Setoyama D, Matsunaga J et al (2006) Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure. J Alloys Comp 426:67–71

    Article  CAS  Google Scholar 

  176. Kalita PE, Sinogeikin SV, Lipinska-Kalita K et al (2010) Equation of state of TiH2 up to 90 GPa: A synchrotron x-ray diffraction study and ab initio calculations. J Appl Phys 108:043511

    Article  CAS  Google Scholar 

  177. Karpov A, Nuss J, Wedig U, Jansen M (2003) Cs2Pt: A platinide (II) exhibiting complete charge separation. Angew Chem Int Ed 42:4818

    Article  CAS  Google Scholar 

  178. Batsanov SS, Kolomijchuk VN (1968) The crystal chemistry of salts with mixed anions. J Struct Chem 9:282–298

    Article  Google Scholar 

  179. Flahaut J (1974) Les structures type PbFCl et type anti-Fe2As des composés ternaires à deux anions MXY. J Solid State Chem 9:124–131

    Article  CAS  Google Scholar 

  180. Beck HP (1976) A study on mixed halide compounds MFX (M=Ca, Sr, Eu, Ba; X=Cl, Br, I) J Solid State Chem 17:275–282

    Article  CAS  Google Scholar 

  181. Burdett JK, Candell E, Miller GJ (1986) Electronic structure of transition-metal borides with the AlB2 structure. J Am Chem Soc 108:6561–6568

    Article  CAS  Google Scholar 

  182. Einstein FWB, Rao PR, Trotter J, Bartlett N (1967) The crystal structure of gold trifluoride. J Chem Soc A 478–482

    Google Scholar 

  183. Benner G, Müller BG (1990) Zur Kenntnis binärer Fluoride des ZrF4-Typs: HfF4 und ThF4. Z anorg allgem Chem 588:33–42

    Article  CAS  Google Scholar 

  184. Marx R, Mahjoub A, Seppelt K, Ibberson R (1994) Time-of-flight neutron diffraction study on the low temperature phases of IF7. J Chem Phys 101:585–593

    Article  CAS  Google Scholar 

  185. Vogt T, Fitch AN, Cockcroft JK (1994) Crystal and molecular structures of rhenium heptafluoride. Science 263:1265–1267

    Article  PubMed  CAS  Google Scholar 

  186. Weiher N, Willnef EA, Figulla-Kroschel C et al (2003) Extended X-ray absorption fine-structure (EXAFS) of a complex oxide structure: a full multiple scattering analysis of the Au L3-edge EXAFS of Au2O3. Solid State Commun 125:317–322

    Article  CAS  Google Scholar 

  187. Åhman J, Svenssson G, Albertsson J (1996) A reinvestigation of β-gallium oxide. Acta Cryst C52:1336–1338

    Google Scholar 

  188. Bärnighausen H, Schiller G (1985) The crystal structure of A-Ce2O3. J Less-Common Met 110:385–390

    Article  Google Scholar 

  189. Wolf R, Hoppe R (1985) Eine Notiz zum A-typ der Lanthanoidoxide: Über Pr2O3. Z anorg allgem Chem 529:61–64

    Article  CAS  Google Scholar 

  190. Müller BG (1997) Synthese binärer und ternärer Fluoride durch Druckfluorierung. Eur J Solid State Inorg Chem 34:627–643

    Google Scholar 

  191. Troyanov SI, Antipin MYu, Struchkov YuT, Simonov MA (1986) Crystal structure of HfI4. Russ J Inorg Chem 31:1080–1082

    Google Scholar 

  192. Bork M, Hoppe R (1996) Zum Aufbau von PbF4 mit Strukturverfeinerung an SnF4. Z anorg allgem Chem 622:1557–1563

    Article  CAS  Google Scholar 

  193. Krämer O, Müller BG (1995) Zur Struktur des Chromtetrafluorids. Z anorg allgem Chem 621:1969–1972

    Article  Google Scholar 

  194. Krebs B, Sinram D (1980) Darstellung, Struktur und Eigenschaften einer neuen Modifikation von NbI5. Z Naturforsch 35b:12–16

    CAS  Google Scholar 

  195. Maslen EN, Streltsov VA, Streltsova NR et al (1993) Synchrotron X-ray study of the electron density in α-Al2O3. Acta Cryst B49:973–980

    CAS  Google Scholar 

  196. Otto H, Baltrusch R, Brandt H-J (1993) Further evidence for Tl32+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3. Physica C215:205–208

    Google Scholar 

  197. Eisenmann B (1992) Crystal structure of α-dialuminium trisulfide, A12S3. Z Krist 198:307–308

    Article  CAS  Google Scholar 

  198. Conrad O, Schiemann A, Krebs B (1997) Die Kristallstruktur von β-Al2Te3. Z anorg allgem Chem 623:1006–1010

    Article  CAS  Google Scholar 

  199. Dismukes JP, White JG (1964) The preparation, properties, and crystal structures of some scandium sulfides in the range Sc2S3-ScS. Inorg Chem 3:1220–1228

    Article  CAS  Google Scholar 

  200. Zerr A, Miehe G, Riedel R (2003) Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Mater 2:185–189

    Article  CAS  Google Scholar 

  201. Stergiou AC, Rentzeperis PJ (1985) The crystal structure of arsenic selenide, As2Se3. Z Krist 173:185–191

    Article  CAS  Google Scholar 

  202. Stergiou AC, Rentzeperis PJ (1985) Hydrothermal growth and the crystal structure of arsenic telluride, As2Te3. Z Krist 172:139–145

    Article  CAS  Google Scholar 

  203. Voutsas GP, Papazoglou AG, Rentzeperis PJ, Siapkas D (1985) The crystal structure of antimony selenide, Sb2Se3. Z Krist 171:261–268

    Article  CAS  Google Scholar 

  204. Feuutelais Y, Legendre B, Rodier N, Agafonov V (1993) A study of the phases in the bismuth – tellurium system. Mater Res Bull 28:591–596

    Article  Google Scholar 

  205. Weller MT, Hector AL (2000) The structure of the FeIVO4 4− ion. Angew Chem Int Ed 39:4162–4163

    Article  CAS  Google Scholar 

  206. Hadenfeldt C, Herdejürgen H (1988) Darstellung und Kristallstruktur der Calciumpnictidiodide Ca2NI, Ca2PI und Ca2AsI. Z anorg allgem Chem 558:35–40

    Article  CAS  Google Scholar 

  207. Gensini M, Gering E, Benedict U et al (1991) High-pressure X-ray diffraction study of ThOS and UOSe by synchrotron radiation. J Less-Common Met 171:L9-L12

    Article  CAS  Google Scholar 

  208. Beck HP, Dausch W (1989) Die Verfeinerung der Kristallstruktur von ThOTe. Z anorg allgem Chem 571:162–164

    Article  CAS  Google Scholar 

  209. Jumas J-C, Olivier-Fourcade J, Ibanez A, Philippot E (1986) 121Sb Mössbauer studies on some antimony III chalcogenides and chalcogenohalides. Application to the structural approach of sulfide glasses. Hiperfine Interact 28:777–780

    Article  CAS  Google Scholar 

  210. Mootz D, Merschenz-Quack A (1988) Structures of sulfuryl halides: SO2F2,SO2CIF and SO2Cl2. Acta Cryst C44:924–925

    CAS  Google Scholar 

  211. Chen X, Fukuoka H, Yamanaka S (2002) High-pressure synthesis and crystal structures of β-MNX (M=Zr, Hf; X=Br, I). J Solid State Chem 163:77–83

    Article  CAS  Google Scholar 

  212. Batsanov SS (1977) Calculation of the effective charges of atoms in solid solutions. Russ J Inorg Chem 22:941–943

    Google Scholar 

  213. Leoni S, Zahn D (2004) Putting the squeeze on NaCl: modelling and simulation of the pressure driven B1-B2 phase transition. Z Krist 219:339–344

    Article  CAS  Google Scholar 

  214. Bеlov NV (1986) Essays on structural crystallography. Nauka, Moscow (in Russian)

    Google Scholar 

  215. Drobot DV, Pisarеv ЕA (1983) Interrelations between the structures of halogenides and oxides of heavy transition metals. Koordinatsionnaya Khimiya 9:1273–1283 (in Russian)

    CAS  Google Scholar 

  216. Burdett JK, Lee S (1983) Peierls distortions in two and three dimensions and the structures of AB solids. J Am Chem Soc 105:1079–1083

    Article  CAS  Google Scholar 

  217. Burdett JK (1993) Some electronic aspects of structural maps. J Alloys Compd 197:281–289

    Article  CAS  Google Scholar 

  218. Müller U (2002) Kristallpackungen mit linear koordinierten Atomen. Z anorg allgem Chem 628:1269–1278

    Article  Google Scholar 

  219. Vegas A, Jansen M (2002) Structural relationships between cations and alloys; an equivalence between oxidation and pressure. Acta Cryst B58:38–51

    CAS  Google Scholar 

  220. Vegas A, Santamaria-Perez D (2003) The structures of ZrNCl, TiOCl and AlOCl in the light of the Zintl-Klemm concept. Z Krist 218:466–469

    Article  CAS  Google Scholar 

  221. Smirnov IA, Oskotskii VS (1978) Semiconductor-metal phase transition in rare-earth semiconductors (samarium monochalcogenides). Sov Phys Uspekhi 21:117–140

    Article  Google Scholar 

  222. Batsanov SS (1988) Correspondence berween the physical and the chemical compression of substances. Russ J Phys Chem 62:265–266

    Google Scholar 

  223. Werner A (1893) Beitrag zur Konstitution anorganischer Verbindungen. Z anorg Chem 3:267–330

    Article  Google Scholar 

  224. Pfeifer P (1915) Die Kristalle als Molekülverbindungen. Z anorg allgem Chem 92:376–380

    Article  Google Scholar 

  225. Riss A, Blaha P, Schwarz K, Zemann J (2003) Theoretical explanation of the octahedral distortion in FeF2 and MgF2. Z Krist 218:585–589

    Article  CAS  Google Scholar 

  226. Baur WH (1961) Uber die Verfeinerung der Kristallstrukturbestimmung einiger vertreter des Rutiltyps. III. Zur Gittertheories des Rutiltyps. Acta Cryst 14:209–213

    Article  CAS  Google Scholar 

  227. Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Cryst 11:184–190

    Article  CAS  Google Scholar 

  228. Laves F (1967) Space limitation on the geometry of the crystal structures of metals and intermetallic compounds. Phase transition in metals alloys. In: Rudman PS, Stringer J, Jaffee RI (eds) Phase stability in metals and alloys. McGraw-Hill, NewYork

    Google Scholar 

  229. Serezhkin VH, Mikhailov YuN, Buslaev YuA (1997) The method of intersecting spheres for determination of coordination numbers of atoms in crystal structures. Russ J Inorg Chem 42:1871–1910

    Google Scholar 

  230. Blatov VA, Kuzmina ЕЕ, Sеrezhkin VN (1998) The size of halogen atoms in the structure of molecular crystals. Russ J Phys Chem 72:1284–1287

    Google Scholar 

  231. Wieting J (1967) 69 In: Schulze GER (ed) Metallphysik. Akademie, Berlin

    Google Scholar 

  232. Trömel M (1986) The crystal-chemistry of irregular coordinations. Z Krist 174:196–197

    Google Scholar 

  233. Hoppe R (1970) Die Koordinationszahl – ein “anorganisches Chamäleon”. Angew Chem 82:7–16

    Article  Google Scholar 

  234. Mehlhorn B, Hoppe R (1976) Neue hexafluorozirkonate (IV): BaZrF6, PbZrF6, EuZrF6, SrZrF6. Z anorg allgem Chem 425:180–188

    Article  CAS  Google Scholar 

  235. Hoppe R (1979) Effective coordination numbers and mean active fictive ionic radii. Z Krist 150:23–52

    Article  CAS  Google Scholar 

  236. Brown ID, Wu KK (1976) Empirical parameters for calculating cation–oxygen bond valences. Acta Cryst B32:1957–1959

    CAS  Google Scholar 

  237. Batsanov SS (1977) Effective coordination number of atoms in crystals. Russ J Inorg Chem 22:631–634

    Google Scholar 

  238. Brunner GO (1977) A definition of coordination and its relevance in the structure types AlB2 and NiAs. Acta Cryst A33:226–227

    CAS  Google Scholar 

  239. Beck HP (1981) High-pressure polymorphism of BaI2. Z Naturforsch 36b:1255–1260

    CAS  Google Scholar 

  240. Carter FL (1978) Quantifying the concept of coordination number. Acta Cryst B34:2962–2966

    CAS  Google Scholar 

  241. Batsanov SS (1983) On the meaning and calculation techniques of effective coordination numbers. Koordinatsionnaya Khimiya 9:867 (in Russian)

    CAS  Google Scholar 

  242. Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B7:3767–3777

    Google Scholar 

  243. Tanaka K (1989) Structural phase transitions in chalcogenide glasses. Phys Rev B39:1270–1279

    Google Scholar 

  244. Asbrink S, Waskowska A (1991) CuO: X-ray single-crystal structure determination at 196 K and room temperature. J Phys Cond Matter 3:8173–8180

    Article  Google Scholar 

  245. Goldschmidt VM (1929) Crystal structure and chemical constitution. Trans Faraday Soc 25:253–283

    Article  CAS  Google Scholar 

  246. Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026

    Article  CAS  Google Scholar 

  247. Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553

    Article  CAS  Google Scholar 

  248. Brown ID, Shannon RD (1973) Empirical bond-strength–bond-length curves for oxides. Acta Cryst A29:266–282

    Google Scholar 

  249. Zachariasen WH (1978) Bond lengths in oxygen and halogen compounds of d and f elements. J Less-Common Met 62:1–7

    Article  CAS  Google Scholar 

  250. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst B41:244–247

    CAS  Google Scholar 

  251. Zocchi F (2006) Accurate bond valence parameters for M–O bonds (M=C, N, La, Mo, V). Chem Phys Lett 421:277–280

    Article  CAS  Google Scholar 

  252. Slupecki O, Brown ID (1982) Bond-valence–bond-length parameters for bonds between cations and sulfur. Acta Cryst B38:1078–1079

    CAS  Google Scholar 

  253. Bart JCJ, Vitarelli P (1983) Valence balance of magnesium in mixed (Cl, O) environments. Inorg Chim Acta 73:215–220

    Article  CAS  Google Scholar 

  254. Trömel M (1983) Empirische Beziehungen zu den Bindungslängen in Oxiden. 1. Die Nebengruppenelemente Titan bis Eisen. Acta Cryst B39:664–669

    Google Scholar 

  255. Trömel M (1984) Empirische Beziehungen zu den Bindungslängen in Oxiden. 2. Leichtere hauptgruppenelemente sowie kobalt, nickel und kupfer. Acta Cryst B40:338–342

    Google Scholar 

  256. Trömel M (1986) Empirische Beziehungen zu den Bindungslängen in Oxiden. 3. Die offenen Koordinationen um Sn, Sb, Te, I und Xe in deren niederen Oxidationsstufen. Acta Cryst B42:138–141

    Google Scholar 

  257. O’Keeffe M (1989) The prediction and interpretation of bond lengths in crystals. Structure and Bonding 71:162–190

    Google Scholar 

  258. Efremov VA (1990) Characteristic features of the crystal chemistry of lanthanide molybdates and tungstates. Russ Chem Rev 59:627–642

    Article  Google Scholar 

  259. Abramov YuA, Tsirelson VG, Zavodnik VE et al (1995) The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Cryst B51:942–951

    CAS  Google Scholar 

  260. Naskar JP, Hati S, Datta D (1997) New bond-valence sum model. Acta Cryst B53:885–894

    CAS  Google Scholar 

  261. Borel MM, Leclaire A, Chardon J et al (1998) A molybdenyl chloromonophosphate with an intersecting tunnel Structure: Ba3Li2Cl2(MoO)4(PO4)6. J Solid State Chem 141:587–593

    Article  CAS  Google Scholar 

  262. Wood RM, Palenik GJ (1999) Bond valence sums in coordination chemistry using new R0 values. Potassium-oxygen complexes. Inorg Chem 38:1031–1034

    Article  PubMed  CAS  Google Scholar 

  263. Wood RM, Abboud KA, Palenik GJ (2000) Bond valence sums in coordination chemistry. Calculation of the oxidation state of chromium in complexes containing only Cr–O bonds and a redetermination of the crystal structure of potassium tetra(peroxo)chromate (V). Inorg Chem 39:2065–2068

    Article  PubMed  CAS  Google Scholar 

  264. Garcia-Rodriguez L, Rute-Perez A, Piñero JR, González-Silgo C (2000) Bond-valence parameters for ammonium–anion interactions. Acta Cryst B56:565–569

    CAS  Google Scholar 

  265. Shields GP, Raithby PR, Allen FH, Motherwell WDS (2000) The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Cryst B56:455–465

    CAS  Google Scholar 

  266. Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst B57:278–287

    CAS  Google Scholar 

  267. Socchi F (2000) Critical comparison of equations correlating valence and length of a chemical bond. Evaluation of the parameters R1 and B for the Mo–O bond in MoO6 octahedra. Solid State Sci 2:385–389

    Article  Google Scholar 

  268. Socchi F (2001) Some considerations about equations correlating valence and length of a chemical bond. Solid State Sci 3:383–386

    Article  Google Scholar 

  269. Trzescowska A, Kruszynski R, Bartczak TJ (2004) New bond-valence parameters for lanthanides. Acta Cryst B60:174–178

    Google Scholar 

  270. Trzescowska A, Kruszynski R, Bartczak TJ (2006) Bond-valence parameters of lanthanides. Acta Cryst B62:745–753

    Google Scholar 

  271. Brown ID (2002) The chemical bond in inorganic chemistry: the bond valence model. Oxford University Press, Oxford

    Google Scholar 

  272. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197

    CAS  Google Scholar 

  273. Urusov VS (1995) Semi-empirical groundwork of the bond-valence model. Acta Cryst B51:641–649

    CAS  Google Scholar 

  274. Batsanov SS (2010) Dependence of the bond length in molecules and crystals on coordination numbers of atoms. J Struct Chem 51:281–287

    Article  CAS  Google Scholar 

  275. Batsanov SS, Zalivina EN, Derbeneva SS, Borodaevsky VE (1968) Synthesis and properties of CuClBr and CuClI. Doklady Acad Sci USSR 181:599–602 (in Russian)

    CAS  Google Scholar 

  276. Batsanov SS, Sokolova MN, Ruchkin ЕD (1971) Mixed halides of gold. Russ Chem Bull 20:1757–1759

    Article  Google Scholar 

  277. Aurivillius K, Stolhandske C (1980) A reinvestigation of the crystal structures of HgSO4 and CdSO4. Z Krist 153:121–129

    Article  CAS  Google Scholar 

  278. Bircsak Z, Harrison WTA (1998) Barium cobalt phosphate, BaCo2(PO4)2 . Acta Cryst C54:1554–1556

    CAS  Google Scholar 

  279. El-Bali B, Bolte M, Boukhari A et al (1999) BaNi2(PO4)2. Acta Cryst C55:701–702

    CAS  Google Scholar 

  280. Chapuis G, Dusek M, Meyer M, Petricek V (2003) Sodium carbonate revisited. Acta Cryst B59:337–352

    Google Scholar 

  281. Adam A, Ciprus V (1994) Synthese und struktur von [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 und [(Ph3C6H2)TeAuI2]2. Z anorg allgem Chem 620:1678–1685

    Article  Google Scholar 

  282. Troyanov SI, Simonov MA, Kemnitz E et al (1986) Crystal structure of Ba(HSO4)2. Doklady Akademii Nauk SSSR 288:1376–1379

    CAS  Google Scholar 

  283. Sawada H, Takeuchi Y (1990) The crystal structure of barite, β-BaSO4, at high temperatures. Z Krist 191:161–171

    Article  CAS  Google Scholar 

  284. Schefer J, Schwarzenbach D, Fischer P et al (1998) Neutron and X-ray diffraction study of the thermal motion in K2PtCl6 as a function of temperature. Acta Cryst B54:121–128

    Google Scholar 

  285. Hayton TW, Patrick BO, Legzdins P, McNeil WS (2004) The solid-state molecular structure of W(NO)3Cl3 and the nature of its W–NO bonding. Can J Chem 82:285–292

    Article  CAS  Google Scholar 

  286. Kemnitz E, Werner C, Troyanov SI (1996) Reinvestigation of crystalline sulfuric Acid and Oxonium Hydrogensulfate. Acta Cryst C52:2665–2668

    CAS  Google Scholar 

  287. Souhassou M, Espinosa E, Lecomte C, Blessing RH (1995) Experimental electron density in crystalline H3PO4. Acta Cryst B51:661–668

    CAS  Google Scholar 

  288. Lebrun N, Mahe F, Lanuot J et al (2001) A new crystalline phase of nitric acid dehydrate. Acta Cryst C57:1129–1131

    CAS  Google Scholar 

  289. Bertheville B, Herrmannsdörfer T, Yvon K (2001) Structure data for K2MgH4 and Rb2CaH4 and comparison with hydride and fluoride analogues. J Alloys Compd 325:L13–L16

    Article  CAS  Google Scholar 

  290. Hines J, Cambon O, Astier R et al (2004) Crystal structures of α-quartz homeotypes boron phosphate and boron arsenate: structure-property relationships. Z Krist 219:32–37

    Article  Google Scholar 

  291. Feldmann C, Jansen M (1995) Zur kristallchemischen Ähnlichkeit von Aurid- und Halogenid-Ionen. Z anorg allgem Chem 621: 1907–1912

    Article  CAS  Google Scholar 

  292. Bеlov NV (1976) Essays on structural mineralogy. Nedra, Moscow (in Russian)

    Google Scholar 

  293. Fyfe CA, Brouwer DH, Lewis AR et al (2002) Combined solid state NMR and X-ray diffraction investigation of the local structure of the five-coordinate silicon in fluoride-containing as-synthesized STF zeolite. J Am Chem Soc 124:7770–7778

    Article  PubMed  CAS  Google Scholar 

  294. O’Keeffe M (1977) On the arrangements of ions in crystals. Acta Cryst A33:924–927

    Google Scholar 

  295. Melnik M, Sramko T, Dunaj-Jurco M et al (1994) Crystal structures of nickel complexes. Reviews of inorganic chemistry. Rev Inorg Chim 14:1–346

    Article  CAS  Google Scholar 

  296. Tisato F, Refosco F, Bandoli G (1994) Structural survey of technetium complexes. Coord Chem Rev 135/136:325–397

    Article  CAS  Google Scholar 

  297. Holloway CE, Melnik M (1996) Manganese coordination compounds: classification and analysis of crystallographic and structural data. Rev Inorg Chim 16:101–314

    CAS  Google Scholar 

  298. Bau R, Drabnis MH (1997) Structures of transition metal hydrides determined by neutron diffraction. Inorg Chim Acta 259:27–50

    Article  CAS  Google Scholar 

  299. Linert W, Gutmann V (1992) Structural and electronic responses of coordination compounds to changes in the molecule and molecular environment. Coord Chem Rev 117:159–183

    Article  CAS  Google Scholar 

  300. Dvorak MA, Ford RS, Suenram RD et al (1992) Van der Waals vs. covalent bonding: microwave characterization of a structurally intermediate case. J Am Chem Soc 114:108–115

    Article  CAS  Google Scholar 

  301. Degtyareva O (2010) Crystal structure of simple metals at high pressures. High Pressure Res 30:343–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendices

Appendix

5.1.1 Supplementary Tables

Table S5.1 Variation of bond lengths in structures of condensed halogens under heating
Table S5.2 M–X distances (Å) in structures of the NiAs, TiP (*) and MnP (**) types
Table S5.3 M–X distances (Å) in structures of the CdX2 type
Table S5.4 M–X distances (Å) in structures of the FeS2 type [5.14]
Table S5.5 Interatomic distances (Å) in structures of the AlB2 type
Table S5.6 Interatomic distances (Å) in structures of the ScF3 and FeF3 types
Table S5.7 Interatomic distances (Å) in structures of the FeCl3 and AlCl3 types [5.25–5.27]
Table S5.8 Distances (Å) M–X in structures of the UI3 type
Table S5.9 Distances (Å) M–X in structures of the UCl3 type
Table S5.10 Averaged distances (Å) M–X in structures of the YF3 type
Table S5.11 Distances (Å) M–X in structures of the LaF3 type
Table S5.12 Distances (Å) M–X in structures of the Th3P4 type
Table S5.13 Distances (Å) in coordinates of the X–M–Y type
Table S5.14 Distances (Å) in coordinates of the XI–M–XII type
Table S5.15 Changes of bond lengths (Å) in complexes under variation of cations
Table S5.16 Bond lengths (Å) in ternary compounds and initial halides and oxides

Supplementary References

  • 5.1 Onodera A, Mimasaka M, Sakamoto I et al (1999) J Phys Chem Solids 60:167

  • 5.2 Örlygsson G, Harbrecht B (2001) J Am Chem Soc 123:4168

  • 5.3 Hofmeister AM (1997) Phys Rev B56:5835

  • 5.4 Lutz H, Möller H, Schmidt M (1994) J Mol Struct 328:121

  • 5.5 Anderson A, Lo Y, Todoeschuck J (1981) Spectrosc Lett 14:105

  • 5.6 Schneider M, Kuske P, Lutz HD (1992) Acta Cryst B48:761

  • 5.7 Brogan MA, Blake AJ, Wilson C, Gragory DH (2003) Acta Cryst C59:i136

  • 5.8 Merrill L (1982) J Phys Chem Ref Data 11:1005

  • 5.9 Jobic S, Brec R, Rouxel J (1992) J Alloys Comp 178:253

  • 5.10 Podbеrеzskaya NV, Magarill SA, Pervukhina NV, Borisov SV (2001) J Struct Chem 42:654

  • 5.11 Bronsema KD, de Boer JL, Jellinek F (1986) Z anorg allgem Chem 540/541:15

  • 5.12 Pell MA, Mironov YuV, Ybers JA (1996) Acta Cryst C52:1331

  • 5.13 Jobic S, Deniard P, Brec R et al (1990) J Solid State Chem 89:315

  • 5.14 Burdett JK, Candell E, Miller GJ (1986) J Am Chem Soc 108:6561

  • 5.15 Chattopadhyay T, von Schnering H-G, Stansfield RFD, McIntyre GJ (1992) Z Krist 199:13

  • 5.16 Lutz HD, Müller B, Schmidt Th, Stingl Th (1990) Acta Cryst C46:2003

  • 5.17 Williams D, Pleune B, Leinenweber K, Kouvetakis J (2001) J Solid State Chem 159:244

  • 5.18 Donohue PC, Siemons WJ, Gillson JL (1968) J Phys Chem Solids 28:807

  • 5.19 Kjekshus A, Rakke T, Andersen AF (1977) Acta Chem Scand A31:253

  • 5.20 Muller B, Lutz HD (1991) Solid State Commun 78:469

  • 5.21 Brese NE, von Schnering HG (1994) Z anorg allgemChem 620:393

  • 5.22 Takizawa H, Shimada M, Sato Y, Endo T (1993) Mater Lett 18:11

  • 5.23 Daniel P, Bulou A, Leblanc M et al (1990) Mater Res Bull 25:413

  • 5.24 Le Bail A, Jacoboni C, Leblanc M et al (1988) J Solid State Chem77:96

  • 5.25 Fjellvag H, Karen P (1994) Acta Chem Scand 48:294

  • 5.26 Krämer K, Schleid T, Schulze M et al (1989) Z anorg allgem Chem 575:61

  • 5.27 Poineau F, Rodriguez EE, Forster PM et al (2009) J Am Chem Soc 131:910

  • 5.28 Enjalbert R, Galy J (1986) Acta Cryst C42:1467

  • 5.29 McCarron E, Calabrese J (1991) J Solid State Chem 91:121

  • 5.30 Wasse JC, Howard CA, Thompson H et al (2004) J Chem Phys 121:996

  • 5.31 Näslund J, Persson I, Sandström M (2000) Inorg Chem 39:4012

  • 5.32 Olofsson-Mårtensson M, Häussermann U, Tomkinson J, Noréus D (2000) J Am Chem Soc 122:6960

  • 5.33 Batsanov SS (2002) Russ J Coord Chem 28:1

  • 5.34 Allan DR, Marshall WG, Francis DJ et al (2010) J Chem Soc Dalton Trans 39:3736

  • 5.35 Beattie JK, Best SP, Skelton BW, White AH (1981) J Chem Soc Dalton Trans 2105

  • 5.36 Schmid R, Miah AM, Sapunov VN (2000) Phys Chem Chem Phys 2:97

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Crystal Structure – Idealised. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_5

Download citation

Publish with us

Policies and ethics