Skip to main content

Intermolecular Forces

  • Chapter
  • First Online:

Abstract

Three types of intermolecular interactions are considered: van der Waals (vdW), donoracceptor and hydrogen bonds. Are vdW forces caused by instantaneous dipoles created by electrons’ orbiting the nuclei (London)—or by accumulation of electron density between atoms (Feynman, later Bader), broadly similar to covalent bonding? Is crystal packing governed by the closest contacts—or by diffuse interactions of more distant atoms? What is the physical meaning of vdW radii? Are they additive, iso- or anisotropic, and how they relate to atom-atom potential curves? What is special about condensed helium? These and other issues are discussed invoking structures of crystals and of gas-phase dimers (vdW molecules), equations of state, thermal motion, electron density maps, and polarizabilities. There is a correspondence, both in energy and geometry, between covalent and vdW bonding, whereas donor-acceptor interactions are intermediate between them. Hydrogen bonds are reviewed briefly, clearing some common misconceptions which over-estimate their importance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648

    CAS  Google Scholar 

  2. Haaland A (1989) Covalent versus dative bonds to main group metals. Angew Chem Int Ed 28:992–1007

    Google Scholar 

  3. Wang SC (1927) The mutual influence between hydrogen atoms. Phys Z 28:663–666

    Google Scholar 

  4. London F (1930) On the theory and systematic of molecular forces. Z Physik 63:245–279

    CAS  Google Scholar 

  5. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26

    CAS  Google Scholar 

  6. Buckingham AD, Fowler PW, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88:963–988

    CAS  Google Scholar 

  7. Pyykkö P (1997) Strong-shell interactions in inorganic chemistry. Chem Rev 97:597–636

    PubMed  Google Scholar 

  8. Ihm G, Cole MW, Toigo F, Scoles G (1987) Systematic trends in van der Waals interactions: atom-atom and atom-surface cases. J Chem Phys 87:3995–3999

    CAS  Google Scholar 

  9. Czajkowki M, Krause L, Bobkowski R (1994) D1(51P1)¬X0+(51S0) spectra of CdNe and CdAr excited in crossed molecular and laser beams. Phys Rev A49:775–786

    Google Scholar 

  10. Slater JC, Kirkwood JG (1931) The van der Waals forces in gases. Phys Rev 37:682–697

    CAS  Google Scholar 

  11. Cambi R, Cappelletti D, Liuti G, Pirani F (1991) Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J Chem Phys 95:1852–1861

    CAS  Google Scholar 

  12. Andersson Y, Rydberg H (1999) Dispersion coefficients for van der Waals complexes, including C60–C60. Physica Scripta 60:211–216

    CAS  Google Scholar 

  13. Huyskens P (1989) Differences in the structures of highly polar and hydrogen-bonded liquids. J Mol Struct 198:123–133

    CAS  Google Scholar 

  14. Batsanov SS (1994) Van der Waals radii of metals from spectroscopic data. Russ Chem Bull 43:1300–1304

    Google Scholar 

  15. Batsanov SS (1996) Thermodynamic peculiarities of the formation of van der Waals molecules. Dokl Chem (Engl Transl) 349:176–178

    Google Scholar 

  16. Alkorta I, Rozas I, Elguero J (1998) Charge-transfer complexes between dihalogen compounds and electron donors. J Phys Chem A102:9278–9285

    Google Scholar 

  17. Batsanov SS (1998) Some characteristics of van der Waals interaction of atoms. Russ J Phys Chem 72:894–897

    Google Scholar 

  18. Batsanov SS (1998) On the additivity of van der Waals radii. Dalton Trans 1541–1545

    Google Scholar 

  19. Batsanov SS (1966) Refractometry and chemical structure. Van Nostrand, Princeton

    Google Scholar 

  20. Hohm U (1994) Dipole polarizability and bond dissociation energy. J Chem Phys 101:6362–6364

    CAS  Google Scholar 

  21. Müller H (1935) Theory of the photoelastic effect of cubic crystals. Phys Rev 47:947–957

    Google Scholar 

  22. Evans WJ, Silvera IF (1998) Index of refraction, polarizability, and equation of state of solid molecular hydrogen. Phys Rev B57:14105–14109

    Google Scholar 

  23. Shimizu H, Kamabuchi K, Kume T, Sasaki S (1999) High-pressure elastic properties of the orientationally disordered and hydrogen-bonded phase of solid HCl. Phys Rev B59:11727–11732

    Google Scholar 

  24. Shimizu H, Kitagawa T, Sasaki S (1993) Acoustic velocities, refractive index, and elastic constants of liquid and solid CO2 at high pressures up to 6 GPa. Phys Rev B47:11567–11570

    Google Scholar 

  25. Olinger B (1982) The compression of solid CO2 at 296 K to 10 GPa. J Chem Phys 77:6255–6258

    CAS  Google Scholar 

  26. Peterson CF, Rosenberg JT (1969) Index of refraction of ethanol and glycerol under shock. J Appl Phys 40:3044–3046

    Google Scholar 

  27. Smirnov BM (1993) Mechanisms of melting of rare gas solids. Physica Scripta 48:483–486

    CAS  Google Scholar 

  28. Runeberg N, Pyykkö P (1998) Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: the van der Waals properties of radon. Int J Quantum Chem 66:131–140

    CAS  Google Scholar 

  29. Pauling L (1970) General chemistry. 3rd edn. Freeman & Co, San-Francisco

    Google Scholar 

  30. Glyde HR (1976) Solid helium. In: Klein ML, Venables JA (eds) Rare gas solids. Academic, London, 1:121

    Google Scholar 

  31. Batsanov SS (2009) The dynamic criteria of melting-crystallization. Russ J Phys Chem A83:1836–1841

    Google Scholar 

  32. Simon F (1934) Behaviour of condensed helium near absolute zero. Nature 133:529

    CAS  Google Scholar 

  33. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  34. Allen MJ, Tozer DJ (2002) Helium dimer dispersion forces and correlation potentials in density functional theory. J Chem Phys 117:11113–11120

    CAS  Google Scholar 

  35. Slater JC (1972) Hellmann-Feynman and virial theorems in the Xα method. J Chem Phys 57:2389–2396

    CAS  Google Scholar 

  36. Bader RFW, Hernandez-Trujillo J, Cortes-Guzman F (2006) Chemical bonding: from Lewis to atoms in molecules. J Comput Chem 28:4–14

    Google Scholar 

  37. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A113:10391–10396

    Google Scholar 

  38. Bader RFW (2010) Definition of molecular structure: by choice or by appeal to observation? J Phys Chem A114:7431–7444

    Google Scholar 

  39. Batsanov SS (2010) The energy of covalent bonds between nonmetal atoms at van der Waals distances. Russ J Inorg Chem 55:1112–1113

    CAS  Google Scholar 

  40. Mulliken RS (1952) Magic formula, structure of bond energies and isovalent hybridization. J Phys Chem 56:295–311

    CAS  Google Scholar 

  41. Batsanov SS (1998) Estimation of the van der Waals radii of elements with the use of the Morse equation. Russ J Gen Chem 68:495–500

    CAS  Google Scholar 

  42. Minemoto S, Sakai H (2011) Measuring polarizability anisotropies of rare gas diatomic molecules. J Chem Phys 134:214305

    PubMed  Google Scholar 

  43. Deiglmayr J, Aymar M, Wester R et al (2008) Calculations of static dipole polarizabilities of alkali dimers. J Chem Phys 129:064309

    PubMed  Google Scholar 

  44. Muenter JS, Bhattacharjee R (1998) The electric dipole moment of the CO2-CO van der Waals complex. J Mol Spectr 190:290–293

    CAS  Google Scholar 

  45. Pyykkö P, Wang C, Straka M, Vaara J (2007) A London-type formula for the dispersion interactions of endohedral A@B systems. Phys Chem Chem Phys 9:2954–2958

    PubMed  Google Scholar 

  46. Dunitz JD, Gavezzotti A (1999) Attractions and repulsions in molecular crystals: what can be learned from the crystal structures of condensed ring aromatic hydrocarbons. Acc Chem Res 32:677–684

    CAS  Google Scholar 

  47. Gavezzotti A (1994) Are crystal structures predictable? Acc Chem Res 27:309–314

    CAS  Google Scholar 

  48. Allinger NI, Miller MA, Van Catledge FA, Hirsh JA (1967) Conformational analysis.LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrickson-Wiberg method. J Am Chem Soc 89:4345–4357

    CAS  Google Scholar 

  49. Allinger NI, Zhou X, Bergsma J (1994) Molecular mechanics parameters. J Mol Struct Theochem 312:69–83

    Google Scholar 

  50. Dunitz JD, Gavezzotti A (2005) Molecular recognition in organic crystals. Angew Chem Int Ed 44:1766–1786

    CAS  Google Scholar 

  51. Dunitz JD, Gavezzotti A (2009) How molecules stick together in organic crystals. Chem Soc Rev 38:2622–2633

    PubMed  CAS  Google Scholar 

  52. Gavezzotti A (2010) The lines-of-force landscape of interactions between molecules in crystals. Acta Cryst B66:396–406

    CAS  Google Scholar 

  53. Batsanov SS (1999) Calculation of van der Waals radii of atoms from bond distances. J Mol Struct Theochem 468:151–159

    CAS  Google Scholar 

  54. Bürgi H-B (1975) Zur Beziehung zwischen Struktur und Energie: Bestimmung der Stereochemie von Reaktionswegen aus Kristallstrukturdaten. Angew Chem 87:461–475

    Google Scholar 

  55. Batsanov SS (2001) Effect of intermolecular distances on the probability of formation of covalent bonds. Russ J Phys Chem 75:672–674

    Google Scholar 

  56. Beckmann J, Dakternieks D, Duthie A, Mitchell C (2005) The utility of hypercoordination and secondary bonding for the synthesis of a binary organoelement oxo cluster. J Chem Soc Dalton Trans 1563–1564

    Google Scholar 

  57. Harris PM, Mack E, Blake FC (1928) The atomic arrangement in the crystal of orthorhombic iodine. J Am Chem Soc 50:1583–1600

    CAS  Google Scholar 

  58. Zefirov YuV, Zorkii PM (1989) Van der Waals radii and their applications in chemistry. Russ Chem Rev 58:421–440

    Google Scholar 

  59. Zefirov YuV, Zorkii PM (1995) New applications of van der Waals radii in chemistry. Russ Chem Rev 64:415–428

    Google Scholar 

  60. Zefirov YuV (1994) Van der Waals radii and specific interactions in molecular crystals. Crystallogr Rep 39:939–945

    Google Scholar 

  61. Zefirov YuV (1997) Comparative analysis of the systems of van der Waals radii. Crystallogr Rep 42:111–117

    Google Scholar 

  62. Townes СH, Dailey BP (1952) Nuclear quadrupole effects and electronic structure of molecules in the solid state. J Chem Phys 20:35

    CAS  Google Scholar 

  63. Hassel O, Rømming C (1962) Direct structural evidence for weak charge-transfer bonds in solids containing chemically saturated molecules. Quart Rev Chem Soc 16:1–18

    CAS  Google Scholar 

  64. Alcock NW (1972) Secondary bonding to nonmetallic elements. Adv Inorg Chem Radiochem 15:1–58

    CAS  Google Scholar 

  65. Takemura K, Minomura S, Shimomura O et al (1982) Structural aspects of solid iodine associated with metallization and molecular dissociation under high-pressure. Phys Rev B26:998–1004

    Google Scholar 

  66. Маsunоv AE, Zorkii PМ (1992) Donor-acceptor nature of specific nonbonded interactions of sulfur and halogen atoms. Influence on the geometry and packing of molecules. J Struct Chem 33:423–435

    Google Scholar 

  67. Porai-Koshits МА, Kukina GA, Shevchenko YuN, Sergienko VS (1996) Secondary bonds in tetraamine complexes of transition metals. Koordinatsionnaya Khimiya 22:83–105 (in Russian)

    Google Scholar 

  68. Herbstein FH, Kapon M (1975) I16 4 Ions in crystalline (theobromine)2·H2I8. J Chem Soc Chem Commun 677–678

    Google Scholar 

  69. Dvorkin АА, Simonov YuA, Malinovskii TI et al (1977) Molecular and crystal structure of bis(α-benzyldioximato)-di-(b-picoline)iron(III) pentaiodide. Doklady Akademii Nauk SSSR (in Russian) 234:1372–1375

    CAS  Google Scholar 

  70. Passmore J, Taylor P, Widden T, White PS (1979) Preparation and crystal-structure of pentaiodinium hexafluoroantimonate(V) containing I153. Canad J Chem 57:968–973

    CAS  Google Scholar 

  71. Gray LR, Gulliver DJ, Levason W, Webster M (1983) Coordination chemistry of higher oxidation states. Reaction of palladium(II) iodo complexes with molecular iodine. Inorg Chem 22:2362–2366

    CAS  Google Scholar 

  72. Pravez M, Wang M, Boorman PM (1996) Tetraphenyphosphonium triiodide. Acta Cryst C52:377–378

    Google Scholar 

  73. Svensson PH, Kloo L (2003) Synthesis, structure and bonding in polyiodide and metal iodide—iodine systems. Chem Rev 103:1649–1684

    PubMed  CAS  Google Scholar 

  74. Dubler E, Linowski L (1975) Proof of existence of a linear, centrosymmetric polyiodide ion I24— – crystal-structure of Cu(NH3)4 I4. Helv Chim Acta 58:2604–2609

    CAS  Google Scholar 

  75. O’Keefe M, Brese NE (1992) Bond-valence parameters for anion-anion bonds in solids. Acta Cryst В48:152–154

    Google Scholar 

  76. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Evidence for resonance-assisted hydrogen bonding. J Am Chem Soc 116:909–915

    CAS  Google Scholar 

  77. Einstein FW, Jones RDG (1973) Crystal structure containing an antimony-iron s-bond. Inorg Chem 12:1690–1696

    CAS  Google Scholar 

  78. Schiemenz GP (2007) The sum of van der Waals radii—a pitfall in the search for bonding. Z Naturforsch 62b:235–243

    Google Scholar 

  79. Van der Waals JD (1881) Die Kontinuität des gasförmingen und flüssingen Zustandes. JA Barth, Leipzig

    Google Scholar 

  80. Magat M (1932) Uber die „Wirkungsradien“ gebundener Atome und den Orthoeffekt beim Dipolmoment. Z Phys Chem B16:1–18

    CAS  Google Scholar 

  81. Mack E Jr (1932) The spacing of non-polar molecules in crystal lattices. J Am Chem Soc 54:2141–2165

    CAS  Google Scholar 

  82. Pauling L (1939) The nature of the chemical bond, 1st edn. Cornell University Press, Ithaca

    Google Scholar 

  83. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    CAS  Google Scholar 

  84. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic, New York

    Google Scholar 

  85. Dance I (2003) Distance criteria for crystal packing analysis of supramolecular motifs. New J Chem 27:22–27

    CAS  Google Scholar 

  86. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures. J Phys Chem 100:7384–7391

    CAS  Google Scholar 

  87. O’Keeffe M, Brese NE (1991) Atom sizes and bond lengths in molecules and crystals. J Am Chem Soc 113:3226–3229

    Google Scholar 

  88. Brese NE, O’Keefe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197

    CAS  Google Scholar 

  89. Batsanov SS (2001) Relationship between the covalent and van der Waals radii of elements. Russ J Inorg Chem 46:1374–1375

    Google Scholar 

  90. Jones PG, Bembenek E (1992) Low-temperature redetermination of the structures of 3 gold compounds. J Cryst Spectr Res 22:397–401

    CAS  Google Scholar 

  91. Omrani H, Welter R, Vangelisti R (1999) Potassium tetrabromoaurate. Acta Cryst C55:13–14

    Google Scholar 

  92. Schulz LE, Abram U, Straehle J (1997) Synthese, Eigenschaften und Struktur von LiAuI4 und KAuI4. Z Anorg Allgem Chem 623:1791–1795

    Google Scholar 

  93. Hester JR, Maslen EN, Spadaccini N, Ishizawa N, Satow Y (1993) Electron density in potassium tetrachloropalladate (K2PdCl4). Acta Cryst B49:842–846

    CAS  Google Scholar 

  94. Martin DS, Bonte JL, Rush RM, Jacobson RA (1975) Potassium tetrabromopalladate. Acta Cryst B31:2538–2539

    CAS  Google Scholar 

  95. Takazawa H, Ohba S, Saito Y, Sano M (1990) Electron density distribution in crystals of K2[MCl6] (M = Re, Os, Pt) and K2[PtCl4] at 120 K. Acta Cryst B46:166–174

    CAS  Google Scholar 

  96. Kroening RF, Rush RM, Martin DS, Clardy JC (1974) Polarized crystal absorption spectra and crystal structure for potassium tetrabromoplatinate. Inorg Chem 13:1366–1373

    CAS  Google Scholar 

  97. Bronger W, Auffermann G (1995) High-pressure synthesis and structure of Na2PdH4. J Alloys Compd 228:119–121

    CAS  Google Scholar 

  98. Pathaneni SS, Desiraju GR (1993) Database analysis of Au···Au interactions. J Chem Soc Dalton Trans 319–322

    Google Scholar 

  99. Bondi A (1966) Van der Waals volumes and radii of metals in covalent compounds. J Phys Chem 70:3006–3007

    CAS  Google Scholar 

  100. Ganty AJ, Deacon GB (1980) The van der Waals radius of mercury. Inorg Chim Acta 45:L225–L227

    Google Scholar 

  101. Mingos DMP, Rohl AL (1991) Size and shape characteristics of inorganic molecules and ions and their relevance to molecular packing problems. J Chem Soc Dalton Trans 3419–3425

    Google Scholar 

  102. Batsanov SS (2000) The determination of van der Waals radii from the structural characteristics of metals. Russ J Phys Chem 74:1144–1147

    Google Scholar 

  103. Batsanov SS (2000) Intramolecular contact radii similar to van der Waals ones. Russ J Inorg Chem 45:892–896

    Google Scholar 

  104. Nag S, Banerjee J, Datta D (2007) Estimation of the van der Waals radii of the d-block elements using the concept of block valence. New J Chem 31:832–834

    CAS  Google Scholar 

  105. Hu SZ, Zhou ZH, Robertson BE (2009) Consistent approaches to van der Waals radii for the metallic elements. Z Krist 224:375–383

    CAS  Google Scholar 

  106. Batsanov SS (2008) Experimental foundations of structural chemistry. Moscow University Press, Moscow

    Google Scholar 

  107. Batsanov SS (2001) Van der Waals radii of elements. Inorg Mater 37:871–885

    CAS  Google Scholar 

  108. Batsanov SS (1991) Atomic radii of elements. Russ J Inorg Chem 36: 1694–1706

    Google Scholar 

  109. Batsanov SS (1998) Covalent metallic radii. Russ J Inorg Chem 43: 437–439

    Google Scholar 

  110. Cordero B, Gómez V, Platero-Prats AE et al (2008) Covalent radii revisited. J Chem Soc Dalton Trans 2832–2838

    Google Scholar 

  111. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197

    PubMed  Google Scholar 

  112. Mu W-H, Chasse GA, Fang D-C (2008) Test and modification of the van der Waals radii employed in the default PCM model. Intern J Quantum Chem 108:1422–1434

    CAS  Google Scholar 

  113. Badenhoop JK, Weinhold F (1997) Natural steric analysys: ab initio van der Waals radii of atoms and ions. J Chem Phys 107:5422–5432

    CAS  Google Scholar 

  114. Allinger NL (1976) Calculations of molecular structure and energy by force-field methods. Adv Phys Organ Chem 13:1–82

    CAS  Google Scholar 

  115. Allinger NL, Yuh YH, Lii J-H (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 111:8551–8566

    CAS  Google Scholar 

  116. Кitаigоrоdskii АI, Khotsyanоvа ТL, Struchkov YuТ (1953) On the crystal structure of iodine. Z Fizicheskoi Khimii 27:780–781 (in Russian)

    Google Scholar 

  117. Ibberson RM, Moze O, Petrillo C (1992) High resolution neutron powder diffraction studies of the low temperature crystal structure of molecular iodine. Mol Phys 76:395–403

    CAS  Google Scholar 

  118. Jdаnоv GS, Zvоnkоvа ZV (1954) Travaux de Institute de Crystallographie: Communications au III Congress International de Crystallographie 10:79

    Google Scholar 

  119. Nyburg SC, Szymanski JT (1968) The effective shape of the covalently bound fluorine atom. J Chem Soc Chem Commun 669–671

    Google Scholar 

  120. Nyburg SC (1979) ‘Polar flattening’: non-spherical effective shapes of atoms in crystals. Acta Cryst A35:641–645

    CAS  Google Scholar 

  121. Batsanov SS (2000) Anisotropy of atomic van der Waals radii in the gas-phase and condensed molecules. Struct Chem 11:177–183

    CAS  Google Scholar 

  122. Batsanov SS (2001) Anisotropy of the van der Waals configuration of atoms in complex, condensed, and gas-phase molecules. Russ J Coord Chem 27:890–896

    CAS  Google Scholar 

  123. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Cryst B41:274–279

    CAS  Google Scholar 

  124. Nyburg SC, Faerman CH, Pracad L (1987) A revision of van der Waals atomic radii for molecular crystals. II: hydrogen bonded to carbon. Acta Cryst B43:106–110

    CAS  Google Scholar 

  125. Sandor E, Farrow RFC (1967) Crystal structure of solid hydrogen chloride and deuterium chloride. Nature 213:171–172

    CAS  Google Scholar 

  126. Sandor E, Farrow RFC (1967) Crystal structure of cubic deuterium chloride. Nature 215:1265–1266

    CAS  Google Scholar 

  127. Ikram A, Torrie BH, Powell BM (1993) Structures of solid deuterium bromide and deuterium iodide. Mol Phys 79:1037–1049

    CAS  Google Scholar 

  128. Batsanov SS (1999) Van der Waals radii of hydrogen in gas-phase and cond ensed molecules. Struct Chem 10:395–400

    CAS  Google Scholar 

  129. Batsanov SS (1998) Structural features of van der Waals complexes. Russ J Coord Chem 24:453–456

    CAS  Google Scholar 

  130. Batsanov SS (2002) Correlation between the anisotropy of the electronic polarizability of molecules and the anisotropy of the van der Waals atomic radii. Russ J General Chem 72:1153–1156

    CAS  Google Scholar 

  131. Bader RFW, Henneker WH, Cade PE (1967) Molecular charge distribution and chemical binding. J Chem Phys 46:3341–3363

    CAS  Google Scholar 

  132. Bader RFW, Bandrauk AD (1968) Molecular charge distributions and chemical binding. III. The isoelectronic series N2, CO, BF, and C2, BeO, LiF. J Chem Phys 49:1653–1665

    CAS  Google Scholar 

  133. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    CAS  Google Scholar 

  134. Ishikawa M, Ikuta S, Katada M, Sano H (1990) Anisotropy of van der Waals radii of atoms in molecules: alkali-metal and halogen atoms. Acta Cryst B46:592–598

    CAS  Google Scholar 

  135. Montague DG, Chowdhury MR, Dore JC, Reed J (1983) A RISM analysis of structural data for tetrahedral molecular systems. Mol Phys 50:1–23

    CAS  Google Scholar 

  136. Misawa M (1989) Molecular orientational correlation in liquid halogens. J Chem Phys 91:2575–2580

    CAS  Google Scholar 

  137. von Schnering HG, Chang J-H, Peters K et al (2003) Structure and bonding of the hexameric platinum(II) dichloride. Z Anorg Allgem Chem 629:516–522

    Google Scholar 

  138. Thiele G, Wegl W, Wochner H (1986) Die Platiniodide PtI2 und Pt3I8. Z anorg allgem Chem 539:141–153

    CAS  Google Scholar 

  139. Thiele G, Steiert M, Wagner D, Wocher H (1984) Darstellung und Kristallstruktur von PtI3, einem valenzgemischten Platin (II, IV)-iodid. Z Anorg Allgem Chem 516:207–213

    CAS  Google Scholar 

  140. von Schnering, HG, Chang J-H, Freberg M et al (2004) Structure and bonding of the mixed-valent platinum trihalides, PtCl3 and PtBr3. Z Anorg Allgem Chem 630:109–116

    Google Scholar 

  141. Senin MD, Akhachinski VV, Markushin YuE et al (1993) The production, structure, and properties of beryllium hydride. Inorg Mater 29:1416–1420

    Google Scholar 

  142. Sampath S, Lantzky KM, Benmore CJ et al (2003) Structural quantum isotope effect in amorphous beryllium hydride. J Chem Phys 119:12499–12502

    CAS  Google Scholar 

  143. Wright AF, Fitch AN, Wright AC (1988) The preparation and structure of the α-quartz and β-quartz polymorphs of beryllium fluoride. J Solid State Chem 73:298–304

    CAS  Google Scholar 

  144. Batsanov SS (2002) Donor-acceptor mechanism of complex formation. Russ J Coord Chem 28:1–5

    CAS  Google Scholar 

  145. Mulliken RS (1952) Molecular compounds and their spectra. J Phys Chem 56:801–822

    CAS  Google Scholar 

  146. Kurnig IJ, Schneider S (1987) Ab initio investigation of the structure of hydrogen halide-amine complexes in the gas-phase and in a polarizable medium. Int J Quantum Chem 14:47–56

    CAS  Google Scholar 

  147. Brindle CA, Chaban GM, Gerber RB et al (2005) Anharmonic vibrational spectroscopy calculations for (NH3)(HF) and (NH3)(DF). Phys Chem Chem Phys 7:945–954

    PubMed  CAS  Google Scholar 

  148. Leopold KR, Canagaratna M, Phillips JA (1997) Partially bonded molecules from the solid state to the stratosphere. Acc Chem Res 30:57–64

    CAS  Google Scholar 

  149. Takazawa H, Ohba S, Saito Y (1988) Electron-density distribution in crystals of dipotassium tetrachloropalladate(II) and dipotassium hexachloropalladate(IV). Acta Cryst B44:580–585

    CAS  Google Scholar 

  150. Guryanova EN, Goldstein IP, Romm IP (1975) The donor-acceptor bond. Wiley, New York

    Google Scholar 

  151. Timoshkin AY, Suvorov AV, Bettinger HF, Schaefer HF III (1999) Role of the terminal atoms in the donor-acceptor complexes MX3-D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X; Y = N, P, As). J Am Chem Soc 121:5687–5699

    CAS  Google Scholar 

  152. Bucher M (1990) Cohesive properties of silver-halides. J Imag Science 34:89–95

    CAS  Google Scholar 

  153. Schiemenz GP (2006) Peri-interactions in naphthalenes—pyramidalization versus planarization at nitrogen as a measure of peri bond formation. Z Naturforsch 61b:535–554

    Google Scholar 

  154. Schiemenz GP (2002) Dative N→P/Si interactions—a historical approach. Z Anorg Allgem Chem 628:2597–2604

    CAS  Google Scholar 

  155. Schiemenz GP, Näther C, Pörksen S (2003) Peri-interactions in naphthalenes—in search of independent criteria for N→P bonding. Z Naturforsch 58b:663–671

    Google Scholar 

  156. Schiemenz GP (2004) Peri-Interactions in naphthalenes—the significance of linear and T-shaped arrangements. Z Naturforsch 59b:807–816

    Google Scholar 

  157. Grabowski SJ (2011) What is covalency of hydrogen bonding? Chem Rev 111:2597–2625

    PubMed  CAS  Google Scholar 

  158. Desiraju GR (2011) A bond by any other name. Angew Chem Int Ed 50:52–59

    CAS  Google Scholar 

  159. Curtiss LA, Blander M (1988) Thermodynamic properties of gas-phase hydrogen-bonded complexes. Chem Rev 88:827–841

    CAS  Google Scholar 

  160. Nesbitt D (1988) High-resolution infrared spectroscopy of weakly bound molecular complexes. Chem Rev 88:843–870

    CAS  Google Scholar 

  161. Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems. Chem Rev 88:871–897

    CAS  Google Scholar 

  162. Fiadzomor PAY, Keen AM, Grant RB, Orr-Ewing AJ (2008) Interaction energy of water dimers from pressure broadening of near-IR absorption lines. Chem Phys Lett 462:188–191

    CAS  Google Scholar 

  163. Sikka SK (2007) On some hydrogen bond correlations at high pressures. High Press Res 27:313–319

    CAS  Google Scholar 

  164. Lutz HD (1988) Bonding and structure of water molecules in solid hydrates: correlation of spectroscopic and structural data. Struct Bond 69:97–125

    CAS  Google Scholar 

  165. Postorino P, Tromp R, Ricci M-A et al (1993) The interatomic structure of water at supercritical temperatures. Nature 366:668–670

    CAS  Google Scholar 

  166. Szornel K, Egelstaff P, McLaurin G, Whalley E (1994) The local bonding in water from −20 to 220 °C. J Phys Cond Matter 6:8373–8382

    CAS  Google Scholar 

  167. Nä1slund L-Å, Edwards DC, Wernet P et al (2005) X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water or aqueous solutions. J Phys Chem A109:5995–6002

    Google Scholar 

  168. Fujihisa H, Yamawaki H, Sakashita M et al (2004) Molecular dissociation and two low-temperature high-pressure phases of H2S. Phys Rev B69:214102

    Google Scholar 

  169. Batsanov SS, Bokii GB (1962) Hydrogen bonds and interatomic distances in hydroxides. J Struct Chem 3:691–692

    Google Scholar 

  170. Brammer L (2003) Metals and hydrogen bonds. J Chem Soc Dalton Trans 3145–3157

    Google Scholar 

  171. Peris E, Lee JC, Rambo JR et al (1995) Factors affecting the strength of N-H···H-Ir hydrogen bonds. J Am Chem Soc 117:3485–3491

    CAS  Google Scholar 

  172. Sproul G (2001) Electronegativity and bond type: predicting bond type. J Chem Educat 78:387–390

    CAS  Google Scholar 

  173. Lipkowski P, Grabowski SJ, Leszczynski J (2006) Properties of the halogen-hydride interaction. J Phys Chem A110:10296–10302

    Google Scholar 

  174. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendices

Appendix

4.1.1 Supplementary Tables

Table S4.1 Bond energies E (J/mol) and deviations from additive values in molecules of rare gases (From the review [4.1] and original papers, independent measurements are averaged DE = ½[E(Rg·Rg) + E(Rg′ Rg′)] − E exp(Rg Rg′))
Table S4.2 Bond energies (kJ/mol) in van der Waals molecules RgM
Table S4.3 Bond energies (kJ/mol) in van der Waals complexes of atom · molecule type
Table S4.4 Bond energies (kJ/mol) in van der Waals moleculemolecule/atom complexes
Table S4.5 Bond energies (kJ/mol) in atomion type complexes
Table S4.6 Bond energies (kJ/mol) in ion molecule type complexes
Table S4.7 Interatomic distances (Å) in van der Waals molecules A · Rga
Table S4.8 Distances (Å) between centers of mass in van der Waals complexes Rg · AnBm and Hg · AnBm
Table S4.9 Distances Rg···M (Å) in van der Waals complexes Rg · MXa
Table S4.10 Distances d(Å) in van der Waals complexes comprising two molecules, The distance between molecules’ centers of mass, except where specified, (X = halogen atom)
Table S4.11 Van der Waals radii of nonmetals, determined by X-ray analysis from 1939 to 2005
Table S4.12 The van der Waals radii (Å) of metals, calculated from structural data
Table S4.13 Crystallographic van der Waals radii (Å) of metals
Table S4.14 Quantum mechanical vdW equilibrium radii (Å) of selected elements
Table S4.15 The molecular mechanics equilibrium radii (Å) of selected elements
Table S4.16 The equilibrium vdW radii (Å) of elements according to Allinger [4.186] (upper lines) and Batsanov (middle [4.175] and lower [4.176] lines)
Table S4.17 The anisotropic vdW radii of H and X in solid-state HX molecules [4.190]
Table S4.18 The optical anisotropy, the length of bonds and the anisotropic vdW radii of X in X2/AXn molecules (in Å) [4.191]
Table S4.19 Lengths and energies of the donor-acceptor and normal chemical metal-nitrogen bonds
Table S4.20 Interatomic distances (Å) in the О–Н···О system
Table S4.21 Crystallographic parameters of the ice crystal structures [4.195]

Supplementary References

  • 4.1 Cambi R, Cappelletti D, Liuti G, Pirani F (1991) J Chem Phys 95:1852

  • 4.2 Chalasinski G, Gutowski M (1988) Chem Rev 88:943

  • 4.3 Aziz RA, Slaman MJ (1991) J Chem Phys 94:8047

  • 4.4 Luo F, McBane GC, Kim G et al (1993) J Chem Phys 98:3564

  • 4.5 Xu Y, Jäger W, Djauhari J, Gerry MCL (1995) J Chem Phys 103:2827

  • 4.6 Zhao Y, Yourshaw I, Reiser G et al (1994) J Chem Phys 101:6538

  • 4.7 Aquilanti V, Cappelletti D, Lorent V et al (1993) J Phys Chem 97:2063

  • 4.8 Tsukiyama K, Kasuya T (1992) J Mol Spectr 151:312

  • 4.9 Clevenger JO (1994) Chem Phys Lett 231:515

  • 4.10 Clevenger JO, Tellinghuisen J (1995) J Chem Phys 103:9611

  • 4.11 Brühl R, Zimmermann D (1995) Chem Phys Lett 233:455; Brühl R, Zimmermann D (2001) J Chem Phys 115:7892

  • 4.12 Wallace I, Breckenridge WH (1993) J Chem Phys 98:2768

  • 4.13 Brühl R, Kapetanakis J, Zimmermann D (1991) J Chem Phys 94:5865

  • 4.14 Zanger E, Schmatloch V, Zimmermann D (1988) J Chem Phys 88:5396

  • 4.15 Baunmann P, Zimmermann D, Brühl R (1992) J Mol Spectr 155:277

  • 4.16 Jouvet C, Lardeux-Dedonder C, Martrenchard S, Solgadi D (1991) J Chem Phys 94:1759

  • 4.17 Bokelmann F, Zimmermann D (1996) J Chem Phys 104:923

  • 4.18 Knight AM, Strangassinger A, Duncan MA (1997) Chem Phys Lett 273:265

  • 4.19 Brock LR, Duncan MA (1995) J Chem Phys 103:9200

  • 4.20 Leung AWK, Julian RR, Breckenridge WH (1999) J Chem Phys 111:4999

  • 4.21 Koperski J, Czajkowski M (2002) J Mol Spectr 212:162; Strojecki M, Koperski J (2009) Chem Phys Lett 479:189

  • 4.22 Wallace I, Kaup JG, Breckenridge WH (1991) J Phys Chem 95:8060; Wallace I, Ryter J, Breckenridge WH (1992) J Chem Phys 96:136

  • 4.23 Koperski J, Czajkowski M (1998) J Chem Phys 109:459

  • 4.24 Wallace I, Funk DJ, Kaup JG, Breckenridge WH (1992) J Chem Phys 97:3135

  • 4.25 Duval M-C, Soep B, Breckenridge WH (1991) J Phys Chem 95:7145

  • 4.26 Collier MA, McCaffrey JG (2003) J Chem Phys 119:11878

  • 4.27 Yang X, Dagdigian PJ (1997) J Phys Chem A101:3509

  • 4.28 Yang X, Dagdigian PJ, Alexer MH (1998) J Chem Phys 108:3522

  • 4.29 Strangassinger A, Knight AM, Duncan MA (1998) J Chem Phys 108:5732

  • 4.30 McQuaid MJ, Gole JL, Heaven MC (1990) J Chem Phys 92:2733; Heidecke S, Fu Z, Colt JR, Morse MD (1992) J Chem Phys 97:1692

  • 4.31 Callender CL, Mitchell SA, Hackett PA (1989) J Chem Phys 90:5252

  • 4.32 Fu Z, Massik S, Kaup JG et al (1992) J Chem Phys 97:1683

  • 4.33 Tao C, Dagdigian PJ (2004) J Chem Phys 120:7512

  • 4.34 Kawamoto Y, Honma K (1998) Chem Phys Lett 298:227

  • 4.35 Bieler C R, Spence KE, Ja KC (1991) J Phys Chem 95:5058

  • 4.36 Rohrbacher A, Ja KC, Beneventi L et al (1997) J Phys Chem A 101:6528

  • 4.37 Boucher DS, Strasfeld DB, Loomis RA et al (2005) J Chem Phys 123:104312

  • 4.38 Cabrera JA, Bieler CR, Olbricht BC et al (2005) J Chem Phys 123:054311

  • 4.39 Cline J et al (1987) In: Weber A (ed) Structure and dynamics of weakly bound molecular complexes. Reidel, Dordrecht, NATO ASI Series 212:533

  • 4.40 Miller AES, Chuang C-C, Fu HC et al (1999) J Chem Phys 111:7844

  • 4.41 Burroughs A, Heaven MC (2001) J Chem Phys 114:7027

  • 4.42 Beneventi L, Casavecchia P, Volpi G (1986) J Chem Phys 85:7011

  • 4.43 Aquilanti V, Ascenzi D, Cappelletti D et al (1998) J Chem Phys 109:3898

  • 4.44 Jäger W, Xu Y, Armstrong G et al (1998) J Chem Phys 109:5420

  • 4.45 Munteanu CR, Cacheiro JL, Fernez B (2004) J Chem Phys 121:10419

  • 4.46 Cappelletti D, Liuti G, Luzzatti E, Pirani F (1994) J Chem Phys 101:1225

  • 4.47 Wen Q, Jäger W (2005) J Chem Phys 122:214310

  • 4.48 Robbins D, Willey KF, Yeh CS, Duncan MA (1992) J Phys Chem 96:4824

  • 4.49 Holmess-Ross HL, Lawrance WD (2011) J Chem Phys 135:014302

  • 4.50 Herrebout WA, Qian HB, Yamaguchi H et al (1998) J Molec Spectr 189:235

  • 4.51 Frazer GT, Pine AS (1986) J Chem Phys 85:2502

  • 4.52 McIntosh, A, Wang, Z, Castillo-Chara, J et al (1999) J Chem Phys 111:5764

  • 4.53 Luiti G, Pirani F, Buck U, Schmidt B (1988) ChemPhys 126:1

  • 4.54 Pirani F, Porrini M, Cavalli S et al (2003) ChemPhys Lett 367:405

  • 4.55 Brupbacher T, Makarewicz J, Bauder A (1994) J Chem Phys 101:9736

  • 4.56 Cappelletti D, Bartholomei M, Carmona-Novillo E et al (2007) J Chem Phys 126:064311

  • 4.57 McKellar ARW, Roth DA, Winnewisser G (1999) J Chem Phys 110:9989

  • 4.58 Aquilanti V, Bartolomei M, Cappelletti D et al (2001) Phys Chem Chem Phys 3:3891

  • 4.59 Case AS, Heid CG, Kable SH, Crim FF (2011) J Chem Phys 135:084312

  • 4.60 Reid BP, O’Loughlin MJ, Sparks RK (1985) J Chem Phys 83:5656

  • 4.61 Wallace I, Funk DJ, Kaup JG, Breckenridge WH (1992) J Chem Phys 97:3135

  • 4.62 Wallace I, Breckenridge WH (1992) J Chem Phys 97:2318

  • 4.63 Yang X, Gerasimov I, Dagdigian PJ (1998) Chem Phys 239:207

  • 4.64 Cappelletti D, Liuti G, Pirani F (1991) Chem Phys Lett183:297

  • 4.65 Frenking G (1989) J Chem Phys 93:3410

  • 4.66 Lüder C, Velegrakis M (1996) J Chem Phys 105:2167

  • 4.67 Burns KL, Bellert D, Leung AW-K, Breckenridge WH (2001) J Chem Phys 114:7877

  • 4.68 Kaup JG, Breckenridge WH (1997) J Chem Phys 107:5283

  • 4.69 Prekas D, Feng B-H, Velegrakis M (1998) J Chem Phys 108:2712

  • 4.70 Breckenridge WH, Jouvet C, Soep B (1995) Adv Metal Semicond Cluster 3:1

  • 4.71 Heidecke SA, Fu Z, Colt JR, Morse MD (1992) J Chem Phys 97:1692

  • 4.72 Scurlock C, Pilgrim J, Duncan MA (1995) J Chem Phys 103:3292

  • 4.73 Bellert D, Buthelezi T, Hayes T, Brucat PJ et al (1997) Chem Phys Lett 277:27

  • 4.74 Lessen DE, Brucat PJ (1989) J Chem Phys 91:4522

  • 4.75 Hayes T, Bellert D, Buthelezi T, Brucat PJ (1998) Chem Phys Lett 287:22

  • 4.76 Tjelta B, Armentrout PB (1997) J Phys Chem A101: 2064

  • 4.77 Buthelezi T, Bellert D, Lewis V, Brucat PJ et al (1995) Chem Phys Lett 242: 627

  • 4.78 Haynes C, Armentrout PB (1996) Chem Phys Lett 249:64

  • 4.79 Asher R, Bellert D, Buthelezi T, Brucat PJ (1994) Chem Phys Lett 228:599

  • 4.80 Yourshaw I, Lenzer T, Reiseer G, Neumark DM (1998) J Chem Phys 109:5247

  • 4.81 Amicangelo JC, Armentrout PB (2000) J Phys Chem A104:11420

  • 4.82 Armentrout PB (1995) Acc Chem Rev 28:430

  • 4.83 Ma JC, Dougherty DA (1997) Chem Rev 97:1303

  • 4.84 Kemper PR, Weis P, Bowers MT (1998) Chem Phys Lett 293:503

  • 4.85 Walter D, Armentrout PB (1998) J Am Chem Soc 120:3176

  • 4.86 Sievers MR, Jarvis LM, Armentrout PB (1998) J Am Chem Soc 120:3176

  • 4.87 Miyawaki J, Sugawara K-I (2003) J Chem Phys 119:6539

  • 4.88 Ho Y-P, Yang Y-C, Klippenstein S, Dunbar R (1997) J Phys Chem A101:3338

  • 4.89 Chen J, Wong TH, Chang YC et al (1998) J Chem Phys 108:2285

  • 4.90 Pullins SH, Reddic JE, Frana MR, Duncan MA (1998) J Chem Phys 108:2725

  • 4.91 Weis P, Kemper PR, Bowers MT (1997) J Phys Chem A 101:2809

  • 4.92 Hiraoka K, Nasu M, Katsuragawa J et al (1998) J Phys Chem A102: 6916

  • 4.93 Weis P, Kemper PR, Bowers MT (1999) J Am Chem Soc 121:3531

  • 4.94 Hiraoka K, Mizuno T, Iino T et al (2001) J Phys Chem A105:4887

  • 4.95 Wild DA, Loh ZM, Wilson RL, Bieske EJ (2002) J Chem Phys 117:3256

  • 4.96 Batsanov SS (1998) J Chem Soc Dalton Trans 1541

  • 4.97 Collier MA, McCaffrey JG (2003) J Chem Phys 119:11878

  • 4.98 Munteanu CR, Cacheiro JL, Fernez B (2004) J Chem Phys 121:10419; Wen Q, Jäger W (2005) J Chem Phys 122:214310

  • 4.99 Duval M-C, Soep B, Breckenridge WH (1991) J Phys Chem 95:7145; van Wijngaarden J, Jäger W (2000) Mol Phys 98:1575

  • 4.100 Carter CC, Castiglioni C (2000) J Mol Struct 525:1

  • 4.101 Liu Y, Jäger W (2004) J Chem Phys 121:6240

  • 4.102 Wen Q, Jäger W (2006) J Chem Phys 124:014301

  • 4.103 Herrebout WA, Qiun H-B, Yamaguchi H, Howard BJ (1998) J Mol Spectr 189:235

  • 4.104 Liu Y, Jäger W (2003) Phys Chem Chem Phys 5:1744; Cappeletti D, Bartolomei M, Carmona-Novillo E, Pirani F (2007) J Chem Phys 126:064311

  • 4.105 McKellar ARW (2006) J Chem Phys 125:114310

  • 4.106 Yu L, Williamson J, Foster SC, Miller TA (1992) J Chem Phys 97:5273

  • 4.107 Urban R-D, Jörissen LG, Matsumoto Y, Takami M (1995) J Chem Phys 103:3960

  • 4.108 Liu Y, Jäger W (2002) Mol Phys 100:611

  • 4.109 Blanco S, Whitham CJ, Qian H, Howard BJ (2001) Phys Chem Chem Phys 3:3895

  • 4.110 Miyawaki J, Sugawara K-i (2003) J Chem Phys 119:6539

  • 4.111 van Wijngaarden J, Jäger W (2001) J Chem Phys 114:3968; van Wijngaarden J, Jäger W (2001) J Chem Phys 115:6504; Wen Q, Jäger W (2008) J Chem Phys 128:204309

  • 4.112 Lee G-H, Matsuo Y, Takami M (1992) J Chem Phys 96:4079

  • 4.113 Rubahn H-G, Toennies J (1988) Chem Phys 126:7; Rubahn H-G (1990) J Chem Phys 92:5384

  • 4.114 Michaud JM, Cooke SA, Gerry MCL (2004) Inorg Chem 43:3871; Yamazaki E, Okabayashi T, Tanimoto M (2004) J Am Chem Soc 126:1028

  • 4.115 Walker NR, Tew DR, Harris SJ et al (2011) J Chem Phys 135:014307

  • 4.116 Anderson DT, Schuder M, Nesbitt DJ (1998) Chem Phys 239:253; Weida MJ, Nesbitt DJ (1999) J Chem Phys 110:156

  • 4.117 Leung HO, Marshall MD, Suenram RD (1989) J Chem Phys 90:700

  • 4.118 Nelson D, Fraser G, Klemperer W (1987) Science, 238:1670

  • 4.119 Legon AC, Thumwood JM (2001) Phys Chem Chem Phys 3:2758

  • 4.120 Jabs W, McIntosh AL, Lucchese RR et al (2000) J Chem Phys 113:249

  • 4.121 Davey JB, Legon AC, Waclawik ER (2000) Phys Chem Chem Phys 2:1659

  • 4.122 Davey JB, Legon AC, Waclawik ER (1999) Phys Chem Chem Phys 1:3097

  • 4.123 Xia C, Walker KA, McKellar ARW (2001) J Chem Phys 114:4824

  • 4.124 Sazonov A, Beaudet RA (1998) J Phys Chem A102:2792

  • 4.125 Dutton CC, Dows DA, Erkey R et al (1998) J Phys Chem A102:6904

  • 4.126 Legon AC, Thumwood JM (2001) Phys Chem Chem Phys 3:1397

  • 4.127 Davey JB, Legon AC (2001) Chem Phys Lett 350:39

  • 4.128 Peebles SA, Kuczkowski (1999) J Phys Chem A103:3884

  • 4.129 Bloemink HI, Evans CM, Holloway JH, Legon AC (1996) Chem Phys Lett 248:260

  • 4.130 Forest S, Kuczkowski R (1996) J Am Chem Soc 118:217

  • 4.131 Sun S, Bernstein E (1996) J Phys Chem 100:13348; Schäfer M, Bauder A (2000) Mol Phys 98:929

  • 4.132 Pauling L (1939, 1960) The nature of the chemical bond, 1st and 3rd edn. Cornell University Press, Ithaca

  • 4.133 Kitaigorodskii AI (1961) Organic chemical crystallography. Consult Bureau, New York

  • 4.134 Bondi A (1964) J Phys Chem 68:441; Bondi A (1968) Physical properties of molecular crystals, liquids, and Glasses. Wiley, New York

  • 4.135 Alcock NW (1972) Adv Inorg Chem Radiochem 15:1

  • 4.136 Gavezzotti A (1983) J Am Chem Soc 105:5220; Filippini G, Gavezzotti A (1993) Acta Cryst B49:868; Dunitz JD, Gavezzotti A (1999) Acc Chem Res 32:677

  • 4.137 Zеfirоv YuV, Zоrkii PМ (1989) Russ Chem Rev 58:421; Zеfirоv YuV, Zоrkii PМ (1995) 64: 415; Zеfirоv YuV (1994) Crystallogr Reports 39:939; Zеfirоv YuV (1997) Crystallogr Reports 42:111

  • 4.138 Tran D, Hunt JP, Wherl S (1992) Inorg Chem 31:2410

  • 4.139 Batsanov SS (1995) Russ Chem Bull 44:18

  • 4.140 Rowl RS, Taylor R (1996) J Phys Chem 100:7384

  • 4.141 Zоrkii PМ, Stukalin AA (2005) Crystallogr Reports 50:522

  • 4.142 Bondi A (1964) The heat of sublimation of molecular crystals, analysis and molecular structure correlation. In: Rutner E, Goldfinger P, Hirth JP (eds) Condensation and evaporation of solids. Gordon and Breach, New York; Mantina M, Chamberlin AC, Valero R et al (2009) J Phys Chem A113:5806

  • 4.143 Braga D, Grepioni F, Tedesco E, Biradha K, Desiraju GR (1997) Organometallics 16:1846

  • 4.144 Ardizzoia G, La Monica G, Maspero A, Moret M, Masciocchi N (1997) Inorg Chem 36: 2321

  • 4.145 Pathaneni SS, Desiraju GR (1993) J Chem Soc Dalton Trans 319

  • 4.146 Jones PG, Bembenek E (1992) J Cryst Spectr Res 22:397; Schulz LE, Abram U, Straehle J (1997) Z Anorg Allg Chem 623:1791

  • 4.147 Omrani H, Welter R, Vangelisti R (1999) Acta Cryst C55:13

  • 4.148 Helgesson G, Jagner S (1987) Acta Chem Scand A41:556

  • 4.149 Gregory DH, Bowman A, Naher CF, Weston DP (2000) J Mater Chem 10:1635

  • 4.150 Steinbrenner U, Simon A (1998) Z anorg allg Chem 624:228

  • 4.151 Yang X, Knobler CB, Zheng Z, Hawthorne MF (1994) J Am Chem Soc 116:7142

  • 4.152 Lee H, Diaz M, Knobler CB, Hawthorne MF (2000) Angew Chem Int Ed 39:776

  • 4.153 Evans WJ, Boyle TJ, Ziller JW (1993) Organomet 12:3998

  • 4.154 Loos D, Baum E, Ecker A, Schnöckel, Downs AJ (1997) Angew Chem Int Ed 36:860

  • 4.155 Nagle JK, Balch AL, Olmstead MM (1988) J Am Chem Soc 110:319

  • 4.156 Jutzi P, Schnittger J, Hursthouse MB (1991) Chem Ber 124:1693

  • 4.157 Giester G, Lengauer CL, Tillmans E (2002) J Solid State Chem 168:322

  • 4.158 Ho J, Rousseau R, Stephan DW (1994) Organometallics 13:1918

  • 4.159 Atwood JL, Hunter WE, Cowley AH et al (1981) Chem Commun 925

  • 4.160 Hill RJ (1985) Acta Cryst C41:1281

  • 4.161 Campbell J, Dixon D, Mercier H, Schrobilgen G (1995) Inorg Chem 34:5798

  • 4.162 Mawhorter RJ, Rankin DWH, Robertson HE et al (1994) Organometallics 13:2401

  • 4.163 Krebs B, Sinram D (1980) ZNaturforsch 35b:126

  • 4.164 Breunig, HJ, Denker, M, Ebert, KH (1994)Chem Commun 8756

  • 4.165 Silvestru, C, Breunig, HJ, Althaus H (1999) Chem Rev 99:3277

  • 4.166 Cassidy JM, Whitmire KH (1991) Inorg Chem 30:2788

  • 4.167 Capobianchi A, Paoletti AM, Pennesi G et al (1994) Inorg Chem 33:4635

  • 4.168 Bronger W, Müller P, Kowalczyk J, Auffermann G (1991) J Alloys Comp 176:263

  • 4.169 Martin DS, Bonte JL, Rush RM, Jacobson RA (1975) Acta Cryst B31:2538; Hester JR, Maslen EN, Spadaccini N et al (1993) Acta Cryst B49:842; Bronger, W, Auffermann G (1995) JAlloys Comp, 228:119

  • 4.170 Venturelli A, Rauchfuss TB (1994) J Am Chem Soc 116:4824

  • 4.171 Krebs B, Brendel C, Schafer H (1988) Z anorg allgem Chemie, 561:119; Thiele G, Weigl W, Wochner H (1986) Z anorg allgem Chemie 539:141

  • 4.172 Kroening RF, Rush RM, Martin DS, Clardy JC (1974) Inorg Chem 13:1366; Takazawa H, Ohba S, Saito Y, Sano M (1990) Acta Cryst B46:166; Bronger W, Auffermann G, (1995) J Alloys Comp 228:119

  • 4.173 Ryan RR, Penneman RA, Kanellakopulos B (1975) J Am Chem Soc 97:4258

  • 4.174 Batsanov SS (2000) Russ J Phys Chem 74:1144

  • 4.175 Batsanov SS (1999) J Mol Struct (Theochem) 468:151

  • 4.176 Batsanov SS (2000) Russ J Inorg Chem 45:892

  • 4.177 Hu SZ, Zhou ZH, Robertson BE (2009) ZKrist 224:375

  • 4.178 Nag S, Banerjee J, Datta D (2007) New J Chem 31:832

  • 4.179 Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic, New York

  • 4.180 Batsanov SS (2001) Inorgan Mater 37:871

  • 4.181 Batsanov SS (1998) Russ J Gen Chem 68:495

  • 4.182 Batsanov SS (1991) Russ J Inorg Chem 36:1694; Batsanov SS (1998) Russ J Inorg Chem 43:437

  • 4.183 Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

  • 4.184 Yang Z-Z, Davidson ER (1997) Int J Quantum Chem 62:47

  • 4.185 Mu W-H, Chasse G A, Fang D-C (2008) Intern J Quantum Chem 108:1422

  • 4.186 Badenhoop J K, Weinhold F (1997) J Chem Phys 107:5422

  • 4.187 Mundt O, Rössler GB, Witthauer C (1983) Z anorg allgem Chemie 506:42

  • 4.188 Woolf TB, Roux B (1994) J Am Chem Soc 116:5916

  • 4.189 Cornell WD, Cieplak P, Boyly CI et al (1995) J Am Chem Soc 117:5179

  • 4.190 Batsanov SS (1999) Struct Chem 10:395

  • 4.191 Batsanov SS (1998) Russ J Coord Chem 24:453; Batsanov SS (2002) Russ J General Chem 72: 1153

  • 4.192 Stahl R, Jung C, Lutz HD et al (1998) Z anorg allgem Chem 624:1130

  • 4.193 Ptasiewicz-Bak H, Olovsson I, McIntyre G (1993) Acta Cryst B49:192

  • 4.194 Jeffrey GA, Yeon Y (1986) Acta Cryst, B42:410

  • 4.195 Zheligovskaya EA, Malenkov GG (2006) Russ Chem Rev 75:57

  • 4.196 Gar E, Neumark DM (2011) J Chem Phys 135:024302

  • 4.197 Mack P, Dyke JM, Wright TG (1998) J Chem Soc Faraday, 94:629

  • 4.198 Stephens SL, Tew DR, Walker NR, Legon AC (2011) J Mol Spectr 267:163

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Intermolecular Forces. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_4

Download citation

Publish with us

Policies and ethics