Skip to main content

Structure and Optical Properties

  • Chapter
  • First Online:
Introduction to Structural Chemistry

Abstract

The electric component of electromagnetic radiation creates (fluctuating) polarization in a substance, i.e. shifts of electrons, atoms and molecules. The refractive index, the dielectric constant, and polarizability or refraction of a substance are different, but related, measures of this interactions, which can provide important information on the structure and chemical bonding. They allow to estimate bond polarities in molecules and effective charges of atoms (Szigeti’s method). Changes of refraction reveal phase transitions with alteration of the coordination number, changes of bonding type (e.g. due to trans-effect), formation and breakup of hydrogen bonds, etc. Experimental values of atomic and ionic refractions of elements are reviewed, showing that refraction of a compound can be approximated by additive increments of atoms, functional groups, ions, or bonds. Anisotropy of bond refractions also gives important information about the symmetry of electron orbitals. Structural applications of optical methods include also using experimental force constants to determine the strength and multiplicity of chemical bonds, and deriving electronegativities of bonded atoms from these constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is often stated that n > 1 always, as nothing can travel faster than light. This is a misconception. The speed featuring in Eq. 11.1 is the phase velocity with which the crests of the waves move. This velocity carries neither energy nor information and therefore it can exceed c. Thus, X-rays traveling through matter are weakly scattered forward, with a − π/2 shift. This forward-scattered wave interferes with the incident beam to create a wave with v slightly exceeding c. Thus X-rays have n = 1 − d, where d ranges from 10 4 to 10−6 for various materials [1].

References

  1. Toney MF, Brennan S (1989) Observation of the effect of refraction on x-rays diffracted in a grazing-incidence asymmetric bragg geometry. Phys Rev B 39:7963–7966

    Google Scholar 

  2. Wemple SH, DiDomenico M Jr (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23:1156–1160

    CAS  Google Scholar 

  3. Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338–1351

    Google Scholar 

  4. Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B 7:3767–3777

    Google Scholar 

  5. Shannon RD, Shannon RC, Medenbach O, Fischer RX (2002) Refractive index and dispersion of fluorides and oxides. J Phys Chem Ref Data 31:931–970

    CAS  Google Scholar 

  6. Moss T (1950) A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc Phys Soc B 63:167–176

    Google Scholar 

  7. Dionne G, Wooley JC (1972) Optical properties of some Pb1   −   xSnxTe alloys determined from infrared plasma reflectivity measurements. Phys Rev B 6:3898–3913

    Google Scholar 

  8. Ravindra N, Auluck S, Srivastava V (1979) Penn gap in semiconductors. Phys Status Solidi B 93:K155–K160

    Google Scholar 

  9. Grzybowski TA, Ruoff AL (1984) Band-overlap metallization of BaTe. Phys Rev Lett 53:489–492

    CAS  Google Scholar 

  10. Herve P, Vandamme LKJ (1994) General relation between refractive-index and energy-gap in semiconductors. Infrared Phys Technol 4:609–615

    Google Scholar 

  11. Rocquefelte X, Goubin F, Montardi Y et al (2005) Analysis of the refractive indices of TiO2, TiOF2, and TiF4: Concept of optical channel as a guide to understand and design optical materials. Inorg Chem 44:3589–3593

    PubMed  CAS  Google Scholar 

  12. Rocquefelte X, Whangbo M-H, Jobic S (2005) Structural and electronic factors controlling the refractive indices of the chalcogenides ZnQ and CdQ (Q = O, S, Se, Te). Inorg Chem 44:3594–3598

    PubMed  CAS  Google Scholar 

  13. Batsanov SS (1966) Refractometry and chemical structure. Van Nostrand, Princeton NJ

    Google Scholar 

  14. Batsanov SS (1976) Structural refractometry, 2nd edn. Vyschaya Shkola, Moscow

    Google Scholar 

  15. Batsanov SS, Lazareva ЕV, Kоpаnеvа LI (1978) Phase transformation in GeO2 under shock compression. Russ J Inorg Chem 23:964–965

    Google Scholar 

  16. Itie JP, Polian A, Galas G et al (1989) Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys Rev Lett 63:398–401

    PubMed  CAS  Google Scholar 

  17. Hacskaylo M (1964) Determination of refractive index of thin dielectric films. J Opt Soc Amer 54:198

    Google Scholar 

  18. Stöffler D (1974) Physical properties of shocked minerals. Fortschr Miner 51:256–289

    Google Scholar 

  19. Schneider H, Hornemann U (1976) X-ray investigations on deformation of experimentally shock-loaded quartzes. Contrib Mineral Petrol 55:205–215

    Google Scholar 

  20. Shimada Y, Okuno M, Syono Y et al (2002) An X-ray diffraction study of shock-wave-densified SiO2 glasses. Phys Chem Miner 29:233–239

    CAS  Google Scholar 

  21. Batsanov SS, Dulepov EV, Moroz EM et al (1971) Effect of an explosion on a substance. Impact compression of rare-earth metal fluorides. Comb Expl Shock Waves 7:226–228

    Google Scholar 

  22. Tsay Y-F, Bendow B, Mitra SS (1973) Theory of temperature derivative of refractive-index in transparent crystals. Phys Rev B 8:2688–2696

    Google Scholar 

  23. Dewaele A, Eggert JH, Loubeyre P, Le Toullec R (2003) Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell. Phys Rev B 67:094112

    Google Scholar 

  24. Jones SC, Robinson MC, Gupta YM (2003) Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis. J Appl Phys 93:1023-1031

    CAS  Google Scholar 

  25. Balzaretti NM, da Jornada JAH (1996) Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun 99:943–948

    CAS  Google Scholar 

  26. Balzaretti NM, da Jornada JAH (1996) Pressure dependence of the refractive index and electronic polarizability of LiF, MgF2 and CaF2. J Phys Chem Solids 57:179–182

    CAS  Google Scholar 

  27. Johannsen PG, Reiss G, Bohle U et al (1997) Effect of pressure on the refractive index of 11 alkali halides. Phys Rev B 55:6865–6870

    Google Scholar 

  28. Ghandehari K, Luo H, Ruoff AL et al (1995) Band-gap and index of refraction of CsH to 251 GPa. Solid State Commun 95:385–388

    CAS  Google Scholar 

  29. Evans WJ, Silvera IJ (1998) Index of refraction, polarizability, and equation of state of solid molecular hydrogen. Phys Rev B 57:14105–14109

    Google Scholar 

  30. Ahart M, Yarger JL, Lantzky KM et al (2006) High-pressure Brillouin scattering of amorphous BeH2. J Chem Phys 124:014502

    Google Scholar 

  31. Sun L, Ruoff AL, Zha C-S, Stupian G (2006) Optical properties of methane to 288 GPa at 300 K. J Phys Chem Solids 67:2603–2608

    CAS  Google Scholar 

  32. Sun L, Ruoff AL, Zha C-S, Stupian G (2006) High pressure studies on silane to 210 GPa at 300 K: optical evidence of an insulator-semiconductor transition. J Phys Cond Matter 18:8573–8580

    CAS  Google Scholar 

  33. Shimizu H, Kitagawa T, Sasaki S (1993) Acoustic velocities, refractive-index, and elastic-constants of liquid and solid CO2 at high-pressures up to 6 GPa. Phys Rev B 47:11567–11570

    Google Scholar 

  34. Batsanov SS (1956) Relationship between melting points and refraction indices of ionic crystals. Kristallografiya 1:140–142 (in Russian)

    CAS  Google Scholar 

  35. Samygin ММ (1938) On the relation between boiling temperatures and refraction indices. Zhurnal Fizicheskoi Khimii 11:325–330 (in Russian)

    CAS  Google Scholar 

  36. Sorriso S (1980) Dielectric behavior and molecular-structure of inorganic complexes. Chem Rev 80:313–327

    CAS  Google Scholar 

  37. Batsanov SS (1982) Dielectric method of studying the chemical bond and the concept of electronegativity. Russ Chem Rev 51:684–697

    Google Scholar 

  38. Törring T, Ernst WE, Kändler J (1989) Energies and electric-dipole moments of the low-lying electronic states of the alkaline-earth monohalides from an electrostatic polarization model. J Chem Phys 90:4927–4932

    Google Scholar 

  39. Ohwada K (1991) Application of potential constants—charge-transfer and electric-dipole moment change in the formation of heteronuclear diatomic-molecules. Spectrochim Acta A 47:1751–1765

    Google Scholar 

  40. Sadlej AJ (1992) Electric properties of diatomic interhalogens—a study of the electron correlation and relativistic contributions. J Chem Phys 96:2048–2053

    CAS  Google Scholar 

  41. Steimle TC, Robinson JS, Goodridge D (1999) The permanent electric dipole moments of chromium and vanadium mononitride: CrN and VN. J Chem Phys 110:881–889

    CAS  Google Scholar 

  42. Medenbach O, Dettmar D, Shannon RD et al (2001) Refractive index and optical dispersion of rare earth oxides using a small-prism technique. J Opt A 3:174–177

    Google Scholar 

  43. Vereschagin АN (1980) Molecular polarizability. Nаukа, Moscow (in Russian)

    Google Scholar 

  44. Thomas JM, Walker NR, Cooke SA, Gerry MCL (2004) Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. J Am Chem Soc 126:1235–1246

    PubMed  CAS  Google Scholar 

  45. Steimle TC, Virgo W (2003) The permanent electric dipole moments and magnetic hyperfine interactions of ruthenium mononitride. J Chem Phys 119:12965–12972

    CAS  Google Scholar 

  46. Steimle TC, Virgo WL (2004) The permanent electric dipole moments of WN and ReN and nuclear quadrupole interaction in ReN. J Chem Phys 121:12411–12420

    PubMed  CAS  Google Scholar 

  47. Steimle TC (2000) Permanent electric dipole moments of metal containing molecules. Int Rev Phys Chem 19:455–477

    CAS  Google Scholar 

  48. Liao D-W, Balasubramanian K (1994) Spectroscopic constants and potential-energy curves for GeF. J Mol Spectr 163:284–290

    CAS  Google Scholar 

  49. Ogilvie JF (1995) Electric polarity +BrCl- and rotational g factor from analysis of frequencies of pure rotational and vibration–rotational spectra. J Chem Soc Faraday Trans 91:3005–3006

    CAS  Google Scholar 

  50. Bazalgette G, White R, Loison J et al (1995) Photodissociation of ICl molecules oriented in an electric-field—direct determination of the sign of the dipole-moment. Chem Phys Lett 244:195–198

    CAS  Google Scholar 

  51. Wang H, Zhuang X, Steimle TC (2009) The permanent electric dipole moments of cobalt monofluoride, CoF, and monohydride, CoH. J Chem Phys 131:114315

    PubMed  Google Scholar 

  52. Steimle TC, Virgo W L, Ma T (2006) The permanent electric dipole moment and hyperfine interaction in ruthenium monoflouride. J Chem Phys 124:024309

    PubMed  Google Scholar 

  53. Zhuang X, Steimle TC, Linton C (2010) The electric dipole moment of iridium monofluoride. J Chem Phys 133:164310

    PubMed  Google Scholar 

  54. Zhuang X, Steimle TC (2010) The permanent electric dipole moment of vanadium monosulfide. J Chem Phys 132:234304

    PubMed  Google Scholar 

  55. Büsener H, Heinrich F, Hese A (1987) Electric dipole moments of the MgO B1Σ + and X1Σ + states. Chem Phys 112:139–146

    Google Scholar 

  56. Zhuang X, Frey SE, Steimle TC (2010) Permanent electric dipole moment of copper monoxide. J Chem Phys 132:234312

    PubMed  Google Scholar 

  57. Heaven MC, Goncharov V, Steimle TC, Linton C (2006) The permanent electric dipole moments and magnetic g factors of uranium monoxide. J Chem Phys 125:204314

    PubMed  Google Scholar 

  58. Linton C, Chen J, Steimle TC (2009) Permanent electric dipole moment of cerium monoxide. J Phys Chem A 113:13379–13382

    Google Scholar 

  59. Wang F, Le A, Steimle TC, Heaven MC (2011) The permanent electric dipole moment of thorium monoxide. J Chem Phys 134:031102

    PubMed  Google Scholar 

  60. Cooper DL, Langhoff SR (1981) A theoretical-study of selected singlet and triplet-states of the CO molecule. J Chem Phys 74:1200–1210

    CAS  Google Scholar 

  61. Scuseria GE, Miller MD, Jensen F, Geertsen J (1991) The dipole moment of carbon monoxide. J Chem Phys 94:6660–6663

    CAS  Google Scholar 

  62. Langhoff SR, Arnold JO (1979) Theoretical-study of the X 1Σ+, A 1Π, C 1Σ, and E 1Σ+ states of the SiO molecule. J Chem Phys 70:852–863

    CAS  Google Scholar 

  63. Suenram RD, Fraser GT, Lovas FJ, Gilles CW (1991) Microwave spectra and electric dipole moments of VO and NbO. J Mol Spectr 148:114–122

    CAS  Google Scholar 

  64. Steimle TC, Jung KY, Li B-Z (2002) The permanent electric dipole moment of PtO, PtS, PtN and PtC. J Chem Phys 103:1767–1772

    Google Scholar 

  65. Steimle TC, Virgo W (2002) The permanent electric dipole moments for the A 2Π and B 2Σ + states and the hyperfine interactions in the A 2Π state of lanthanum monoxide. J Chem Phys 116:6012–6020

    CAS  Google Scholar 

  66. Pineiro AL, Tipping RH, Chackerian C (1987) Rotational and vibration rotational intensities of CS isotopes. J Mol Spectr 125:91–98

    Google Scholar 

  67. Pineiro AL, Tipping RH, Chackerian C (1987) Semiempirical estimate of vibration rotational intensities of SiS. J Mol Spectr 125:184–187

    Google Scholar 

  68. Steimle TC, Gengler J, Hodges Ph J (2004) The permanent electric dipole moments of iron monoxide. J Chem Phys 121:12303–12307

    PubMed  CAS  Google Scholar 

  69. Bousquet R, Namiki K-IC, Steimle TC (2000) A comparison of the permanent electric dipole moments of ZrS and TiS. J Chem Phys 113:1566–1574

    CAS  Google Scholar 

  70. Steimle TC, Virgo WL, Hostutler DA (2002) The permanent electric dipole moments of iron monocarbide. J Chem Phys 117:1511–1516

    CAS  Google Scholar 

  71. Tzeli D, Mavridis A (2001) On the dipole moment of the ground state X 3Δ of iron carbide, FeC. J Chem Phys 118:4984–4986

    Google Scholar 

  72. Borin AC (2001) The A 1Π–X 1Σ + transition in NiC. Chem Phys 274:99–108

    Google Scholar 

  73. Virgo WL, Steimle TC, Aucoin LE, Brown JM (2004) The permanent electric dipole moments of ruthenium monocarbide in the 3π and 3δ states. Chem Phys Lett 391:75–80.

    CAS  Google Scholar 

  74. Marr AJ, Flores ME, Steimle TC (1996) The optical and optical/Stark spectrum of iridium monocarbide and mononitride. J Chem Phys 104:8183–8196

    CAS  Google Scholar 

  75. Wang H, Vigro WL, Chen J, Steimle TC (2007) Permanent electric dipole moment of molybdenum carbide. J Chem Phys 127:124302

    PubMed  Google Scholar 

  76. Wang F, Steimle TC (2011) Electric dipole moment and hyperfine interaction of tungsten monocarbide. J Chem Phys 134:201106

    PubMed  Google Scholar 

  77. Antoine R, Rayane D, Benichou E et al (2000) Electric dipole moment and charge transfer in alkali-C60 molecules. Eur Phys J D 12:147–151

    CAS  Google Scholar 

  78. Fajans K (1928) Deformation of ions and molecules on the basis of refractometric data. Z Elektrochem 34:502–518

    CAS  Google Scholar 

  79. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell Univ Press, Ithaca

    Google Scholar 

  80. Liu Y, Guo Y, Lin J et al (2001) Measurement of the electric dipole moment of NO by mid-infrared laser magnetic resonance spectroscopy. Mol Phys 99:1457–1461

    CAS  Google Scholar 

  81. Coulson CA (1942) The dipole moment of the C–H bond. Trans Faraday Soc 38:433–444

    CAS  Google Scholar 

  82. Rayane D, Allouche A-R, Antoine R et al (2003) Electric dipole of metal-benzene sandwiches. Chem Phys Lett 375:506–510

    CAS  Google Scholar 

  83. Dorosh O, Bialkowska-Jawarska E, Kisiel Z, Pszczólkowski L (2007) New measurements and global analysis of rotational spectra of Cl-, Br-, and I-benzene: spectroscopic constants and electric dipole moments. J Mol Spectr 246:228–232

    CAS  Google Scholar 

  84. Xu Y, Jäger W, Djauhari J, Gerry MCL (1995) Rotational spectra of the mixed rare-gas dimers Ne-Kr and Ar-Kr. J Chem Phys 103:2827–2833

    CAS  Google Scholar 

  85. Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366

    CAS  Google Scholar 

  86. Born M (1921) Electrostatic lattice potential. Z Physik 7:124–140

    CAS  Google Scholar 

  87. Szigeti B (1949) Polarizability and dielectric constant of ionic crystals. Trans Faraday Soc 45:155–166

    CAS  Google Scholar 

  88. Lyddane RH, Sachs RG, Teller E (1941) On the polar vibrations of alkali halides. Phys Rev 59:673–676

    CAS  Google Scholar 

  89. Penn D (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128:2093–2097

    CAS  Google Scholar 

  90. Phillips JC (1967) A posteriori theory of covalent bonding. Phys Rev Lett 19:415–417

    CAS  Google Scholar 

  91. Phillips JC (1968) Dielectric definition of electronegativity. Phys Rev Lett 20:550–553

    CAS  Google Scholar 

  92. Phillips JC, Van Vechten JA (1970) New set of tetrahedral covalent radii. Phys Rev B 2:2147–2160

    Google Scholar 

  93. Phillips JC (1970) Ionicity of chemical bond in crystals. Rev Modern Phys 42:317–356

    CAS  Google Scholar 

  94. Phillips JC (1985) Structure and properties—Mooser-Pearson plots. Helv Chim Acta 58:209–215

    CAS  Google Scholar 

  95. Newton I (1704) Opticks: or a treatise of the reflexions, refractions, inflexions and colours of light. Smith S & Walford B, London

    Google Scholar 

  96. Beer M (1853) Einleitung in hohere Optik. Vieweg und Sohn, Brunswick

    Google Scholar 

  97. Gladstone JH, Dale TP (1863) Researches on the refraction, dispersion, and sensitiveness of liquids. Philos Trans Roy Soc London 153:317–343

    Google Scholar 

  98. Lorenz L (1880) Ueber die Refractionsconstante. Wied Ann Phys 11:70–103

    Google Scholar 

  99. Lorentz HA (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Wied Ann Phys 9:641–665

    Google Scholar 

  100. Lorentz HA (1895) Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. Brill EJ, Leiden

    Google Scholar 

  101. Lorentz HA (1916) The theory of electrons and its applications to the phenomena of light and radiant heat. G E Stechert, New York

    Google Scholar 

  102. Shimizu H, Kitagawa T, Sasaki S (1993) Acoustic velocities, refractive-index, and elastic-constants of liquid and solid CO2 at high-pressures up to 6 GPa. Phys Rev B 47:11567–11570

    Google Scholar 

  103. Shimizu H, Kamabuchi K, Kume T, Sasaki S (1999) High-pressure elastic properties of the orientationally disordered and hydrogen-bonded phase of solid HCl. Phys Rev B 59:11727–11732

    Google Scholar 

  104. Müller H (1935) Theory of the photoelastic effect of cubic crystals. Phys Rev 47:947–957

    Google Scholar 

  105. Yamaguchi M, Yagi T, Azuhata T et al (1997) Brillouin scattering study of gallium nitride: elastic stiffness constants. J Phys Cond Matter 9:241–248

    CAS  Google Scholar 

  106. Setchell RE (2002) Refractive index of sapphire. J Appl Phys 91:2833–2841

    CAS  Google Scholar 

  107. Dewaele A, personal communication

    Google Scholar 

  108. Hohm U, Kerl K (1990) Interferometric measurements of the dipole polarizability α of molecules between 300 K and 1,100 K: monochromatic measurements at λ = 632.99 nm for the noble gases and H2, N2, O2, and CH4. Mol Phys 69:803–817

    CAS  Google Scholar 

  109. Müller W, Meyer W (1986) Static dipole polarizabilities of Li2, Na2, and K2. J Chem Phys 85:953–957

    Google Scholar 

  110. Brechignac C, Cahuzac P, Carlier F et al (1991) Simple metal clusters. Z Phys D 19:1–6

    Google Scholar 

  111. Miller TМ, Bederson B (1977) Atomic and molecular polarizabilities. Adv Atom Mol Phys 13:1–55

    CAS  Google Scholar 

  112. Miller TM (1995-1996) Atomic and molecular polarizabilities. In: Lide DR (ed) Handbook of chemistry and physics, 76th edn. CRC Press, New York

    Google Scholar 

  113. Rayane D, Allouche AR, Benichou E et al (1999) Static electric dipole polarizabilities of alkali clusters. Eur Phys J 9:243–248

    CAS  Google Scholar 

  114. Amini JM, Gould H (2003) High precision measurements of the static dipole polarizability of cesium. Phys Rev Lett 91:153001

    PubMed  Google Scholar 

  115. Wettlaufer DE, Glass II (1972) Specific refractivities of atomic nitrogen and oxygen. Phys Fluids 15:2065–2066

    CAS  Google Scholar 

  116. Goebel D, Hohm U (1997) Comparative study of the dipole polarizability of the metallocenes Fe(C5H5)2, Ru(C5H5)2 and Os(C5H5)2. J Chem Soc Faraday 93:3467–3472

    CAS  Google Scholar 

  117. Tarnovsky V, Bunimovicz M, Vuskovic I et al (1993) Measurements of the DC electric-dipole polarizabilities of the alkali dimer molecules, homonuclear and heteronuclear. J Chem Phys 98:3894–3904

    CAS  Google Scholar 

  118. Ekstrom CR, Schmiedmayer J, Chapman MS et al (1995) Measurement of the electric polarizability of sodium. Phys Rev A 51:3883–3888

    Google Scholar 

  119. Kowalski A, Funk DJ, Breckenridge WH (1986) Excitation-spectra of CaAr, SrAr and BaAr molecules in a supersonic jet. Chem Phys Lett 132:263–268

    CAS  Google Scholar 

  120. Sarkisov GS, Beigman IL, Shevelko VP, Struve K W (2006) Interferometric measurements of dynamic polarizabilities for metal atoms using electrically exploding wires in vacuum. Phys Rev A 73:042501

    Google Scholar 

  121. Goebel D, Hohm U, Maroulis G (1996) Theoretical and experimental determination of the polarizabilities of the zinc S 1 0 state. Phys Rev A 54:1973–1978

    Google Scholar 

  122. Goebel D, Hohm U (1995) Dispersion of the refractive-index of cadmium vapor and the dipole polarizability of the atomic cadmium S 1 0 state. Phys Rev A 52:3691–3694

    Google Scholar 

  123. Braun A, Holeman P (1936) The temperature dependence of the refraction of iodine and the refraction of atomic iodine. Z phys Chem B 34:357–380

    Google Scholar 

  124. Hohm U, Goebel D (1998) The complex refractive index and dipole-polarizability of iodine, I2, between 11,500 and 17,800 cm−1. AIP Conf Proc 430:698–701

    CAS  Google Scholar 

  125. Goebel D, Hohm U (1996) Dipole polarizability, Cauchy moments, and related properties of Hg. J Phys Chem 100:7710–7712

    CAS  Google Scholar 

  126. Thierfelder C, Assadollahzadeh B, Schwerdtfeger P et al (2008) Relativistic and electron correlation effects in static dipole polarizabilities for the Group 14 elements from carbon to element Z = 114: theory and experiment. Phys Rev A 78:052506

    Google Scholar 

  127. Kadar-Kallen MА, Bonin KD (1994) Uranium polarizability measured by light-force technique. Phys Rev Lett 72:828–831

    PubMed  CAS  Google Scholar 

  128. Hohm U, Loose A, Maroulis G, Xenides D (2000) Combined experimental and theoretical treatment of the dipole polarizability of P4 clusters. Phys Rev A 61:053202

    Google Scholar 

  129. Hohm U, Goebel D, Karamanis P, Maroulis G (1998) Electric dipole polarizability of As4. J Phys Chem A 102:1237–1240

    Google Scholar 

  130. Hu M, Kusse BR (2002) Experimental measurement of Ag vapor polarizability. Phys Rev A66:062506

    Google Scholar 

  131. Eisenlohr FZ (1910) A new calculation for atom refractions. Z phys Chem 75:585–607

    Google Scholar 

  132. Eisenlohr FZ (1912) A new calculation for atom refraction II. The constants of nitrogen. Z phys Chem 79:129–146

    CAS  Google Scholar 

  133. Vogel AI (1948) Investigation of the so-called co-ordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. J Chem Soc 1833–1855

    Google Scholar 

  134. Vogel AI, Cresswell WT, Jeffery GH, Leicester J (1952) Physical properties and chemical constitution: aliphatic aldoximes, ketoximes, and ketoxime O-alkyl ethers, NN-dialkylhydrazines, aliphatic ketazines, mono-di-alkylaminopropionitriles and di-alkylaminopropionitriles, alkoxypropionitriles, dialkyl azodiformates, and dialkyl carbonates—bond parachors, bond refractions, and bond-refraction coefficients. J Chem Soc 514–549

    Google Scholar 

  135. Strohmeier W, Hümpfner K (1956) Das Dipolmoment zwischen gelosten metallorganischen Verbindungen und organischen Losungsmittelmolekulen mit Elektronendonatoreigenschaften. Z Elektrochem 60:1111–1114

    CAS  Google Scholar 

  136. Strohmeier W, Hümpfner K (1957) Dipolmoment und Elektronenakzeptorstarke der Metalle der III-Gruppe in metallorganischen Verbindungen. Z Elektrochem 61:1010–1014

    CAS  Google Scholar 

  137. Strohmeier W, Nützel K (1958) Der Einfluss der Substituenten R auf die Elektronenakzeptorstarke des Metalles Me in Verbindungen MeRX. Z Elektrochem 62:188–191

    CAS  Google Scholar 

  138. Strohmeier W, von Hobe D (1960) Dipolmomente und Elektronenakzeptoreigenschaften von Cyclopentadienylmetallverbindungen und Benzolchromtricarbonyl. Z Elektrochem 64:945–951

    CAS  Google Scholar 

  139. Phillips L, Dennis GR (1995) The electronic polarizability distribution of several substituted ferrocenes and di(η6-benzene)chromium. J Chem Soc Dalton Trans 26:1469–1472

    Google Scholar 

  140. Hohm U (1994) Dipole polarizability and bond dissociation energy. J Chem Phys 101:6362–6364

    CAS  Google Scholar 

  141. Batsanov SS (2003) On the covalent refractions of metals. Russ J Phys Chem 77:1374–1376

    Google Scholar 

  142. Noorizadeh S, Parhizgar M (2005) The atomic and group compressibility. J Mol Struct Theochem 725:23–26

    CAS  Google Scholar 

  143. Donald KJ (2006) Electronic compressibility and polarizability: origins of a correlation. J Phys Chem A 110:2283–2289

    Google Scholar 

  144. Miller KJ, Savchik JA (1979) New empirical-method to calculate average molecular polarizabilities. J Am Chem Soc 101:7206–7213

    CAS  Google Scholar 

  145. Miller KJ (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112:8533–8542

    CAS  Google Scholar 

  146. Antoine R, Rayane D, Allouche AR et al (1999) Static dipole polarizability of small mixed sodium-lithium clusters. J Chem Phys 110:5568–5577

    CAS  Google Scholar 

  147. Lide DR (ed) (1995-1996) Handbook of chemistry and physics, 76th edn. CRC Press, New York

    Google Scholar 

  148. Batsanov SS (1957) Atomic refractions of metals. Zhurnal Nеоrgаnicheskoi Khimii 2:1221–1222 (in Russian)

    CAS  Google Scholar 

  149. Batsanov SS (1961) Covalent refractions of metals. J Struct Chem 2:337–342

    Google Scholar 

  150. Batsanov SS (2004) Molecular refractions of crystalline inorganic compounds. Russ J Inorg Chem 49:560–568

    Google Scholar 

  151. Komara RA, Gearba MA, Fehrenbach CW, Lundeen SR (2005) Ion properties from high-L Rydberg fine structure: dipole polarizability of Si2 +. J Phys B 38:S87–S95

    Google Scholar 

  152. Snow EL, Lundeen SR (2007) Fine-structure measurements in high-L n = 17 and 20 Rydberg states of barium. Phys Rev A 76:052505

    Google Scholar 

  153. Hanni ME, Keele JA, Lundeen SR et al (2010) Polarizabilities of Pb2+ and Pb4+ and ionization energies of Pb+ and Pb3+ from spectroscopy of high-L Rydberg states of Pb + and Pb3+. Phys Rev A 81:042512

    Google Scholar 

  154. Keele JA, Lundeen SR, Fehrenbach CW (2011) Polarizabilities of Rn-like Th4 + from rf spectroscopy of Th3 + Rydberg levels. Phys Rev A 83:062509

    Google Scholar 

  155. Reshetnikov N, Curtis LJ, Brown MS, Irwing RE (2008) Determination of polarizabilities and lifetimes for the Mg, Zn, Cd and Hg isoelectronic sequences. Physica Scripta 77:015301

    Google Scholar 

  156. Wasastjerna JA (1922) About the formation of atoms and molecules explained using the dispersion theory. Z phys Chem 101:193–217

    CAS  Google Scholar 

  157. Fajans K (1923) The structure and deformation of electron coating in its importance for the chemical and optical properties of inorganic compounds. Naturwiessenschaft 11:165–172

    CAS  Google Scholar 

  158. Fajans K, Ioos G (1924) Mole fraction of ions and molecules in light of the atom structure. Z Phys 23:1–46

    CAS  Google Scholar 

  159. Fajans K (1934) The refraction and dispersion of gases and vapours. Z phys Chem B 24:103–154

    Google Scholar 

  160. Fajans K (1941) Polarization of ions and lattice distances. J Chem Phys 9:281–282

    CAS  Google Scholar 

  161. Fajans K (1941) Molar volume, refraction and interionic forces. J Chem Phys 9:282

    CAS  Google Scholar 

  162. Fajans K (1941) One-sided polarization of ions in vapor molecules. J Chem Phys 9:378–379

    CAS  Google Scholar 

  163. Marcus Y, Jenkins HDB, Glasser L (2002) Ion volumes: a comparison. J Chem Soc Dalton Trans 3795–3798

    Google Scholar 

  164. Pauling L (1927) The theoretical prediction of the physical properties of many electron atoms and ions—mole refraction—diamagnetic susceptibility, and extension in space. Proc Roy Soc London A 114:181–211

    Google Scholar 

  165. Born M, Heisenberg W (1924) The influence of the deformability of ions on optical and chemical constants. Z Phys 23:388–410

    CAS  Google Scholar 

  166. Tessman JR, Kahn AH, Shockley W (1953) Electronic polarizabilities of ions in crystals. Phys Rev 92:890–895

    CAS  Google Scholar 

  167. Salzmann J-J, Jörgensen CK (1968) Molar refraction of aquo ions of metallic elements and interpretation of optical refraction measurements in inorganic chemistry. Helv Chim Acta 51:1276–1293

    CAS  Google Scholar 

  168. Jörgensen CK (1969) Origin of approximative additivity of electric polarisabilities in inorganic chemistry. Rev Chimie minerale 6:183–191

    Google Scholar 

  169. Iwadate Y, Mochinaga J, Kawamura K (1981) Refractive-indexes of ionic melts. J Phys Chem 85:3708–3712

    CAS  Google Scholar 

  170. Iwadate Y, Kawamura K, Murakami K et al (1982) Electronic polarizabilities of Tl+, Ag+, and Zn2+ ions estimated from refractive-index measurements of TlNO3, AgNO3, and ZnCl2 melts. J Chem Phys 77:6177–6183

    CAS  Google Scholar 

  171. Shirao K, Fujii Y, Tominaga J et al (2002) Electronic polarizabilities of Sr2+ and Ba2+ estimated from refractive indexes and molar volumes of molten SrCl2 and BaCl2. J Alloys Comp 339:309–316

    CAS  Google Scholar 

  172. Mahan GD (1980) Polarizability of ions in crystals. Solid State Ionics 1:29–45

    CAS  Google Scholar 

  173. Fowler PW, Pyper NC (1985) In-crystal ionic polarizabilities derived by combining experimental and ab initio results. Proc Roy Soc London A 398:377–393

    Google Scholar 

  174. Fowler PW, Madden PA (1985) In-crystal polarizability of O2−. J Phys Chem 89:2581–2585

    CAS  Google Scholar 

  175. Pyper NC, Pike CG, Edwards PP (1992) The polarizabilities of species present in ionic-solutions. Mol Phys 76:353–372

    CAS  Google Scholar 

  176. Pyper NC, Pike CG, Popelier P, Edwards PP (1995) On the polarizabilities of the doubly-charged ions of group IIB. Mol Phys 86:995–1020

    CAS  Google Scholar 

  177. Pyper NC, Popelier P (1997) The polarizabilities of halide ions in crystals. J Phys Cond Matter 9:471–488

    CAS  Google Scholar 

  178. Lim IS, Laerdahl JK, Schwerdtfeger P (2002) Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li+ to 119+. J Chem Phys 116:172–178

    CAS  Google Scholar 

  179. Shannon RD, Fischer RX (2006) Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys Rev B 73:235111

    Google Scholar 

  180. Jemmer P, Fowler PW, Wilson M, Madden PA (1998) Environmental effects on anion polarizability: Variation with lattice parameter and coordination number. J Phys Chem A 102:8377–8385

    Google Scholar 

  181. Dimitrov V, Komatsu T (1999) Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J Non-Cryst Solids 249:160–179

    CAS  Google Scholar 

  182. Duffy JA (2002) The electronic polarisability of oxygen in glass and the effect of composition. J Non-Cryst Solids 297:275–284

    CAS  Google Scholar 

  183. Bachinskii AI (1918) Molecular fields and their volumes. Bull Russ Acad Sci 1:11 (in Russian)

    CAS  Google Scholar 

  184. von Steiger AL (1921) An article on the summation methodology of the molecular refractions, especially among aromatic hydrocarbons. Berichte Deutsch Chem Ges 54:1381–1393

    Google Scholar 

  185. Smyth C (1925) Refraction and electron constraint in ions and molecules. Phil Mag 50:361–375

    CAS  Google Scholar 

  186. Denbigh KG (1940) The polarisabilities of bonds. Trans Faraday Soc 36:936–947

    CAS  Google Scholar 

  187. Vickery BC, Denbigh KG (1949) The polarisabilities of bonds: bond refractions in the alkanes. Trans Faraday Soc 45:61–81

    CAS  Google Scholar 

  188. Vogel AI, Cresswell WT, Jeffery G, Leicester J (1950) Bond refractions and bond parachors. Chem Ind 358

    Google Scholar 

  189. Vogel AI, Cresswell WT, Leicester J (1954) Bond refractions for tin, silicon, lead, germanium and mercury compounds. J Phys Chem 58:174–177

    CAS  Google Scholar 

  190. Yoffe BV (1974) Refractometric methods in chemistry. Khimia, Lеningrаd (in Russian)

    Google Scholar 

  191. Huggins ML (1941) Densities and refractive indices of liquid paraffin hydrocarbons. J Am Chem Soc 63:116–120

    CAS  Google Scholar 

  192. Huggins ML (1941) Densities and refractive indices of unsaturated hydrocarbons. J Am Chem Soc 63:916–920

    CAS  Google Scholar 

  193. Palit SR, Somayajulu GR (1960) Electronic correlation of molar refraction. J Chem Soc 459–460

    Google Scholar 

  194. Hohm U (1994) Dispersion of polarizability anisotropy of H2, O2, N2O, CO2, NH3, C2H6, and cyclo-C3H6 and evaluation of isotropic and anisotropic dispersion-interaction energy coefficients. Chem Phys 179:533–541

    CAS  Google Scholar 

  195. McDowell SAC, Kumar A, Meath WJ (1996) Anisotropic and isotropic triple-dipole dispersion energy coefficients for all three-body interactions involving He, Ne, Ar, Kr, Xe, H2, N2, and CO. Canad J Chem 74:1180–1186

    CAS  Google Scholar 

  196. Minemoto S, Tanji H, Sakai H (2003) Polarizability anisotropies of rare gas van der Waals dimers studied by laser-induced molecular alignment. J Chem Phys 119:7737–7740

    CAS  Google Scholar 

  197. Yakshin MM (1948) On atomic polarization and bond refraction of complex compounds of platinum. Izvestia Sektora Platiny 21:146–156 (in Russian)

    Google Scholar 

  198. de Visser SP (1999) On the relationship between internal energy and both the polarizability volume and the diamagnetic susceptibility. Phys Chem Chem Phys 1:749–753

    Google Scholar 

  199. Hohm U (2000) Is there a minimum polarizability principle in chemical reactions? J Phys Chem A 104:8418–8423

    Google Scholar 

  200. Zeldovich YaB, Raizer YuP (1967) Physics of shock waves and high temperature hydrodynamics phenomena. Academic, New York

    Google Scholar 

  201. Batsanov SS (1967) The physics and chemistry of impulsive pressures. J Engin Phys 12:59–68

    Google Scholar 

  202. Goncharov AF, Goldman N, Fried LE et al (2005) Dynamic ionization of water under extreme conditions. Phys Rev Lett 94:125508

    PubMed  Google Scholar 

  203. Poroshina IА, Berger АS, Batsanov SS (1973) Determination of coordination number of metals of groups I and II in silicates from refractometric data. J Struct Chem 14:789–793

    Google Scholar 

  204. Bokii GB, Batsanov SS (1954) About quantitative characteristics of trans-influence. Doklady Academii Nauk SSSR 95:1205–1206 (in Russian)

    CAS  Google Scholar 

  205. Kukushkin YuN, Bobokhodzhaev RI (1977) Chernyaev’s law of trans-influence. Nauka, Moscow (in Russian)

    Google Scholar 

  206. Wasastjerna JA (1923) On the radii of ions. Comm Phys-Math Soc Sci Fenn 1(38):1–25

    Google Scholar 

  207. Goldschmidt VM (1929) Crystal structure and chemical constitution. Trans Faraday Soc 25:253–282

    CAS  Google Scholar 

  208. Kordes E (1939) The discovery of atom displacement from refraction. Z phys Chem B 44:249–260

    Google Scholar 

  209. Kordes E (1940) Calculation of the ion radii with help from physical atom sizes. Z phys Chem B 48:91–107

    Google Scholar 

  210. Kordes E (1955) Ionengrosse, Molekularrefraktion bzw Polarisierbarkeit und Lichtbrechrechung bei anorganischen Verbindungen.1. AB Verbindungen mit einwertigen edelgasahnlichen Ionen (Alkalihalogenide). Z Elektrochem 59:551–560

    CAS  Google Scholar 

  211. Kordes E (1955) Direkte Berechnung von Ionenradien aus der Molekularrefraktion bei AB Verbindungen mit einwertigen edelgasahnlichen Ionen. Z Elektrochem 59:927–932

    CAS  Google Scholar 

  212. Kordes E (1955) AB Verbindungen mit edelgasahnlichen einwertigen und zweiwertigen Ionen. Z Elektrochem 59:932–938

    CAS  Google Scholar 

  213. Wilson JN, Curtis RM (1970) Dipole polarizabilities of ions in alkali halide crystals. J Phys Chem 74:187–196

    CAS  Google Scholar 

  214. Vieillard P (1987) A new set of values for Pauling’s ionic radii. Acta Cryst B43:513–517

    CAS  Google Scholar 

  215. Iwadate Y, Fukushima K (1995) Electronic polarizability of a fluoride ion estimated by refractive indexes and molar volumes of molten eutectic LiF-NaF-KF. J Chem Phys 103:6300–6302

    CAS  Google Scholar 

  216. Compagnon I, Antoine R, Broyer M et al (2001) Electric polarizability of isolated C70 molecules. Phys Rev A 64:025201

    Google Scholar 

  217. Dugourd P, Antoine R, Rayane D et al (2001) Enhanced electric polarizability in metal C60 compounds: Formation of a sodium droplet on C60. J Chem Phys 114:1970–1973

    CAS  Google Scholar 

  218. Lyon JT, Andrews L (2005) Formation and characterization of thorium methylidene CH2=ThHX complexes. Inorg Chem 44:8610–8616

    PubMed  CAS  Google Scholar 

  219. Danset D, Manaron L (2005) Reactivity of cobalt dimer and molecular oxygen in rare gas matrices: IR spectrum, photophysics and structure of Co2O2. Phys Chem Chem Phys 7:583–591

    PubMed  CAS  Google Scholar 

  220. Wang XF, Andrew L, Riedel S, Kaupp M (2007) Mercury is a transition metal: The first experimental evidence for HgF4. Angew Chem Int Ed 46:8371–8375

    CAS  Google Scholar 

  221. Li X, Wang L-S, Boldyrev AI, Simons J (1999) Tetracoordinated planar carbon in the Al4C− anion. A combined photoelectron spectroscopy and ab initio study. J Am Chem Soc 121:6033–6038

    CAS  Google Scholar 

  222. Boldyrev AI, Simons J, Li X, Wang L-S (1999) The electronic structure and chemical bonding of hypermetallic Al5C by ab initio calculations and anion photoelectron spectroscopy. J Chem Phys 111:4993–4998

    CAS  Google Scholar 

  223. Wang L-S, Boldyrev AI, Li X, Simons J (2000) Experimental observation of pentaatomic tetracoordinate planar carbon-containing molecules. J Am Chem Soc 122:7681–7687

    CAS  Google Scholar 

  224. Kuznetsov AE, Boldyrev AI, Li X, Wang L-S (2001) On the aromaticity of square planar Ga4 2− and In4 2− in gaseous NaGa4 and NaIn4 clusters. J Am Chem Soc 123:8825–8831

    PubMed  CAS  Google Scholar 

  225. Zhai H-J, Yang X, Wang X-B et al (2002) In search of covalently bound tetra- and penta-oxygen species: a photoelectron spectroscopic and ab initio investigation of MO4 and MO5 (M = Li, Na, K, Cs). J Am Chem Soc 124:6742–6750

    PubMed  CAS  Google Scholar 

  226. Zhai H-J, Wang L-S, Kuznetsov AE, Boldyrev AI (2002) Probing the electronic structure and aromaticity of pentapnictogen cluster anions Pn5 (Pn = P, As, Sb, and Bi) using photoelectron spectroscopy and ab initio calculations. J Phys Chem A 106:5600–5606

    Google Scholar 

  227. Kiran B, Li X, Zhai H-J et al (2004) [SiAu4]: aurosilane. Angew Chem Int Ed 43:2125–2129

    CAS  Google Scholar 

  228. Li S-D, Zhai H-J, Wang L-S (2008) B2(BO)2 2−– diboronyl diborene: a linear molecule with a triple boron-boron bond. J Am Chem Soc 130:2573–2579

    PubMed  CAS  Google Scholar 

  229. Jules JL, Lombardi JR (2003) Transition metal dimer internuclear distances from measured force constants. J Phys Chem A 107:1268–1273

    Google Scholar 

  230. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand, New York

    Google Scholar 

  231. Fu Z, Lemire GW, Bishea GA, Morse MD (1990) Spectroscopy and electronic-structure of jet-cooled Al2. J Chem Phys 93:8420–8441

    CAS  Google Scholar 

  232. Merritt JM, Kaledin AL, Bondybey VE, Heaven M C (2008) The ionization energy of Be2. Phys Chem Chem Phys 10:4006–4013

    PubMed  CAS  Google Scholar 

  233. Kitsopoulos TN (1991) Study of the low-lying electronic states of Si2 and Si2 using negative-ion photodetachment techniques. J Chem Phys 95:1441–1448

    CAS  Google Scholar 

  234. Ho J, Polak ML, Lineberger WC (1992) Photoelectron-spectroscopy of group IV heavy metal dimers Sn2 , Pb2 , and SnPb. J Chem Phys 96:144–154

    CAS  Google Scholar 

  235. Stangassinger A, Bondybey VE (1995) Electronic spectrum of Tl2. J Chem Phys 103:10804–10805

    CAS  Google Scholar 

  236. Van Hooydonk G (1999) A universal two-parameter Kratzer potential and its superiority over Morse’s for calculating and scaling first-order spectroscopic constants of 300 diatomic bonds. Eur J Inorg Chem 1617–1642

    Google Scholar 

  237. Vilkov LV, Mastryukov VS, Sadova NI (1978) Determination of geometrical structure of molecules. Khimia, Мoscow (in Russian)

    Google Scholar 

  238. Giricheva NI, Lapshin SB, Girichev GV (1996) Structural, vibrational, and energy characteristics of halide molecules of group II-V elements. J Struct Chem 37:733–746

    Google Scholar 

  239. Gurvich LV, Ezhov YuS, Osina EL, Shenyavskaya EA (1999) The structure of molecules and the thermodynamic properties of scandium halides. Russ J Phys Chem 73:331–344

    Google Scholar 

  240. Birge RT (1925) The law of force and the size of diatomic molecules, as determined by their band spectra. Nature 116:783–784

    CAS  Google Scholar 

  241. Mecke R (1925) Formation of band spectra. Z Physik 32:823–834

    CAS  Google Scholar 

  242. Morse PM (1929) Diatomic molecules according to the wave mechanics: vibrational levels. Phys Rev 34:57–64

    CAS  Google Scholar 

  243. Clark CHD (1934) The relation between vibration frequency and nuclear separation for some simple non-hydride diatomic molecules. Phil Mag 18:459–470

    CAS  Google Scholar 

  244. Ladd JA, Orville-Thomas WJ (1966) Molecular parameters and bond structure: nitrogen-oxygen bonds. Spectrochim Acta 22:919–925

    CAS  Google Scholar 

  245. Zallen R (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals—S8 and As2S3. Phys Rev B 9:4485–4496

    CAS  Google Scholar 

  246. Hill FC, Gibbs GV, Boisen MB (1994) Bond stretching force-constants and compressibilities of nitride, oxide, and sulfide coordination polyhedra in molecules and crystals. Struct Chem 5:349–355

    CAS  Google Scholar 

  247. Zavitsas AA (2004) Regularities in molecular properties of ground state stable diatomics. J Chem Phys 120:10033–10036

    PubMed  CAS  Google Scholar 

  248. Badger RM (1934) A relation between internuclear distance and bond force constant. J Chem Phys 2:128–131

    CAS  Google Scholar 

  249. Badger RM (1935) Between the internuclear distances and force constants of molecules and its application to polyatomic molecules. J Chem Phys 3:710–714

    CAS  Google Scholar 

  250. Cioslowski J, Liu G, Castro RAM (2000) Badger’s rule revisited. Chem Phys Lett 331:497–501

    CAS  Google Scholar 

  251. Kurita E; Matsuura H; Ohno K (2004) Relationship between force constants and bond lengths for CX (X = C, Si, Ge, N, P, As, O, S, Se, F, Cl and Br) single and multiple bonds: formulation of Badger’s rule for universal use. Spectrochim Acta A 60:3013–3023

    Google Scholar 

  252. Murell JN (1960) The application of perturbation theory to the calculation of force constants. J Mol Spectr 4:446–456

    Google Scholar 

  253. Pearson RG (1977) Simple-model for vibrational force constants. J Am Chem Soc 99:4869–4875

    CAS  Google Scholar 

  254. Gordy WR (1946) A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J Chem Phys 14:305–320

    CAS  Google Scholar 

  255. Batsanov SS, Derbеnevа SS (1969) Effect of valency and coordination of atoms on position and form of infrared absorption bands in inorganic compounds. J Struct Chem 10:510–515

    Google Scholar 

  256. Voyiatzis GA, Kalampounias AG, Papatheodorou GN (1999) The structure of molten mixtures of iron(III) chloride with caesium chloride. Phys Chem Chem Phys 1:4797–4803

    CAS  Google Scholar 

  257. Bowmaker GA, Harris RK, Apperley DC (1999) Solid-state 199Hg MAS NMR and vibrational spectroscopic studies of dimercury(I) compounds. Inorg Chem 38:4956–4962

    PubMed  CAS  Google Scholar 

  258. Spoliti M, de Maria G, D’Alessio L, Maltese E (1980) Bonding in and spectroscopic properties of gaseous triatomic-molecules: alkaline-earth metal dihalides. J Mol Struct 67:159–167

    CAS  Google Scholar 

  259. Khаritоnоv YuА, Krаvtsоvа GV (1980) Empirical correlations between molecular constants and their use in coordination chemistry. Kооrdinatsionnaya Khimiya 6:1315 (in Russian)

    Google Scholar 

  260. Pearson RG (1993) Bond-energies, force-constants and electronegativities. J Mol Struct 300:519–525

    CAS  Google Scholar 

  261. Bhar G (1978) Trends of force constants in diamond and sphalerite-structure crystals. Physica B 95:107–112

    Google Scholar 

  262. Batsanov SS (1986) Experimental foundations of structural chemistry. Standarty, Мoscow (in Russian)

    Google Scholar 

  263. Kanesaka I, Kawahara H, Yamazaki A, Kawai K (1986) The vibrational-spectrum of AlCl3, CrCl3 and FeCl3. J Mol Struct 146:41–49

    CAS  Google Scholar 

  264. Batsanov SS, Derbeneva SS (1964) Infrared spectra of strontium and lead nitrates pressed into various media. Optika i Spectroskopiya 17:149–151 (in Russian)

    CAS  Google Scholar 

  265. Batsanov SS, Derbeneva SS (1965) Infrared spectra of anisotropic carbonates imbedded in different media. Opt Spect-USSR 18:342–343

    Google Scholar 

  266. Batsanov SS, Derbeneva SS (1967) Effect of anisotropy on diffuse light scattering in polycrystals. Opt Spect-USSR 22:80–81

    Google Scholar 

  267. Batsanov SS, Tlеuliеvа KА (1978) Infrared spectroscopic study of structural transformations in sodium and potassium nitrates. J Struct Chem 19:329–330

    Google Scholar 

  268. Donaldson JD, Ross SD, Silver J (1975) Vibrational spectra of some cesium tin(II) halides. Spectrochim Acta A 31:239–243

    Google Scholar 

  269. Аrkhipеnkо DK, Bokii GB (1977) On the possibility of the space group refinement by the vibration spectroscopy method. Sov Phys Cryst 22:667–671

    Google Scholar 

  270. Yurchenko EN, Kustova GN, Batsanov SS (1981) Vibration spectra of inorganic compounds. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  271. Somayajulu GR (1958) Dependence of force constant on electronegativity, bond strength, and bond order. J Chem Phys 28:814–821

    CAS  Google Scholar 

  272. Hussain Z (1965) Dependence of vibrational constant of homonuclear diatomic molecules on electronegativity. Canad J Phys 43:1690–1692

    CAS  Google Scholar 

  273. Szöke S (1971) Approach of equalized electronegativity by molecular parameters. Acta Chim Acad Sci Hung 68:345

    Google Scholar 

  274. Spoliti M, De Matia G, D’Allessio L, Maltese E (1980) Bonding in and spectroscopic properties of gaseous triatomic molecules: alkaline-earth metal dihalides. J Mol Struct 67:159–167

    CAS  Google Scholar 

  275. Pearson RG (1993) Bond energies, force constants and electronegativities. J Mol Struct 300:519–525

    Google Scholar 

  276. van Hooydonk G (1999) A universal two-parameter Kratzer potential and its superiority over Morse’s for calculating and scaling first-order spectroscopic constants of 300 diatomic bonds. Eur J Inorg Chem 1999:1617–1642

    Google Scholar 

  277. Batsanov SS (2005) Metal electronegativity calculations from spectroscopic data. Russ J Phys Chem 79:725–731

    CAS  Google Scholar 

  278. Waser J, Pauling L (1950) Compressibilities, force constants, and interatomic distances of the elements in the solid state. J Chem Phys 18:747–753

    CAS  Google Scholar 

  279. Batsanov SS (2011) System of metal electronegativities calculated from the force constants of the bonds. Russ J Inorg Chem 56:906–912

    CAS  Google Scholar 

  280. Reynolds W (1980) An approach for assessing the relative importance of field and σ-inductive contributions to polar substituent effects. J Chem Soc Perkin Trans II 985–992

    Google Scholar 

  281. Jörgensen CK (1963) Optical electronegativities of 3d group central ions. Mol Phys 6:43–47

    Google Scholar 

  282. Jörgensen CK (1975) Photo-electron spectra of non-metallic solids and consequences for quantum chemistry. Structure and Bonding 24:1–58

    Google Scholar 

  283. Dodsworth ES, Lever ABP (1990) The use of optical electronegativities to assign electronic-spectra of semiquinone complexes. Chem Phys Lett 172:151–157

    CAS  Google Scholar 

  284. Duffy JA (1977) Variable electronegativity of oxygen in binary oxides—possible relevance to molten fluorides. J Chem Phys 67:2930–2931

    CAS  Google Scholar 

  285. Duffy JA (1980) Trends in energy gaps of binary compounds—an approach based upon electron-transfer parameters from optical spectroscopy. J Phys C 13:2979–2989

    Google Scholar 

  286. Duffy JA (1986) Chemical bonding in the oxides of the elements—a new appraisal. J Solid State Chem 62:145–157

    CAS  Google Scholar 

  287. Duffy JA (2004) Relationship between cationic charge, coordination number, and polarizability in oxidic materials. J Phys Chem B 108:14137–14141

    Google Scholar 

  288. Duffy JA (2006) Ionic-covalent character of metal and nonmetal oxides. J Phys Chem A 110:13245–13248

    Google Scholar 

  289. Reddy RR, Gopal KR, Ahammed YN et al (2005) Correlation between optical electronegativity, molar refraction, ionicity and density of binary oxides, silicates and minerals. Solid Sate Ionics 176:401–407

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendices

Appendix

11.1.1 Supplementary Tables

Table S11.1 Temperature coefficients of refractive indices
Table S11.2 Refractive indices of elementary solids.(From [11.25] and the authors’ own unpublished measurements, except where specified)
Table S11.3 Refractive indices of crystalline substances of the MX type (n¥ from [11.2])
Table S11.4 Refractive indices (δ = D) of crystalline substances of the MX2 type
Table S11.5 Refractive indices ( = D) of crystalline substances of the MX3 type
Table S11.6 Refractive indices (λ = D) of crystalline substances of the M2X3 type
Table S11.7 Refractive indices ( = D) of crystalline substances of the MXn type
Table S11.8 Polarization of ions (Å3) according to Shannon
Table S11.9 Effect of the aggregate state on molecular refractions (cm3/mol)
Table S11.10 Refractometric constants of the polymorphic modifications of silica [11.25, 11.26]
Table S11.11 Atomic refractions (cm3/mol) according to Vogela and Millerb
Table S11.12 Empirical values of the crystalline ionic refractions (cm3/mol)
Table S11.13 Relative change of refractions of atoms on ionization
Table S11.14 Bond refractions (cm3/mol)
Table S11.15 Anisotropy of bond refractions (cm3/mol):  = (R /R )1/3
Table S11.16 Effective nuclear charges of atoms in AH molecules according to Pearson and Slater. (See Chap. 1, Table 1.7)
Table S11.17 Force constants (mdyn/Å) and electronegativities of metals in molecular halides
Table S11.18 Force constants (mdyn/Å) and electronegativities of metals in molecular oxides and chalcogenides
Table S11.19 Elastic force constants (mdyn/Å) and electronegativities of metals in MX crystals

Supplementary References

11.1 Herve P, Vandamme LKJ (1994) Infrared Phys Technol 4:609

11.2 Balzaretti NM, Da Jordana JAH (1996) J Phys Chem Solids 57:179

11.3 Wagner V, Gundel S, Geurts J et al (1998) J Cryst Growth 184/185:1067

11.4 Yamanaka T, Tokonami M (1985) Acta Cryst B41:298

11.5 Batsanov SS, Grankina ZA (1965) Optica i Spectr 19:814 (in Russian)

11.6 Sharma SB, Sharma SC, Sharma B, Bedi S (1992) J Phys Chem Solids 53:329

11.7 Ito T, Yamaguchi H, Masumi T, Adachi S (1998) J Phys Soc Japan 67:3304

11.8 Gauthier M, Polian A, Besson J, Chevy A (1989) Phys Rev B40:3837

11.9 Ren Q, Ding L-Y, Chen F-S et al (1997) J Mater Sci Lett 16:1247

11.10 Elkorashy A (1989) Physica B 159:171

11.11 Elkorashy A (1990) J Phys Chem Solids 51:289

11.12 Yamaguchi M, Yagi T, Azuhata T et al (1997) J Phys Cond Matter 9:241

11.13 Azuhata T, Sota T, Suzuki K, Nakamara S (1995) J Phys Cond Matter 7:L129

11.14 Uribe MM, de Oliveira CEM, Clerice JHM et al (1996) Elect Lett 32:262

11.15 Sun L, Ruoff AL, Zha C-S, Stupian G (2006) J Phys Chem Solids 67:2603

11.16 Sysoeva NP, Аyupоv BМ, Тitоvа ЕF (1985) Оptika i Spectr 59:231

11.17 Shimizu H, Kitagawa T, Sasaki S (1993) Phys Rev B 47:11567

11.18 Medenbach O, Shannon RD (1997) J Opt Soc Amer B 14:3299

11.19 Acker E, Haussühl S, Recker K (1972) J Cryst Growth 13/14:467

11.20 Gavaleshko NP, Savchuk AI, Vatamanyuk PP, Lyakhovich AN (1981) Neorg Mater 17:538

11.21 Batsanova LR (1963) Izv Sib Otd AcadSciSU Ser Khimiya 3:83

11.22 Nazri GA, Julien C, Mavi HS (1994) Solid State Ionics 70/71:137

11.23 Ruchkin ED, Sokolova MN, Batsanov SS (1967) Zh Struct Khim 8:465

11.24 Kustova GN, Obzherina KF, Kamarzin AA et al (1969) Zh Struct Khim 10:609

11.25 Batsanov SS (1966) Refractometry and chemical structure. Van Nostrand, Princeton; Batsanov SS (1976) Structural refractometry, 2nd edn. Vyschaya Shkola, Moscow (in Russian)

11.26 Marler B (1988) Phys Chem Miner 16:286; Guo YY, Kuo CK, Nicholson PS (1999) Solid State Ionics 123:225

11.27 Vogel AI (1948) J Chem Soc 1833; Vogel AI, Cresswell WT, Jeffery G, Leicester J (1952) J Chem Soc 514

11.28 Miller KJ (1990) J Am Chem Soc 112:8533

11.29 Hohm U (1994) Chem Phys 179:533

11.30 McDowell SAC, Kumar A, MeathWJ (1996) Canad J Chem 74:1180

11.31 Bridge NJ, Buckingham AD (1966) Proc Roy Soc A295:334

11.32 Maroulis G, Makris C, Hohm U, Goebel D (1997) J Phys Chem A 101:953

11.33 Baas F, van den Hout KD (1979) Physica A95:597

11.34 Gentle IR, Laver DR, Ritchie GLD (1990) J Phys Chem 94:3434

11.35 Allen GW, Aroney MJ (1989) J Chem Soc Faraday Trans II 85:2479

11.36 Keir RI, Ritchie GLD (1998) Chem Phys Lett 290:409

11.37 Ritchie GL, Blanch EW (2003) J Phys Chem A107:2093

11.38 Goebel D, Hohm U (1997) J Chem Soc Faraday Trans 93:3467

11.39 Gurvich LV, Ezhov YuS, Osina EL, Shenyavskaya EA (1999) Russ J Phys Chem 73:331

11.40 Hargittai M, Varga Z (2007) J Phys Chem A 111:6

11.41 Singh VB (2005) J Phys Chem Ref Data 34:23

11.42 Batsanov SS (2005) Russ J Phys Chem 79:725

11.43 Zhao Y, Gong Y, Zhou M (2006) J Phys Chem A110:1077

11.44 Takano S, Yamamoto, Saito S (2004) J Mol Spectr 224:137

11.45 Yamamoto T, Tanimoto M, Okabayashi T (2007) PCCP 9:3774

11.46 Merritt JM, Bondybey VE, Heaven MC (2009) J Chem Phys 130:144503

11.47 Setzer KD, Meinecke F, Fink EH (2009) J Mol Spectr 258:56

11.48 Setzer KD, Breidohr R, Meinecke F, Fink EH (2009) J Mol Spectr 258:50

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Structure and Optical Properties. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_11

Download citation

Publish with us

Policies and ethics