Skip to main content

Extreme Conditions

  • Chapter
  • First Online:
Introduction to Structural Chemistry

Abstract

This chapter is mainly devoted to structural studies under static or dynamic high pressure (HP), which allows much more drastic change of crystal structure and bonding than variations of temperature. The ‘workhorse’ of static HP crystallography is the diamond anvil cell, producing hydrostatic pressure of up to 300 GPa, albeit in a very small volume. Dynamic pressure produced by chemical explosives, electric discharge, projectile impact or irradiation, is much higher but of very short duration—unexpectedly, sufficient for phase transitions and crystallization! A combined dynamic-static technique has been developed. A bewildering variety of HP polymorphs have been discovered; their systematic survey shows a general increase of coordination number with pressure, including transformations of molecular into polymeric structures, and of crystals into amorphous solids. Dynamic compression also produced some unusual phase transitions with a decrease (!) of density, explained by high concentration of defects, and dissociation of compounds into elements. ‘Polyamorphous’ transitions (glass-glass, or liquid-liquid), usually gradual, can also be surprisingly abrupt. Away from phase transitions, compression of solids is described by equations of state, which are critically reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To the authors’ knowledge, studies of detonation diamond in the USSR were going on since 1960’s but were kept secret. However, we believe that in the absence of any open publications prior to 1988, any attempts to re-establish the scientific priority now are pointless

References

  1. Loubeyre P, LeToullec R (1995) Stability of O2/H2 mixtures at high pressure. Nature 378:44–46

    CAS  Google Scholar 

  2. Loveday JS, Nelmes RJ (1999) Ammonia monohydrate VI: A hydrogen-bonded molecular alloy. Rev Phys Lett 83:4329–4332

    CAS  Google Scholar 

  3. Sihachakr D, Loubeyre P (2006) High-pressure transformation of N2/O2 mixtures into ionic compounds. Phys Rev B 74:064113

    Google Scholar 

  4. Katrusiak A (2008) High-pressure crystallography. Acta Cryst A 64:135–148

    Google Scholar 

  5. Frevel LK (1935) A technique for X-ray studies of substances under high pressures. Rev Sci Instrum 6:214–215

    CAS  Google Scholar 

  6. Jacobs RB (1938) X-ray diffraction of substances under high pressures. Phys Rev 54:325–331

    CAS  Google Scholar 

  7. Lawson AW, Tang TY (1950) A diamond bomb for obtaining powder pictures at high pressures. Rev Sci Instrum 21:815

    CAS  Google Scholar 

  8. Eremets MI (1996) High pressure experimental methods. Oxford University Press, Oxford

    Google Scholar 

  9. McMillan PF (2003) Chemistry of materials under extreme high pressure-high temperature conditions. J Chem Soc Chem Commun 919–923

    Google Scholar 

  10. McMillan PF (2006) Chemistry at high pressure. Chem Soc Rev 35:855–857

    PubMed  CAS  Google Scholar 

  11. San-Miguel A (2006) Nanomaterials under high pressure. Chem Soc Rev 35:876–889

    PubMed  CAS  Google Scholar 

  12. Goncharov AF, Hemley RJ (2006) Probing hydrogen-rich molecular systems at high pressures and temperatures. Chem Soc Rev 35:899–907

    PubMed  CAS  Google Scholar 

  13. McMahon MI, Nelmes RJ (2006) High-pressure structures and phase transformations in elemental metals. Chem Soc Rev 35:943–963

    PubMed  CAS  Google Scholar 

  14. Wilding MC, Wilson M, McMillan PF (2006) Structural studies and polymorphism in amorphous solids and liquids at high pressure. Chem Soc Rev 35: 964–986

    PubMed  CAS  Google Scholar 

  15. Horvath-Bordon E, Riedel R, Zerr A et al (2006) High-pressure chemistry of nitride-based materials. Chem Soc Rev 35:987–1014

    PubMed  CAS  Google Scholar 

  16. Angel RJ (2004) Absorption crorrections for diamond-anvil pressure cells. J Appl Cryst 37:486–492

    CAS  Google Scholar 

  17. Mujica A, Rubio A, Munõz A, Needs RJ (2003) High-pressure phases of group IV, III-V, and II-VI compounds. Rev Modern Phys 75:863–912

    CAS  Google Scholar 

  18. Hochheimer HD, Strössner K, Honle V et al (1985) High Pressure X-Ray Investigation of the Alkali Hydrides NaH, KH, RbH, and CsH. Z phys Chem 143:139–144

    CAS  Google Scholar 

  19. Duclos SJ, Vohra YK, Ruoff AL et al (1987) High-pressure studies of NaH to 54 GPa. Phys Rev B 36:7664–7667

    CAS  Google Scholar 

  20. Hull S, Keen DA (1994) High pressure polymorphism of the copper(I) halides. Phys Rev B 50:5868–5885

    Google Scholar 

  21. Hofmann M, Hull S, Keen DA (1995) High-pressure phase of copper(I) iodide. Phys Rev B 51:12022

    Google Scholar 

  22. Leger JM, Haines J, Danneels C, de Oliveira LS (1998) The TlI-type structure of the high-pressure phase of NaBr and NaI; pressure-volume behaviour to 40 GPa. J Phys Cond Mater 10:4201–4210

    CAS  Google Scholar 

  23. Sata N, Shen G, Rivers ML, Sutton S R (2001) Pressure-volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104114

    Google Scholar 

  24. Ono S, Kikegawa T, Ohishi Y (2006) Structural property of CsCl-type sodium chloride under pressure. Solid State Commun 137:517–521

    CAS  Google Scholar 

  25. Demarest HH, Cassell CR, Jamieson JC (1978) High-pressure phase-transitions in KF and RbF. J Phys Chem Solids 39:1211–1215

    CAS  Google Scholar 

  26. Vaidya SN, Kennedy GC (1971) Compressibility of 27 halides to 45 kbar. J Phys Chem Solids 32:951–964

    CAS  Google Scholar 

  27. Köhler U, Johannsen PG, Holzapfel WB (1997) Equation of state data for CsCl-type alkali halides. J Phys Cond Matt 9:5581–5592

    Google Scholar 

  28. Hull S, Berastegui P (1998) High-pressure structural behaviour of silver(I) fluoride. J Phys Cond Matter 10:7945–7955

    CAS  Google Scholar 

  29. Luo H, Ghandehari K, Greene RG et al (1995) Phase transformation of BeSe and BeTe to the NiAs structure at high pressure. Phys Rev B 52:7058–7064

    Google Scholar 

  30. Narayana C, Nesamony VJ, Ruoff AL (1997) Phase transformation of BeS and equation-of-state studies to 96 GPa. Phys Rev B 56:14338–14343

    Google Scholar 

  31. Li T, Luo H, Greene RG, Ruoff AL (1995) High-pressure phase of MgTe. Phys Rev Lett 74:5232–5235

    PubMed  CAS  Google Scholar 

  32. Desgreniers S (1998) High-density phases of ZnO:structural and compressive parameters. Phys Rev B 58:14102–14105

    Google Scholar 

  33. Ves S, Schwarz U, Christensen NE et al (1990) High-pressure Raman study of the chain chalcogenide TlInTe2. Phys Rev B 42:9113–9118

    Google Scholar 

  34. Ves S (1991) Band-gaps and phase transitions in cubic ZnS, ZnSe and ZnTe. In: Hochheimer HD, Etters RD (eds) Frontiers of high-pressure research. NATO ASI Ser B 286:369–376

    Google Scholar 

  35. Tang Z, Gupta Y (1988) Shock-induced phase transformation in cadmium sulfide dispersed in an elastomer. J Appl Phys 64:1827–1837

    CAS  Google Scholar 

  36. Tolbert SH, Alivisatos AP (1995) The wurtzite to rock-salt structural transformation in CdSe nanocrystals under high-pressure. J Chem Phys 102:4642–4656

    CAS  Google Scholar 

  37. Hu J (1987) A new high-pressure phase of CdTe. Solid State Commun 63:471–474

    CAS  Google Scholar 

  38. Nelmes RJ, McMahon MI, Wright G, Allan DR (1995) Structural studies of II-VI semiconductors at high-pressure. J Phys Chem Solids 56:545–549

    CAS  Google Scholar 

  39. Nelmes RJ, McMahon MI, Wright G, Allan DR (1995) Phase-transitions in CdTe to 28 GPa. Phys Rev B 51:15723–15731

    Google Scholar 

  40. Zhou T, Schwarz U, Hanfland M et al (1998) Effect of pressure on the crystal structure, vibrational modes, and electronic excitations of HgO. Phys Rev B 57:153–160

    Google Scholar 

  41. San-Miguel A, Wright NG, McMahon MI, Nelmes RJ (1995) Pressure evolution of the cinnabar phase of HgTe. Phys Rev B 51:8731–8736

    Google Scholar 

  42. Huang T-L, Ruoff AL (1983) Pressure-induced phase-transition of HgS. J Appl Phys 54:5459–5461

    CAS  Google Scholar 

  43. Luo H, Greene RG, Ghandehari K et al (1994) Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys Rev B 50; 16232–16237

    Google Scholar 

  44. Luo H, Greene RG, Ruoff AL (1994) High-pressure phase transformation and the equation of state of SrSe. Phys Rev B 49:15341–15343

    Google Scholar 

  45. Weir ST, Vohra YK, Ruoff AL (1986) High-pressure phase transitions and the equations of state of BaS and BaO. Phys Rev B 33:4221–4226

    Google Scholar 

  46. Grzybowski TA, Ruoff AL (1983) High-pressure phase transition in BaSe. Phys Rev B 27:6502–6503

    Google Scholar 

  47. Grzybowski TA, Ruoff AL (1984) Band-overlap metallization of BaTe. Phys Rev Lett 53:489–492

    CAS  Google Scholar 

  48. Chattopadhyay T, Werner A, von Schnering HG, Pannetier J (1984) Temperature and pressure-induced phase transition in IV-VI compounds. Rev Phys Appl 19:807–813

    CAS  Google Scholar 

  49. Vaitheeswaran G, Kanchana V, Svane A et al (2011) High-pressure structural study of yttrium monochalcogenides from experiment and theory. Phys Rev B 83:184108

    Google Scholar 

  50. Vaitheeswaran G, Kanchana V, Heathman S et al (2007) Elastic constants and high-pressure structural transitions in lanthanum monochalcogenides from experiment and theory. Phys Rev B 75:184108

    Google Scholar 

  51. Gerward L, Staun Olsen J, Steenstrup S et al (1990) The pressure-induced transformation B1 to B2 in actinide compounds. J Appl Cryst 23:515–519

    CAS  Google Scholar 

  52. Staun Olsen J, Gerward L, Benedict U, Dabos-Seignon S (1990) High-pressure studies of thorium and uranium compounds with the rocksalt structure. High Pressure Res 2:335–338

    Google Scholar 

  53. Ueno M, Yoshida M, Onodera A et al (1994) Stability of the wurtzite-type structure under high-pressure: GaN and InN. Phys Rev B 49:14–21

    Google Scholar 

  54. Endo S, Ito K (1982) Triple-stage high-pressure apparatus with sintered diamond anvils. Adv Earth Planet Sci 12:3–12

    Google Scholar 

  55. Dankekar D, Abbate A, Frankel J (1994) Equation of state of aluminium nitride and its shock response. J Appl Phys 76:4077–4085

    Google Scholar 

  56. Greene RG, Luo HA, Ghandehari K, Ruoff AL (1995) High-pressure structural study of AlSb to 50 GPa. J Phys Chem Solids 56:517–520

    CAS  Google Scholar 

  57. Konczewicz L, Bigenwald P, Cloitre T et al (1996) MOVPE growth of zincblende magnesium sulphide. J Cryst Growth 159:117–120

    CAS  Google Scholar 

  58. Perlin P, Jauberthie-Carillon C, Itie JP et al (1992) Raman scattering and X-ray absorption spectroscopy in gallium nitride under high pressure. Phys Rev B 45:83–89

    Google Scholar 

  59. Xia H, Xia Q, Ruoff AL (1993) High-pressure structure of gallium nitride: wurtzite-to-rock-salt phase transition. Phys Rev B 47:12925–12928

    Google Scholar 

  60. Soma T, Kagaya H-M (1984) High-pressure NaCl-phase of tetrahedral compounds. Solid State Commun 50:261–263

    CAS  Google Scholar 

  61. Itie JP, Polian A, Jauberthie-Carillon C et al (1989) High-pressure phase transition in gallium phosphide. Phys Rev B 40:9709–9714

    Google Scholar 

  62. Weir ST, Vohra YK, Vanderborgh CA, Ruoff AL (1989) Structural phase transitions in GaAs to 108 GPa. Phys Rev B 39:1280–1285

    Google Scholar 

  63. Weir ST, Vohra YK, Ruoff AL (1987) Phase transitions in GaSb to 110 GPa. Phys Rev B 36:4543–4546

    Google Scholar 

  64. Xia Q, Xia H, Ruoff AL (1994) New crystal structure of indium nitride: a pressure-induced phase. Modern Phys Lett B 8:345–350

    Google Scholar 

  65. Menoni CS, Spain IL (1987) Equation of state of InP to 19 GPa. Phys Rev B 35:7520–7525

    Google Scholar 

  66. Menoni CS, Spain IL (1989) Structural phase transitions in GaAs to 108 GPa. Phys Rev B 39:1280–1285

    Google Scholar 

  67. Soma T, Kagaya H-M (1984) NaCl-type lattice of GaAs and InSb under pressure. Phys Stat Solidi b121:K1–K5

    Google Scholar 

  68. Nelmes RJ, McMahon MI, Hatton PD et al (1993) Phase-transitions in InSb at pressures up to 5 GPa. Phys Rev B 47:35–54

    Google Scholar 

  69. Liu H, Tse J S, Mao H-k (2006) Stability of rocksalt phase of zinc oxide under strong compression. J Appl Phys 100:093509

    Google Scholar 

  70. Ghandehari K, Luo H, Ruoff AL et al (1995) New high-pressure crystal structure and equation of state of cesium hydride to 253 GPa. Phys Rev Lett 74:2264–2267

    PubMed  CAS  Google Scholar 

  71. Knittle E, Rudy A, Jeanloz R (1985) High-pressure phase transition in CsBr. Phys Rev B 31:588–590

    Google Scholar 

  72. Brister KE, Vohra YK, Ruoff AL (1985) High-pressure phase transition in CsCl at V/V0 = 0.53. Phys Rev B31:4657–4658

    Google Scholar 

  73. Mao H-K, Hemley RL, Chen LC et al (1989) X-ray diffraction to 302 GPa: high-pressure crystal structure of cesium iodide. Science 246:649–651

    PubMed  CAS  Google Scholar 

  74. Mao HK, Wu Y, Hemley RJ et al (1990) High-pressure phase transition and equation of state of CsI. Phys Rev Lett 64:1749–1752

    PubMed  CAS  Google Scholar 

  75. Le Bihan T, Darracq S, Heathman S et al (1995) Phase transformation of the monochalcogenides SmX (X = S, Se, Te) under pressure. J Alloys Comp 226:143–145

    CAS  Google Scholar 

  76. Svane A, Strange P, Temmerman WM et al (2001) Pressure-induced valence transitions in rare earth chalcogenides and pnictides. Phys Stat Solidi b 223:105–116

    Google Scholar 

  77. Wright NG, McMahon MI, Nelmes RJ, San-Miguel A (1993) Crystal structure of the cinnabar phase of HgTe. Phys Rev B 48:13111–13114

    Google Scholar 

  78. McMahon MI, Nelmes RJ, Wright NG, Allan DR (1993) Phase transitions in CdTe to 5 GPa. Phys Rev B 48:16246–16251

    Google Scholar 

  79. Maddox BR, Yoo CS, Kasinathan D et al (2006) High-pressure structure of half-metallic CrO2. Phys Rev B 73:144111

    Google Scholar 

  80. Ming L, Manghnani M (1982) High pressure phase transformations in rutile-structured dioxides. In: Akimoto S, Manghnani M (eds) High-pressure research in geophysics. Center for Acad Publ, Tokyo

    Google Scholar 

  81. Gerward L, Staun Olsen J (1993) Powder diffraction analysis of cerium dioxide at high pressure. Powder Diffr 8:127–129

    CAS  Google Scholar 

  82. Dancausse J-P, Gering E, Heathman S, Benedict U (1990) Pressure-induced phase transition in ThO2 and PuO2. High Press Res 2:381–389

    Google Scholar 

  83. Desgreniers S, Lagarec K (1999) High-density ZrO2 and HfO2: crystalline structures and equations of state. Phys Rev B 59:8467–8472

    Google Scholar 

  84. Gerward L, Staun Olsen J, Benedict U et al (1990) Crystal structures of UP·U2, UAs·U2, UAsS and UAsSe in pressure range up to 60 GPa. High Temp-High Press 22:523–532

    CAS  Google Scholar 

  85. Liu L (1978) Fluorite isotype of SnO2 and a new modification of TiO2– implications for Earth’s lower mantle. Science 199:422–425

    PubMed  CAS  Google Scholar 

  86. Haines J, Leger JM, Chateau C, Pereira AS (2000) Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure. Phys Chem Miner 27:575–582

    CAS  Google Scholar 

  87. Ono S, Tsuchiya T, Hirose K, Ohishi Y (2003) High-pressure form of pyrite-type germanium dioxide. Phys Rev B 68:014103

    Google Scholar 

  88. Micoulaut M, Cormier L, Henderson GS (2006) The structure of amorphous, crystalline and liquid GeO2. J Phys Cond Matter 18:R753–R784

    CAS  Google Scholar 

  89. Ono S, Ito E, Katsura T et al (2000) Thermoelastic properties of the high-pressure phase of SnO2. Phys Chem Miner 27:618–622

    CAS  Google Scholar 

  90. Shieh SR, Kubo A, Duffy TS et al (2006) High-pressure phases in SnO2 to 117 GPa. Phys Rev B 73:014105

    Google Scholar 

  91. Lazicki A, Yoo C-S, Evans WJ, Pickett WE (2006) Pressure-induced antifluorite-to-anticotunnite phase transition in lithium oxide. Phys Rev B 73:184120

    Google Scholar 

  92. Iota V, Yoo CS, Cynn H (1999) Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283:1510–1513

    PubMed  CAS  Google Scholar 

  93. Yoo CS, Cynn H., Gygi F et al (1999) Crystal structure of carbon dioxide at high pressure. Phys Rev Lett 83:5527–5530

    CAS  Google Scholar 

  94. Iota V, Yoo C-S (2001) Phase diagram of carbon dioxide: evidence for a new associated phase. Phys Rev Lett 86:5922–5925

    PubMed  CAS  Google Scholar 

  95. Yoo CS, Kohlmann H, Cynn H et al (2002) Crystal structure of pseudo-six-fold carbon dioxide phase II at high pressures and temperatures. Phys Rev B 65:104103

    Google Scholar 

  96. Park JH, Yoo CS, Iota V et al (2003) Crystal striucture of bent carbon dioxide phase IV. Phys Rev B 68:014107

    Google Scholar 

  97. Datchi F, Giordano VM, Munsch P, Saito AM (2009) Structure of carbon dioxide phase IV: breakdown of the intermediate bonding state scenario. Phys Rev Lett 103:185701

    PubMed  Google Scholar 

  98. Tschauner O, Mao H-K, Hemley RJ (2001) New transformations of CO2 at high pressures and temperatures. Phys Rev Lett 87:075701

    PubMed  CAS  Google Scholar 

  99. Santoro M, Gorelli FA (2006) High pressure solid state chemistry of carbon dioxide. Chem Soc Rev 36:918–931

    Google Scholar 

  100. Kume T, Ohuya Y, Nagata M et al (2007) Transformation of carbon dioxide to nonmolecular solid at room temperature and high pressure. J Appl Phys 102:053501

    Google Scholar 

  101. Aoki K, Katoh E, Yamawaki H et al (1999) Hydrogen-bond symmetrization and molecular dissociation in hydrogen halids. Physica B 265:83–86

    Google Scholar 

  102. Sakashita M, Yamawaki H, Fujihisa H, Aoki K (1997) Pressure-induced molecular dissociation and metallization in hydrogen-bonded H2S solid. Phys Rev Lett 79:1082–1085

    CAS  Google Scholar 

  103. Fujihisa H, Yamawaki H, Sakashita M et al (2004) Molecular dissociation and two low-temperature high-pressure phases of H2S. Phys Rev B 69:214102

    Google Scholar 

  104. van Straaten J, Silvera IF (1986) Observation of metal-insulator and metal-metal transitions in hydrogen iodide under pressure. Phys Rev Lett 57:766–769

    PubMed  Google Scholar 

  105. Batsanov SS (1994) Equalization of interatomic distances in polymorphous transformations under pressure. J Struct Chem 35:391–393

    Google Scholar 

  106. Batsanov SS (1997) Effect of high pressure on crystal electronegativities of elements. J Phys Chem Solids 58:527–532

    CAS  Google Scholar 

  107. Jeon S-J, Porter RF, Vohra YK, Ruoff AL (1987) High-pressure X-ray diffraction and optical absorption studies of NH4I to 75 GPa. Phys Rev B 35:4954–4958

    Google Scholar 

  108. Eremets MI, Gregoryanz EA, Struzhkin VV et al (2000) Electrical conductivity of xenon at megabar pressure. Phys Rev Lett 85:2797–2800

    PubMed  CAS  Google Scholar 

  109. Ovsyannikov SV, Shchennikov VV, Popova SV, Derevskov AYu (2003) Semiconductor-metal transitions in lead chalcogenides at high pressure. Phys Stat Solidi b 235:521–525

    Google Scholar 

  110. Mita Y, Izaki D, Kobayashi M, Endo S (2005) Pressure-induced metallization of MnO. Phys Rev B 71:100101

    Google Scholar 

  111. Hao A, Gao C, Li M et al (2007) A study of the electrical properties of HgS under high pressure. J Phys Cond Matter 19:425222

    Google Scholar 

  112. Kawamura H, Matsui N, Nakahata I et al (1998) Pressure-induced metallization and structural transition of rhombohedral Se. Solid State Commun 108:677–680

    CAS  Google Scholar 

  113. Sun L, Ruoff AL, Zha C-S, Stupian G (2006) Optical properties of methane to 288 GPa at 300 K. J Phys Chem Solids 67:2603–2608

    CAS  Google Scholar 

  114. Strobel TA, Goncharov AF, Seagle CT et al (2011) High-pressure study of silane to 150 GPa. Phys Rev B 83:144102

    Google Scholar 

  115. Ohmura A, Machida A, Watanuki T et al (2006) Infrared spectroscopic study of the band-gap closure in YH3 at high pressure. Phys Rev B 73:104105

    Google Scholar 

  116. Kume T, Ohura H, Takeichi T et al (2011) High-pressure study of ScH3: Raman, infrared, and visible absorption spectroscopy. Phys Rev B 84:064132

    Google Scholar 

  117. Goettel KA, Eggert JH, Silvera IF, Moss WC (1989) Optical evidence for the metallization of xenon at 132(5) GPa. Phys Rev Lett 62:665–668

    PubMed  CAS  Google Scholar 

  118. Vajeeston P, Ravindran P, Hauback BC et al (2006) Structural stability and pressure-induced phase transition in MgH2. Phys Rev B 73:224102

    Google Scholar 

  119. Kinoshita K, Nishimara M, Akahama Y, Kawamura H (2007) Pressure-induced phase transition of BaH2: post Ni2In phase. Solid State Commun 141:69–72

    CAS  Google Scholar 

  120. Palasyuk T, Tkacz M (2007) Pressure-induced structural phase transition in rare-earth trihydrides. Solid State Commun 141:354–358

    CAS  Google Scholar 

  121. Wijngaarden RJ, Huiberts JN, Nagengast D et al (2000) Towards a metallic YH3 phase at high pressure. J Alloys Comp 308:44–48

    CAS  Google Scholar 

  122. Lazicki A, Maddox B, Evans WJ et al (2005) New cubic phase of Li3N: stability of the N3− ion to 200 GPa. Phys Rev Lett 95:165503

    PubMed  CAS  Google Scholar 

  123. Hou D, Zhang F, Ji C et al (2011) Series of phase transitions in cesium azide under high pressure studied by in situ X-ray diffraction. Phys Rev B 84:064127

    Google Scholar 

  124. Rosenblum SS, Weber WH, Chamberland BL (1997) Raman-scattering observation of the rutile-to-CaCl2 phase transition in RuO2. Phys Rev B 56:529–533

    Google Scholar 

  125. Rozenberg GK, Pasternak MP, Xu WM et al (2003) Pressure-induced structural transformation in the Mott insulator FeI2. Phys Rev B 68:064105

    Google Scholar 

  126. Boldyreva EV (2008) High-pressure diffraction studies of molecular organic solids: a personal view. Acta Cryst A 64:218–231

    Google Scholar 

  127. Fabbiani FPA, Pulham CR (2006) High-pressure studies of pharmaceutical compounds and energetic materials. Chem Soc Rev 35:932–942

    PubMed  CAS  Google Scholar 

  128. Meersman F, Dobson CM, Heremans K (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 35:908–917

    PubMed  CAS  Google Scholar 

  129. Wen X-D, Hoffmann R, Ashcroft NW (2011) Benzene under high pressure. J Am Chem Soc 133:9023–9035

    PubMed  CAS  Google Scholar 

  130. Fanetti S, Citroni M, Bini R (2011) Pressure-induced fluorescence of pyridine. J Phys Chem B 115:12051–12058

    Google Scholar 

  131. Batsanov SS (1982) Crystallochemical calculation of pressure of metallization of inorganic substances. Russ J Phys Chem 56:196–197

    Google Scholar 

  132. Batsanov SS (1991) Crystal-chenical calculations of the metallization pressure of inorganic substances. Russ J Inorg Chem 36:1265

    Google Scholar 

  133. Slater JC (1963) Quantum theory of molecules and solids, vol 1, Electronic structure of molecules. McGraw-Hill, New York

    Google Scholar 

  134. Mishima O, Calvert L, Whalley E (1984) Melting ice-I at 77 K and 10 kbar—a new method of making amorphous solids. Nature 310:393–395

    CAS  Google Scholar 

  135. Yamanaka T, Nagai T, Tsuchiya T (1997) Mechanism of pressure-induced amorphization. Z Krist 212:401–410

    CAS  Google Scholar 

  136. Onodera A, Fujii Y, Sugai S (1986) Polymorphism and amorphism at high pressure. Physica B 139:240–245

    Google Scholar 

  137. Chen A, Yu PY, Pasternak MP (1991) Metallization and amorphization of the molecular crystals SnI4 and GeI4 under pressure. Phys Rev B 44:2883–2886

    Google Scholar 

  138. Grocholski B, Speziale S, Jeanloz R (2010) Equation of state, phase stability, and amorphization of SnI4 at high pressure and temperature. Phys Rev B 81:094101

    Google Scholar 

  139. Polian A, Itie JP, Jauberthie-Carillon C et al (1990) X-ray absorption spectroscopy investigation of phase transition in Ge, GaAs and GaP. High Pressure Res 4:309–311

    Google Scholar 

  140. Vohra YK, Xia H, Ruoff AL (1990) Optical reflectivity and amrphization of GaAs during decompression from megabar pressure. Appl Phys Lett 57:2666–2668

    CAS  Google Scholar 

  141. Nelmes RJ, McMahon MI, Wright NG, Allan DR (1994) Crystal structure of ZnTe III at 16 GPa. Phys Rev Lett 73:1805–1808

    PubMed  CAS  Google Scholar 

  142. Liu H, Secco RA, Imanaka N, Adachi G (2002) X-ray diffraction study of pressure-induced amorphization in Lu2(WO4)3. Solid State Commun 121:177–180

    CAS  Google Scholar 

  143. Goncharov АF (1990) Observation of amorphous phase of carbon at pressures above 23 GPa. Sov Phys JETP Lett 51:418–421

    Google Scholar 

  144. Madon M, Gillet Ph, Julien Ch, Price GD (1991) A vibrational study of phase transitions among the GeO2 polymorphs. Phys Chem Miner 18:7–18

    CAS  Google Scholar 

  145. Meade C, Jeanloz R (1990) Static compression of Ca(OH)2 at room-temperature – observations of amorphization and equation of state measurements to 7 GPa. Geophys Res Lett 17:1157–1160

    Google Scholar 

  146. Luo H, Ruoff AL (1993) X-ray-diffraction study of sulfur to 32 GPa—amorphization at 25 GPa. Phys Rev B 48:569–572

    Google Scholar 

  147. Nishii T, Mizuno T, Mori Y et al (2007) X-ray diffraction study of amorphous phase of BaSi2 under high pressure. Physica Status Solidi b244:270–273

    Google Scholar 

  148. Secco RA, Liu H, Imanaka N, Adachi G (2001) Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3. J Mater Sci Lett 20:1339–1340

    CAS  Google Scholar 

  149. Arora AK, Yagi T, Miyajima N, Mary T A (2005) Amorphization and decomposition of scandium molybdate at high pressure. J Appl Phys 97:013508

    Google Scholar 

  150. Arora AK (2000) Pressure-induced amorphization versus decomposition. Solid State Commun 115:665–668

    CAS  Google Scholar 

  151. Arora AK, Sastry VS, Sahu PCh, Mary TA (2004) The pressure-amorphized state in zirconium tungstate: a precursor to decomposition. J Phys Cond Matter 16:1025–1031

    CAS  Google Scholar 

  152. Brazhkin VV, Lyapin AG (2003) High-pressure phase transformations in liquids and amorphous solids. J Phys Cond Matter 15:6059–6084

    CAS  Google Scholar 

  153. Katayama Y, Tsuji K (2003) X-ray structural studies on elemental liquids under high pressures. J Phys Cond Matter 15:6085–6103

    CAS  Google Scholar 

  154. Katayama Y, Mizutani T, Utsumi W et al (2000) A first-order liquid-liquid phase transition in phosphorus. Nature 403:170–173

    PubMed  CAS  Google Scholar 

  155. Katayama Y, Inamura Y, Mizutani T et al (2004) Macroscopic separation of dense fluid phase and liquid phase of phosphorus. Science 306:848–851

    PubMed  CAS  Google Scholar 

  156. Di Cicco A, Congeduti A, Coppari F et al (2008) Interplay between morphology and metallization in amorphous-amorphous transitions. Phys Rev B 78:033309

    Google Scholar 

  157. Soignard E, Amin SA, Mei Q et al (2008) High-pressure behavior of As2O3: Amorphous-amorphous and crystalline-amorphous transitions. Phys Rev B 77:144113

    Google Scholar 

  158. Mei Q, Sinogeikin S, Shen G et al (2010) High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions. Phys Rev B 81:174113

    Google Scholar 

  159. Brazhkin VV, Gavrilyuk AG, Lyapin AG et al (2007) AsS: bulk inorganic molecular-based chalcogenide glass. Appl Phys Lett 91:031912

    Google Scholar 

  160. Kinoshita T, Hattori T, Narushima T, Tsuji K (2005) Pressure-induced drastic structural change in liquid CdTe. Phys Rev B 72:060102

    Google Scholar 

  161. Hattori T, Tsuji K, Taga N et al (2003) Structure of liquid GaSb at pressures up to 20 GPa. Phys Rev B 68:224106

    Google Scholar 

  162. Falconi S, Lundegaard LF, Hejny C, McMahon MI (2005) X-ray diffraction study of liquid Cs up to 9.8 GPa. Phys Rev Lett 94:125507

    PubMed  CAS  Google Scholar 

  163. Giefers H, Porsch F, Wortmann G (2006) Thermal disproportionation of SnO under high pressure. Solid State Ionics 176:1327–1332

    Google Scholar 

  164. Giefers H, Porsch F, Wortmann G (2006) Structural study of SnO at high pressure. Physica B 373:76–81

    Google Scholar 

  165. Eremets MI, Gavriliuk AG, Trojan IA (2007) Single-crystalline polymeric nitrogen. Appl Phys Lett 90:171904

    Google Scholar 

  166. Jiang JZ, Staun Olsen J, Gerward L, Mørup S (2000) Structural stability in nanocrystalline ZnO. Europhys Lett 50:48–53

    CAS  Google Scholar 

  167. Quadri SB, Skelton EF, Dinsmore AD, Hu JZ (2001) The effect of particle size on the structural transitions in zinc sulfide. J Appl Phys 89:115–119

    Google Scholar 

  168. Wang Z, Guo Q (2009) Size-dependent structural stability and tuning mechanism: a case of zinc sulfide. J Phys Chem C 113:4286–4295

    Google Scholar 

  169. Haase M, Alivisatos AP (1992) Arrested solid-solid phase transition in 4-nm-diameter cadmium sulfide nanocrystals. J Phys Chem 96:6756–6762

    CAS  Google Scholar 

  170. Quadri SB, Yang J, Ratna BR et al (1996) Pressure induced structural transition in nanometer size particles of PbS. Appl Phys Lett 69:2205–2207

    Google Scholar 

  171. Jiang JZ, Gerward L, Secco R et al (2000) Phase transformation and conductivity in nanocrystal PbS under pressure. J Appl Phys 87:2658–2660

    CAS  Google Scholar 

  172. Wang Z, Saxena SK, Pischedda V et al (2001) X-ray diffraction study on pressure-induced phase transformation in nanocrystalline anatase/rutile (TiO2). J Phys Cond Matter 13:8317–8323

    CAS  Google Scholar 

  173. Swamy V, Kuznetsov A, Dubrovinsky LS et al (2006) Size-dependent pressure-induced amorphization in nanoscale TiO2. Phys Rev Lett 96:135702

    PubMed  Google Scholar 

  174. Machon D, Daniel M, Pischedda V et al (2010) Pressure-induced polyamorphism in TiO2 nanoparticles. Phys Rev B 82:140102

    Google Scholar 

  175. Kawasaki S, Yamanaka T, Kume S, Ashida T (1990) Crystallite size effect on the pressure-induced phase transformation. Solid State Commun 76:527–530

    CAS  Google Scholar 

  176. Wang H, Liu JF, Wu HP et al (2006) Phase transformation in nanocrystalline α-quartz GeO2 up to 51.5 GPa. J Phys Cond Matter 18:10817–10824

    CAS  Google Scholar 

  177. Не Y, Liu JF, Chen W et al (2005) High-pressure behaviour of SnO2 nanocrystals. Phys Rev B 72:212102

    Google Scholar 

  178. Dong Z, Song Y (2009) Pressure-induced morphology-dependent phase transformations of nanostructured tin dioxide. Chem Phys Lett 480:90–95

    CAS  Google Scholar 

  179. Shen LH, Li XF, Ma YM et al (2006) Pressure-induced structural transition in AlN nanowires. Appl Phys Lett 89:141903

    Google Scholar 

  180. Jørgensen J-E, Jakobsen JM, Jiang JZ et al (2003) High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN. J Appl Cryst 36:920–925

    Google Scholar 

  181. Jiang JZ, Staun Olsen J, Gerward L, Mørup S (1998) Enhanced bulk modulus and reduced transition pressure in γ-Fe2O3 nanocrystals. Europhys Lett 44:620–626

    CAS  Google Scholar 

  182. Wang Z, Saxena SK (2002) Pressure induced phase transformations in nanocrystalline maghemite (γ-Fe2O3). Solid State Commun 123:195–200

    CAS  Google Scholar 

  183. Wang Z, Saxena SK, Pischedda V et al (2001) In situ X-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys Rev B 64:012102

    Google Scholar 

  184. Liu H, Jin C, Zhao Y (2002) Pressure induced structural transitions in nanocrystalline grained selenium. Physica B 315:210–214

    Google Scholar 

  185. Biswas K, Muthu DVS, Sood AK et al (2007) Pressure-induced phase transitions in nanocrystalline ReO3. J Phys Cond Matter 19:436214

    Google Scholar 

  186. Liu D, Yao M, Wang L et al (2011) Pressure-induced phase transitions in C70 nanotubes. J Phys Chem C 115:8118–8122

    Google Scholar 

  187. Guo Q, Zhao Y, Mao WL et al (2008) Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Letters 8:972–975

    PubMed  CAS  Google Scholar 

  188. Wang Y, Zhang J, Wu J et al (2008) Phase transition and compressibility in silicon nanowires. Nano Letters 8:2891–2895

    PubMed  CAS  Google Scholar 

  189. Jiang JZ (2004) Phase transformations in nanocrystals. J Mater Sci 39:5103–5110

    CAS  Google Scholar 

  190. Wang Z, Guo Q (2009) Size-dependent structural stability and tuning mechanism: a case of zinc sulfide. J Phys Chem C 113:4286–4295

    CAS  Google Scholar 

  191. Takemura K (2007) Pressure scales and hydrostaticity. High Pressure Res 27:465–472

    CAS  Google Scholar 

  192. Jenei Zs, Liermann HP, Cynn H et al (2011) Structural phase transition in vanadium at high pressure and high temperature: influence of nonhydrostatic conditions. Phys Rev B 83:054101

    Google Scholar 

  193. Batsanov SS (2004) Determination of ionic radii from metal compressibilities. J Struct Chem 45:896–899

    CAS  Google Scholar 

  194. Batsanov SS (2005) Chemical bonding evolution on compression of crystals. J Struct Chem 46:306–314

    CAS  Google Scholar 

  195. Batsanov SS (2006) Mechanism of metallization of ionic crystals by pressure. Russ J Phys Chem 80:135–138

    CAS  Google Scholar 

  196. Zel’dovich YB, Raizer YP (1967) Physics of shock waves and high temperature hydrodynamics phenomena. Academic, New York

    Google Scholar 

  197. Kоrmеr SB (1968) Optical study of the characteristica of shock-compressed condensed dielectrics. Sov Phys-Uspekhi 11:229–254

    Google Scholar 

  198. Kinslow R (ed) (1970) High-velocity impact phenomena. Academic, New York

    Google Scholar 

  199. Riabinin YuN (1956) Sov Phys Dokl 1:424

    Google Scholar 

  200. Аdаdurоv GА (1986) Experimental study of chemical processes under dynamic compression conditions. Russ Chem Rev 55:282–296

    Google Scholar 

  201. Batsanov SS (1986) Inorganic chemistry of high dynamic pressures. Russ Chem Rev 55:297–315

    Google Scholar 

  202. Prümmer R (1987) Explosivverdichtung pulvriger Substanzen. Springer, Berlin

    Google Scholar 

  203. Batsanov SS (1994) Effects of explosions on materials. Springer, New York

    Google Scholar 

  204. Batsanov SS (2006) Features of solid-phase transformations induced by shock compression. Russ Chem Rev 75:601–616

    CAS  Google Scholar 

  205. Bancroft D, Peterson EL, Minshall S (1956) Polymorphism of iron at high pressure. J Appl Phys 27:291–298

    CAS  Google Scholar 

  206. DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822

    PubMed  CAS  Google Scholar 

  207. Mashimo T, Nakamura K, Tsumoto K et al (2002) Phase transition of KCl under shock compression. J Phys Cond Matter 14:10783–10786

    CAS  Google Scholar 

  208. Kleeman J, Ahrens TJ (1973) Shock-induced transition of quartz to stishovite. J Geophys Res 78:5954–5960

    CAS  Google Scholar 

  209. Zahn D, Leoni S (2004) Mechanism of the pressure induced reconstructive transformation of KCl from the NaCl type to the CsCl type structure. Z Krist 219:345–347

    CAS  Google Scholar 

  210. Batsanov SS (1983) Phase transformation of inorganic substances in shock compression. Russ J Inorg Chem 28:1545–1550

    Google Scholar 

  211. Еgоrоv LА, Nitоchkinа EV, Оrеkin YuK (1972) Registration of Debyegram of aluminum compressed by a shock wave. Sov Phys JETP Lett 16:4–6

    Google Scholar 

  212. Johnson O, Mitchell A (1972) First X-ray diffraction evidence for a phase transition during shock-wave compression. Phys Rev Lett 29:1369–1371

    CAS  Google Scholar 

  213. Müller F, Schulte E (1978) Shock-wave compression of NaCl single crystals observed by flash X-ray diffraction. Z Naturforsch 33a:918–923

    Google Scholar 

  214. Zаrеtskii ЕB, Kanel GI, Mogilevskii PA, Fortov VE (1991) X-ray diffraction study pf phase transition mechanism in shock-compressed KCl single crystal. Sov Phys Dokl 36:76–78

    Google Scholar 

  215. Batsanov SS (1985) Some features of phase transition under shock comptrssion. Sov J Chem Phys 2:1104–1112

    Google Scholar 

  216. Semin VP, Dolgushin GG, Korobov VK, Batsanov SS (1980) Phase transitions in halides of potasium and rubidium. Inorg Mater 16:1128–1129

    Google Scholar 

  217. Batsanov SS (1986) Maximum possible defect concentration in a solid. Inorg Mater 22:913–913

    Google Scholar 

  218. De Carli PS, Jamieson JC (1959) Formation of an amorphous form of quartz under shock conditions. J Chem Phys 31:1675–1676

    Google Scholar 

  219. Batsanov SS, Ruchkin ED, Travkina IN et al (1975) Polymorphic conversions of rare earth metal sulfides by impact compression. J Struct Chem 16:651–653

    Google Scholar 

  220. Batsanov SS, Kiselev YM, Kopaneva LI (1979) Polymorphic transformation of ThF4 in shock compression. Russ J Inorg Chem 24:1573–1573

    Google Scholar 

  221. Batsanov SS, Kiselev YM, Kopaneva LI (1980) Polymorphic transformation of UF4 and CeF4 in shock compression. Russ J Inorg Chem 25:1102–1103

    Google Scholar 

  222. Adadurov GA, Breusov ON, Dremin AN et al (1971) Phase-transitions of shock-compressed t-Nb2O5 and h-Nb2O5. Comb Exp Shock Waves 7:503–506

    Google Scholar 

  223. Adadurov GA, Breusov ON, Dremin AN et al (1972) Formation of a Nb x O2 (0.8 ≤ x ≤ 1.0) phase under shock compression of niobium pentoxide. Dokl Akad Nauk SSSR 202:864–867

    CAS  Google Scholar 

  224. Batsanov SS, Blokhina GE, Deribas AA (1965) The effects of explosions on materials. J Struct Chem 6:209–213

    Google Scholar 

  225. Blank VD, Buga SG, Serebryanaya NR et al (1996) Phase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites. Phys Lett A 220:149–157

    Google Scholar 

  226. Batsanov SS (1998) The E-phase of boron nitride as a fullerene. Comb Expl Shock Waves 34:106–108

    Google Scholar 

  227. Batsanov SS (2011) Features of phase transformations in boron nitride. Diamond Relat Mater 20:660–664

    CAS  Google Scholar 

  228. Stankevich IV, Chistyakov AL, Galperin EG (1993) Polyhedral boron-nitride molecules. Russ Chem Bull 42:1634–1636

    Google Scholar 

  229. Jensen F, Toftlund H (1993) Structure and stability of C24 and B12N12 isomers. Chem Phys Lett 201:89–96

    CAS  Google Scholar 

  230. Silaghi-Dumitrescu I, Haiduc I, Sowerby DB (1993) Fully inorganic (carbon-free) fullerenes—the boron-nitrogen case. Inorg Chem 32:3755–3758

    CAS  Google Scholar 

  231. Banhart F, Zwanger M, Muhr H-J (1994) The formation of curled concentric-shell clusters in boron nitride under electron irradiation. Chem Phys Lett 231:98–104

    CAS  Google Scholar 

  232. Golberg D, Bando Y, Eremets M et al (1996) Nanotubes in boron nitride laser heated at high pressure. Appl Phys Lett 69:2045–2047

    CAS  Google Scholar 

  233. Golberg D, Bando Y, Stéphan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl Phys Lett 73:2441–2443

    CAS  Google Scholar 

  234. Golberg D, Rode A, Bando Y et al (2003) Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diamond Relat Mater 12:1269–1274

    CAS  Google Scholar 

  235. Olszyna A, Konwerska-Hrabowska J, Lisicki M (1997) Molecular structure of E-BN. Diamond Relat Mater 6:617–620

    CAS  Google Scholar 

  236. Pokropivny AV (2006) Structure of the boron nitride E-phase: diamond lattice of B12N12 fullerenes. Diamond Relat Mater 15:1492–1495

    CAS  Google Scholar 

  237. Pokropivny VV, Smolyar AS, Pokropivny AV (2007) Fluid synthesis and structure of a new boron nitride polymorph—hyperdiamond fulborenite B12N12 (E phase). Phys Solid State 49:591–598

    CAS  Google Scholar 

  238. Meyer K (1968) Physikalische-chemische Kristallographie. Deutsche Verlag Grundstoffindustrie, Leipzig

    Google Scholar 

  239. Lin I, Nadiv S (1979) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment. Mater Sci Eng 39:193–209

    CAS  Google Scholar 

  240. Musalimov LA (2007) Effect of mechanical activation on the structure of inorganic materials with different bonding types. Inorg Mater 43:1371–1378

    Google Scholar 

  241. Herak R (1970) A stress induced α-U3O8-β-U3O8 transformation. J Inorg Nucl Chem 32:3793–3797

    CAS  Google Scholar 

  242. Bokarev VP, Bokareva OM, Temnitskii IN, Batsanov SS (1986) Influence of shear deformation on phase transitions progess in BaF2 and SrF2. Phys Solid State 28:452–454

    Google Scholar 

  243. Batsanov SS, Serebryanaya NR, Blank VD, Ivdenko VA (1995) Crystal structure of CuI under plastic deformation and pressures up to 38 GPa. Crystallogr Reports 40:598–603

    Google Scholar 

  244. Hoekstra HR, Gingerich KA (1964) High-pressure B-type polymorphs of some rare-earth sesquioxides. Science 146:1163–1164

    PubMed  CAS  Google Scholar 

  245. Ruchkin ED, Sokolova MN, Batsanov SS (1967) Optical properties of oxides of the rare earth elements. J Struct Chem 8:410–414

    Google Scholar 

  246. Michel D, Mazerolles L, Berthet P et al (1995) Nanocrystalline and amorphous oxide powders prepared by high-energy ball-milling. Eur J Solid State Inorg Chem 32:673–682

    CAS  Google Scholar 

  247. Gasgnier M, Szwarc H, Ronez A (2000) Low-energy ball-milling: transformation of boron nitride powders. J Mater Sci 35:3003–3009

    CAS  Google Scholar 

  248. Batsanov SS, Gavrilkin SM, Bezduganov SV, Romanov PN (2008) Reversible phase transformation in boron nitride under pulsed mechanical action. Inorg Mater 44:1199–1201

    CAS  Google Scholar 

  249. Schneider H, Hornemann U (1981) Shock-induced transformation of sillimanite powders. J Mater Sci 16:45–49

    CAS  Google Scholar 

  250. Kawai N, Nakamura KG, Kondo K-i (2004) High-pressure phase transition of mullite under shock compression. J Appl Phys 96:4126–4130

    CAS  Google Scholar 

  251. Kawai N, Atou T, Nakamura KG et al (2009) Shock-induced disproportionation of mullite (3Al2O3·2SiO2). J Appl Phys 106:023525

    Google Scholar 

  252. Liepins R, Staudhammer KP, Johnson KA, Thomson M (1988) Shock-induced synthesis: cubic boron-nitride from ammonia borane. Matter Lett 7:44–46

    CAS  Google Scholar 

  253. Lyamkin AI, Petrov EA, Ershov AP et al (1988) Production of diamonds from explosives. Soviet Physics Doklady 33:705–707

    Google Scholar 

  254. Greiner NR, Fillips D, Johnson J (1988) Diamonds in detonation soot. Nature 333:440–442

    CAS  Google Scholar 

  255. Zerr A, Serghiou G, Boehler R, Ross M (2006) Decomposition of alkanes at high pressures and temperatures. High Pressure Res 26:23–32

    CAS  Google Scholar 

  256. Shen AH, Ahrens TJ, O’Keefe JD (2003) Shock wave induced vaporization of porous solids. J Appl Phys 93:5167–5174

    CAS  Google Scholar 

  257. Batsanov SS (1994) Dynamic static compression – controlling the conditions in containment systems after explosion. Comb Expl Shock Waves 30:126–130

    Google Scholar 

  258. Batsanov SS, Gavrilkin SM, Kopaneva LI et al (1997) h-BN → w-BN phase transition under dynamic-static compression. J Mater Sci Lett 16:1625–1627

    CAS  Google Scholar 

  259. Gavrilkin SM, Kopaneva LI, Batsanov SS (2004) Kinetics of the thermal transformation of w-BN into g-BN. Inorg Mater 40:23–25

    CAS  Google Scholar 

  260. Gavrilkin SM, Bolkhovitinov LG, Batsanov SS (2007) Specifics of the thermal transformations of the wurtzite phase of boron nitride. Russ J Phys Chem 81:648–650

    CAS  Google Scholar 

  261. Butenko YV, Kuznetsov VL, Chuvilin AL et al (2000) Kinetics of the graphitization of dispersed diamond at “low” temperatures. J Appl Phys 88:4380–4388

    CAS  Google Scholar 

  262. Titov VM, Anisichkin VF, Mal’kov IY (1989) Synthesis of ultradispersed diamond in detonation-waves. Comb Expl Shock Waves 25:372–379

    Google Scholar 

  263. Vyskubenko BA, Danilenko VV, Lin EE et al (1992) The effect of the scale factors on the size and yield of diamonds during detonation synthesis. Fizika Gorenia i Vzryva 28(2):108–109 (in Russian)

    CAS  Google Scholar 

  264. Batsanov SS (2009) Thermodynamic reason for delamination of molecular mixtures under pressure and detonation synthesis of diamond. Russ J Phys Chem A 83:1419–1421

    Google Scholar 

  265. Ree FH (1986) Supercritical fluid phase separations—implications for detonation properties of condensed explosives. J Chem Phys 84:5845–5856

    CAS  Google Scholar 

  266. Gavrilkin SM, Batsanov SS, Gordopolov YA, Smirnov AS (2009) Effective detonation synthesis of cubic boron nitride. Propellants Explos Pyrotech 34:469–471

    CAS  Google Scholar 

  267. Schlosser H, Ferrante J (1993) High-pressure equation of state for partially ionic solids. Phys Rev B 48:6646–6649

    Google Scholar 

  268. Freund J, Ingalls R (1989) Inverted isothermal equations of state and determination of Bo, B′o and B″o. J Phys Chem Solids 50:263–268

    CAS  Google Scholar 

  269. Holzapfel WB (1991) Equations of state and scaling rules for molecular-solids under strong compression. In: Pucci R, Piccitto G (eds) Molecular systems under high pressures. North-Holland, Amsterdam

    Google Scholar 

  270. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Nat Acad Sci US 30:244–247

    CAS  Google Scholar 

  271. Birch F (1978) Finite strain isotherm and velocities for single crystal and polycrystalline NaCl at high-pressures and 300 K. J Geophys Res B 83:1257–1268

    Google Scholar 

  272. Vinet P, Ferrante J, Rose JH (1987) Compressibility of solids. J Geophys Res B 92:9319–9325

    Google Scholar 

  273. Schlosser H, Ferrante J, Smith JR (1991) Global expression for representing cohesive-energy curves. Phys Rev B 44:9696–9699

    Google Scholar 

  274. Winzenick M, Vijayakumar V, Holzapfel WB (1994) High-pressure X-ray diffraction on potassium and rubidium up to 50 GPa. Phys Rev B 50:12381–12385

    Google Scholar 

  275. Holzapfel WB (1998) Equations of state for solids under strong compression. High Pressure Res 16:81–126

    Google Scholar 

  276. Holzapfel WB (2001) Equations of state for solids under strong compression. Z Krist 216:473–488

    CAS  Google Scholar 

  277. Ponkratz U, Holzapfel WB (2004) Equations of state for wide ranges in pressure and temperature. J Phys Cond Matter 16:S963–S972

    CAS  Google Scholar 

  278. Batsanov SS (1999) Bulk moduli of crystalline A(N)B(8−N) inorganic materials. Inorg Mater 35:973–977

    CAS  Google Scholar 

  279. Batsanov SS (2002) Internal energy of metals as a function of interatomic distance. Russ J Inorg Chem 47:660–662

    Google Scholar 

  280. Batsanov SS (2007) Ionization, atomization, and bond energies as functions of distances in inorganic molecules and crystals. Russ J Inorg Chem 52:1223–1229

    Google Scholar 

  281. Holzapfel WB, Hartwig M, Sievers W (2001) Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. J Phys Chem Ref Data 30:515–529

    CAS  Google Scholar 

  282. Velisavljevic N, Chesnut GN, Vohra YK et al (2002) Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils. Phys Rev B 65:172107

    Google Scholar 

  283. Vohra YK, Spencer PT (2001) Novel γ-phase of titanium metal at megabar pressures. Phys Rev Lett 86:3068–3071

    PubMed  CAS  Google Scholar 

  284. Sundqvist B (1999) The structures and properties of C60 under pressure. Physica B 265:208–213

    Google Scholar 

  285. Sundquist B (2000) Fullerenes under high pressures. In: Kadish KM, Ruoff RS (eds) Fullerenes: chemistry, physics, technology. Wiley, New York

    Google Scholar 

  286. Kenichi T, Singh AK (2006) High-pressure equation of state for Nb with a helium-pressure medium. Phys Rev B 73:224119

    Google Scholar 

  287. Dewaele A, Loubeyre P, Mezouar M (2004) Refinement of the equation of state of tantalum. Phys Rev B 69:092106

    Google Scholar 

  288. Akahama Y, Koboyashi M, Kawamura H (1999) Simple-cubic–simple-hexagonal transition in phosphorus under pressure. Phys Rev B 59:8520–8525

    Google Scholar 

  289. Ruoff AL, Rodriguez CO, Christensen NE (1998) Elastic moduli of tungsten to 15 Mbar, phase transition at 6.5 Mbar, and rheology to 6 Mbar. Phys Rev B 58:2998–3002

    Google Scholar 

  290. Etters RD, Kirin D (1986) High-pressure behavior of solid molecular fluorine at low temperatures. J Phys Chem 90:4670–4673

    CAS  Google Scholar 

  291. Fujihisa H, Takemura K (1996) Equation of state of cobalt up to 79 GPa. Phys Rev B 54:5–7

    Google Scholar 

  292. Takemura K (2004) Bulk modulus of osmium: High-pressure powder x-ray diffraction experiments under quasihydrostatic conditions. Phys Rev B 70:012101

    Google Scholar 

  293. Khairallah SA, Militzer B (2008) First-principles studies of the metallization and the equation of state of solid helium. Phys Rev Lett 101:106407

    PubMed  CAS  Google Scholar 

  294. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal feature of the equation of state of solids. J Phys Cond Matter 1:1941–1964

    CAS  Google Scholar 

  295. Cynn H, Yoo CS, Iota-Herbei V et al (2001) Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys Rev Lett 86:4552–4555

    PubMed  CAS  Google Scholar 

  296. Le Bihan T, Heathman S, Idiri M et al (2003) Structural behaviour of α-uranium with pressures to 100 GPa. Phys Rev B 67:134102

    Google Scholar 

  297. Ledbetter H, Migliori A, Betts J et al (2005) Zero-temperature bulk modulus of α-plutonium. Phys Rev B 71:172101

    Google Scholar 

  298. Pravica M, Shen Y, Quine Z et al (2007) High-pressure studies of cyclohexane to 40 GPa. J Phys Chem B 111:4103–4108

    Google Scholar 

  299. Gerlich D, Litov E, Anderson OL (1979) Effect of pressure on the elastic properties of vitreous As2S3. Phys Rev B 20:2529–2536

    Google Scholar 

  300. Ota R, Anderson OL (1977) Variations in mechanical properties of glass induced by high-pressure phase change. J Non-Cryst Solids 24:235–252

    CAS  Google Scholar 

  301. Lundegaard LF, Miletich R, Ballic-Zunic T, Makovicky E (2003) Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa. Phys Chem Miner 30:463–468

    CAS  Google Scholar 

  302. Bridgman PW (1912) Water, in the liquid and five solid forms, under pressure. Proc Am Acad Arts Sci 47:441–558

    Google Scholar 

  303. Bridgman PW (1931) The physics of high pressures. G Bell & Sons, London

    Google Scholar 

  304. Bridgman PW (1950) Physics above 20,000 kg/cm2. Proc Roy Soc London A 203:1–17

    CAS  Google Scholar 

  305. Bridgman PW (1952) The resistance of 72 elements, alloys and compounds to 100,000 kg/cm2. Proc Am Acad Arts Sci 81:167–251

    Google Scholar 

  306. Anderson OL, Nafe JE (1965) The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J Geophys Res 70:3951–3963

    CAS  Google Scholar 

  307. Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    CAS  Google Scholar 

  308. Cohen ML (1985) Calculation of bulk moduli of diamond and zinc-blende solids. Phys Rev B 32:7988–7991

    Google Scholar 

  309. Zhang B, Cohen ML (1987) High-pressure phases of III-V zinc-blende semiconductors. Phys Rev B 35:7604–7610

    Google Scholar 

  310. Al-Douri Y, Abid H, Aourag H (2005) Correlation between the bulk modulus and the transition pressure in semiconductors. Mater Lett 59:2032–2034

    CAS  Google Scholar 

  311. Verma AS, Bhardwaj SR (2006) Correlation between ionic charge and ground-state properties in rocksalt and zinc blende structured solids. J Phys Cond Matter 18:8603–8612

    CAS  Google Scholar 

  312. Zhang C, Li H, Li H et al (2007) Calculation of bulk modulus of simple and complex crystals with the chemical bond method. J Phys Chem B 111:1304–1309

    Google Scholar 

  313. Makino Y (1996) Empirical determination of bulk moduli of elemental substances by pseudopotential radius. J Alloys Comp 242:122–128

    CAS  Google Scholar 

  314. Wentzcovitch RM, Cohen ML, Lam PK (1987) Theoretical study of BN, BP and BAs at high pressures. Phys Rev B 36:6058

    Google Scholar 

  315. Cohen ML (1988) Theory of bulk moduli of hard solids. Mater Sci Engin A 105/106:11–18

    Google Scholar 

  316. Van Camp PE, Van Doren VE, Devreese JT (1990) Pressure dependence of the electronic properties of cubic III-V In compounds. Phys Rev B 41:1598–1602

    Google Scholar 

  317. Morosin B, Schriber JE (1979) Remarks on the compressibilities of cubic materials and measurements on Pr chalcogenides. Phys Lett A 73:50–52

    Google Scholar 

  318. Setton R (2010) An equation of state for condensed matter, application to solid chemical elements. J Phys Chem Solids 71:776–783

    CAS  Google Scholar 

  319. Ruoff AL (1967) Linear shock-velocity-particle-velocity relationship. J Appl Phys 38:4976–4980

    CAS  Google Scholar 

  320. Gu QF, Krauss G, Steurer W et al (2008) Unexpected high stiffness of Ag and Au nanoparticles. Phys Rev Lett 100:045502

    PubMed  CAS  Google Scholar 

  321. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410

    Google Scholar 

  322. Vennila S, Kulkarni SR, Saxena SK et al (2006) Compression behavior of nanosized nickel and molybdenum. Appl Phys Lett 89:261901

    Google Scholar 

  323. Qi J, Liu JF, He Y et al (2011) Compression behavior and phase transition of cubic In2O3 nanocrystals. J Appl Phys 109:063520

    Google Scholar 

  324. Wang H, He Y, Chen W et al (2010) High-pressure behavior of β-Ga2O3 nanocrystals. J Appl Phys 107:033520

    Google Scholar 

  325. Swamy V, Dubrovinsky LS, Dubrovinskaia NA et al (2003) Compression behavior of nanocrystalline anatase TiO2. Solid State Commun 125:111–115

    CAS  Google Scholar 

  326. Kiefer B, Shieh SR, Duffy ThS, Sekine T (2005) Strength, elasticity, and equation of state of the nanocrystalline cubic silicon nitride γ-Si3N4 to 68 Gpa. Phys Rev B 72:014102

    Google Scholar 

  327. Wang Z, Pischedda V, Saxena SK, Lazor P (2002) X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures. Solid State Commun 121:275–279

    CAS  Google Scholar 

  328.  Ma Y, Cui Q, Shen L, He Z (2007) X-ray diffraction study of nanocrystalline tungsten nitride and tungsten to 31 GPa. J Appl Phys 102:013525

    Google Scholar 

  329. Marquardt H, Speziale S, Marquardt K et al (2011) The effect of crystallite size and stress condition on the equation of state of nanocrystalline MgO. J Appl Phys 110:113512

    Google Scholar 

  330. Chen B, Penwell D, Benedetti LR et al (2002) Particle-size effect on the compressibility of nanocrystalline alumina. Phys Rev B 66:144101

    Google Scholar 

  331. Zhu H, Ma Y, Zhang H et al (2008) Synthesis and compression of nanocrystalline silicon carbide. J Appl Phys 104:123516

    Google Scholar 

  332. Trapp S, Limbach CT, Gonser U et al (1995) Enhanced compressibility and pressure-induced structural changes of nanocrystalline iron: in situ Mössbauer spectroscopy. Phys Rev Lett 75:3760–3763

    PubMed  CAS  Google Scholar 

  333. Zhang J, Zhao Y, Palosz B (2007) Comparative studies of compressibility between nanocrystalline and bulk nickel. Appl Phys Lett 90:043112

    Google Scholar 

  334. Marquardt H, Gleason CD, Marquardt K et al (2011) Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Phys Rev B 84:064131

    Google Scholar 

  335. Heimel G, Hummer K, Ambrosch-Draxl C et al (2006) Phase transition and electronic properties of fluorene: a joint experimental and theoretical high-pressure study. Phys Rev B 73:024109

    Google Scholar 

  336. Batsanov SS (2004) Solid phase transformations under high dynamic pressures. In: Katrusiak A, McMillan P (eds) High-pressure crystallography. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Appendix

Appendix

10.1.1 Supplementary Tables

Compilations of EOSs are available in [10.1–10.5]; these values of В о and В о are given without references, data from other sources are given with references.

Table S10.1 Bulk moduli (GPа) and pressure derivatives of the MX compounds
Table S10.2 Bulk moduli (GPа) and pressure derivatives of the MX2 hydrides, halides, oxides and chalcogenides
Table S10.3 Bulk moduli (GPа) and pressure derivatives of the MX3 hydrides, halides, and hydroxides
Table S10.4 Bulk moduli (GPа) and pressure derivatives for binary oxides of the MnOm type
Table S10.5 Bulk moduli (GPа) and pressure derivatives for binary nitrides
Table S10.6 Bulk moduli (GPа) and pressure derivatives for binary borides
Table S10.7 Bulk moduli (GPа) and pressure derivatives for binary carbides and silicides
Table S10.8 Bulk moduli (GPа) and pressure derivatives for binary phosphides and arsenides
Table S10.9 Bulk moduli (GPа) and pressure derivatives for ternary oxides
Table S10.10 Bulk moduli (GPа) and pressure derivatives for molecular substances and polymers. (Experimental data from review [5.354], except where specified)
Table S10.11 Characteristics of polymorphous modifications of elements and MX compounds
Table S10.12 Characteristics of polymorphous modifications of MX2 compounds
Table S10.13 Bulk moduli (GPa) of elements аt different temperatures (K)
Table S10.14 Coefficients in the Hugoniot equation of elements; c in km/s [10.204]
Table S10.15 Coefficients in Hugoniot equations for molecular compounds; c in km/s [10.205]

10.1.2 Supplementary References

10.1 Schlosser H, Ferrante J (1988) Phys Rev B 37:4727

10.2 Freund J, Ingalls R (1989) J Phys Chem Solids 50:263

10.3 Pucci R, Piccitto G (eds) (1991) Molecular systems under high pressures. North-Holland, Amsterdam

10.4 Holzapfel WB (1998) High Press Res 16:81; Holzapfel WB (2001) Z Krist 216:473; Ponkratz U, Holzapfel WB (2004) J Phys Cond Matter 16:S963

10.5 Batsanov SS (1999) Inorg Mater 35:973; Batsanov SS (2002) Russ J Inorg Chem 47:660

10.6 Hull S, Berastegui P (1998) J Phys Cond Matter 10:7945

10.7 Berastegui P, Hull S (2000) J Solid State Chem 150:266

10.8 Narayana C, Nesamony VJ, Ruoff AL (1997) Phys Rev B 56:14338

10.9 Zhou T, Schwarz U, Hanfland M et al (1998) Phys Rev B 57:153

10.10 Vaitheeswaran G, Kanchana V, Svane A et al (2011) Phys Rev B83:184108; Vaitheeswaran G, Kanchana V, Heathman S et al (2007) Phys Rev B 75:184108

10.11 Pellicer-Porres J, Machado-Charry E, Segura A et al (2007) Phys Stat Solidi 244 b:169

10.12 Ehm I, Knorr K, Dera P et al (2004) J Phys Cond Matter 16:3545

10.13 Eremets MI, Gavriliuk AG, Trojan IA (2007) Appl Phys Lett 90:171904

10.14 Takagaki M, Kawakami T, Tanaka N et al (1998) J Phys Soc Japan 67:1014

10.15 Ono S, Ohishi Y, Kikegawa T (2007) J Phys Cond Matter19:036205

10.16 Kusaba K, Syono Y, Kikegawa T, Shimomura O (1997) J Phys Chem Solids 58:241

10.17 Millican JN, Phelan D, Thomas E L et al (2009) Solid State Commun 149:707

10.18 Sakamoto D, Yoshiasa A, Yamanaka T et al (2002) J Phys Cond Matter 14:11369

10.19 Noguchi Y, Uchino M, Hikosaka H et al (1999) J Phys Chem Solids 60:509

10.20 Onodera A, Minasaka M, Sakamoto I et al (1999) J Phys Chem Solids 60:167

10.21 Solozhenko VL, Häusermann D, Mezouar M, Kunz M (1998) Appl Phys Lett 72:1691; Will G, Nover GJ, von der Gönna (2000) J Solid State Chem 154:280; Solozhenko VL, Solozhenko EG (2001) High Pres Res 21:115

10.22 Lundström T (1997) J Solid State Chem 133:88

10.23 Hayashi J, Shirotani I, Hirano K et al (2003) Solid State Commun 125:543; Shirotani I, Yamanashi K, Hayashi J et al (2003) Solid State Commun 127:573

10.24 Ahart M, Yarger JL, Lantzky KM et al (2006) J Chem Phys 124:014502

10.25 Idiri M, Le Bihan T, Heathman S, Rebizant J (2004) Phys Rev B70:014113; Olsen JS (2004) J Alloys Comp 381:37; Gerward L, Olsen JS, Benedict U et al (1994) High-pressure X-ray diffraction studies of ThS2, US2 and other AnX2 and AnXY compounds. In: Schmidt SC, Shaner JW, Samara GA, Ross M (eds) High-pressure science and technology. AIP Press, New York

10.26 Vajeeston P, Ravindran P, Hauback BC et al (2006) Phys Rev B 73:224102

10.27 Smith JS, Desgreniers S, Klug DD, Tse JS (2009) J Alloys Comp 468:830

10.28 Ito M, Setoyama D, Matsugawa J et al (2006) J Alloys Comp 426:67

10.29 Karmakar S, Sharma SM (2004) Solid State Commun 131:473

10.30 Haines J, Legar JM, Gorelli F et al (2001) Phys Rev B 64:134110

10.31 Dorfman SM, Jiang F, Mao Z et al (2010) Phys Rev B 81:174121

10.32 Pasternak MP, Taylor RD, Chen A et al (1990) Phys Rev Lett 65:790

10.33 Grevel KD, Burchard M, Fasshauer DW, Peun T (2000) J Geophys Res B 105:27877; Garg N, Karmakar S, Surinder SM et al (2004) Physica B 349:245

10.34 Knorr K, Ehm L, Hytha M et al (2001) Phys Stat Solidi 223b:435

10.35 Leger JM, Haines J, Atouf A et al (1995) Phys Rev B 52:13247

10.36 Aksoy R, Selvi E, Knudson R, Ma Y (2009) J Phys Cond Matter 21:025403

10.37 Nagai T, Kagi H, Yamanaka T (2003) Amer Miner 88:1423

10.38 Subramanian N, Shekar NVC, Sahu PC et al (2004) Physica B 351:5

10.39 Ehm L, Knorr K, Depmeir W (2002) Z Krist 217:522

10.40 Aksoy R, Ma Y, Selvi E et al (2006) J Phys Chem Solids 67:1914; Selvi E, Ma Y, Aksoy R et al (2006) J Phys Chem Solids 67:2183

10.41 Haines J, Leger J M, Schulte O (1998) Phys Rev B 57:7551

10.42 Lazicki A, Yoo CS, Evans WJ, Pickett WE (2006) Phys Rev B 73:184120

10.43 Hou D, Ma Y, Du J et al (2010) J Phys Chem Solids 71:1571

10.44 Grzechnik A, Vegas A, Syassen K et al (2000) J Solid State Chem 154:603; Santamaria-Perez D, Vegas A, Muehle C, Jansen M (2011) J Chem Phys 135:054511

10.45 Shieh SR, Kubo A, Duffy TS et al (2006) Phys Rev B 73:014105

10.46 Grzechnik A, Stølen S, Nakken E et al (2000) J Solid State Chem 150:121

10.47 Leger JM, Haines J, Atouf A (1995) J Appl Cryst 28:416

10.48 Efthimiopoulos I, Kunc K, Karmakar S et al (2010) Phys Rev B 82:134125

10.49 Brazhkin VV (2005) In: 20th AIRAPT—43th EHPRG June 27 Karlsruhe T10-KN

10.50 Leger JM, Haines J, Atouf A (1996) J Phys Chem Solids 57:7

10.51 Desgreniers S, Lagarec K (1999) Phys Rev B 59:8467

10.52 Aksoy R, Selvi E, Ma Y (2008) J Phys Chem Solids 69:2137

10.53 Selvi E, Aksoy R, Knudson R (2008) J Phys Chem Solids 69:2311

10.54 Maddoz BR, Yoo CS, Kasinathan D et al (2006) Phys Rev B 73:144111

10.55 Rozenberg GKh, Pasternak MP, Gorodetsky P et al (2009) Phys Rev B 79:214105

10.56 Fjellvag H, Grosshans WA, Honle W, Kjekhus A (1995) J Magn Magn Mater 145:118

10.57 Leger JM, Pereira AS, Hines J et al (2000) J Phys Chem Solids 61:27

10.58 Gerward L, Staun Olsen J, Petit L et al (2005) J Alloys Comp 400:56

10.59 Graetz J, Chaudhuri S, Lee Y et al (2006) Phys Rev B74:214114

10.60 Ohmura A, Machida A, Watanuki T et al (2006) Phys Rev B 73:104105

10.61 Palasyuk T, Tkacz M (2009) J Alloys Comp 468:191

10.62 Halevy I, Salhov S, Zalkind S et al (2004) J Alloys Comp 370:59

10.63 Chrichton WA, Bouvier P, Winkeln B, Grzechnik A (2010) Dalton Trans 39:4302

10.64 Benedict U, Holzapfel WB (1993) High-pressure studies – structural aspects. In: Gschneidner KA Jr, Choppin GR (eds) Handbook on the physics and chemistry of rare earths, vol 17. North-Holland, Amsterdam

10.65 Jǿrgensen J-E, Marshall WG, Smith RI (2004) Acta Cryst B 60:669

10.66 Liu H, Hu J, Xu J et al (2004) Phys Chem Miner 31:240

10.67 Gurlo A, Dzivenko D, Andrade M et al (2010) J Am Chem Soc 132:12674

10.68 Cetinkol M, Wilkinson AP, Lind C et al (2007) J Phys Chem Solids 68:611

10.69 Cynn H, Yoo C-S, Sheffield SA (1999) J Chem Phys 110:6836

10.70 Nieto-Sanz D, Loubeyre P, Crichton W, Mezouar M (2004) Phys Rev B 70:214108

10.71 Yusa H, Tsuchiya T, Sata N, Ohishi Y (2008) Phys Rev B 77:064107

10.72 Liu D, Lei W, Li Y et al (2009) Inorg Chem 48:8251

10.73 Yamanaka T, Nagai T, Okada T, Fukuda T (2005) Z Krist 220:938

10.74 Loa I, Grzechnik A, Schwarz U et al (2001) J Alloys Comp 317–318:103

10.75 Locherer T, Halasz I, Dinnebier R, Jansen M (2010) Solid State Comm 150:201

10.76 Orosel D, Balog P, Liu H et al (2005) J Solid State Chem 178:2602

10.77 Bouvier P, Crichton WA, Boulova M, Lucazeau G (2002) J Phys Cond Matter 14:6605

10.78 Biswas K, Muthu DVS, Sood AK et al (2007) J Phys Cond Matter 19:436214

10.79 Bеlоmеstnykh VN (1993) Inorg Mater 29:168

10.80 Young AF, Sanloup C, Gregoryanz E et al (2006) Phys Rev Lett 96:155501

10.81 Lei WW, Liu D, Li XF et al (2007) J Phys Cond Matter 19:425233

10.82 Soignard E, Shebanova O, McMillan PF (2007) Phys Rev B 75:014104

10.83 Soignard E, McMillan PF, Chaplin TD et al (2003) Phys Rev B 68:132101

10.84 Zhang RF, Lin ZJ, Mao H-K, Zhao Y (2011) Phys Rev B 83:060101

10.85 Lazicki A, Maddox B, Evans WJ et al (2005) Phys Rev Lett 95:165503

10.86 Yang Q, Lengauer W, Koch T et al (2000) J Alloys Comp 309:L5

10.87 Dzivenko DA, Zerr A, Boehler R, Riedel R (2006) Solid State Commun 139:255

10.88 Soignard E, Somayazulu M, Dong J et al (2001) J Phys Cond Matter 13:557

10.89 Shemkunas MP, Petuskry WT, Chizmeshya AVG et al (2004) J Mater Res 19:1392

10.90 Loa I, Kunc K, Syassen K, Bouvier P (2002) Phys Rev B 66:134101

10.91 Pereira AS, Perottoni CA, da Jordana JAH et al (2002) J Phys Cond Matter 14:10615

10.92 Dandekar DP, Benfanti DC (1993) J Appl Phys 73:673

10.93 Wang Y, Zhang J, Daemen LL et al (2008) Phys Rev B7 8:224106

10.94 Robert WC, Michelle BW, John JG et al (2005) J Am Chem Soc 127:7264

10.95 Zarechnaya E, Dubrovinskaya N, Caracas R et al (2010) Phys Rev B 82:184111

10.96 Zhang Y, Mashimo T, Uemura Y et al (2006) J Appl Phys 100:113536

10.97 Chen B, Penwell D, Nguyen JH et al (2004) Solid State Comm 129:573

10.98 Lazicki A, Hemley RJ, Pickett WE, Yoo C-S (2010) Phys Rev B 82:180102

10.99 Yoshida M, Onodera A, Ueno M et al (1993) Phys Rev B 48:10587

10.100 Litasov KD, Shatskiy A, Fei Y et al (2010) J Appl Phys 108:053513

10.101 Ono S, Kikegawa T, Ohishi Y (2005) Solid State Commun 133:55

10.102 Benedict U (1995) J Alloys Comp 223:216

10.103 Haines J, Leger JM, Chateau C, Lowther JE (2001) J Phys Cond Matter 13:2447

10.104 Ji C, Chyu M-C, Knudson R, Zhu H (2009) J Appl Phys 106:083511

10.105 Hao J, Zou B, Zhu P et al (2009) Solid State Comun 149:689

10.106 Takarabe K, Ikai T, Mori Y et al (2004) J Appl Phys 96:4903

10.107 Beister H, Syassen K (1990) Z Naturforsch b 45:1388

10.108 Ross NL (1997) Amer Miner 82:682

10.109 Ono Sh, Shirasaka M, Kikegawa T, Ohishi Y (2005) Phys Chem Miner 32:8

10.110 Zhang J, Reeder RJ (1999) Am Miner 84:861

10.111 Reynard B, Figuet G, Itie JP, Rubie DC (1996) Amer Miner 81:45

10.112 Runge CE, Kubo A, Kiefer B et al (2006) Phys Chem Miner 33:699

10.113 Ming LC, Kim YH, Chen J-H et al (2001) J Phys Chem Solids 62:1185

10.114 Ross NL, Chaplin TD (2003) J Solid State Chem 172:123; Ross NL, Downs RT (2003) High-pressure crystal chemistry: “stuffed” framework structures at high pressure. In: Katrusiak A, McMillan P (eds) High pressure crystallography. Kluwer, Dordrecht

10.115 Hattori T, Tsuchiya T, Naga T, Yamanaka T (2001) Phys Chem Miner 28:377

10.116 Kung J, Rigden S (1999) Phys Chem Miner 26:234

10.117 Ross NL, Zhao J, Angel RJ (2004) J Solid State Chem 177:1276

10.118 Downs RT, Zha C-S, Duffy TS, Finger LW (1996) Amer Miner 81 51; Zha C-S, Duffy TS, Downs RT et al (1996) J Geophys Res B 101:17535

10.119 Miletich R, Nowak M, Seifert F et al (1999) Phys Chem Miner 26 446

10.120 Errandonea D, Pellicer-Porres J, Manjón FJ et al (2005) Phys Rev B72 174106; Panchal V, Garg N, Achary SN et al (2006) J Phys Cond Matter 18:8241

10.121 Ming LC, Nakamoto Y, Endo S et al (2007) J Phys Cond Matter 19:425202

10.122 Winkler B, Kahle A, Griewatsch C, Milman V (2000) Z Krist 215:17

10.123 Edwards CM, Haines J, Butler IS, Leger J-M (1999) J Phys Chem Solids 60:529

10.124 Long YW, Yang LX, You SJ et al (2006) J Phys Cond Matter 18:2421

10.125 Grzechnik A, Crichton WA, Marshall WG, Friese K (2006) J Phys Cond Matter 18:7

10.126 Gerward L, Jiang JZ, Olsen JS et al (2005) J Alloys Comp 401:11

10.127 Carlson S, Anderson AMK (2001) J Appl Cryst 34:7

10.128 Sundqvist B, Andersson O (2006) Phys Rev B73:092102

10.129 Kumar RS, Cornelius AL (2009) J Alloys Comp 476:5

10.130 Sowa H, Ahsbahs H (1999) Z Krist 214:751

10.131 Lundin A, Soldatov A, Sundquist B (1995) Europhys Lett 30:469

10.132 Xu Y, Carlson S, Söderberg K, Norrestaam R (2000) J Solid State Chem 153:212

10.133 Allan DR, Marshall WG, Francis DJ et al (2010) Dalton Trans 39:3736

10.134 Shimizu H, Kamabuchi K, Kume T, Sasaki S (1999) Phys Rev B 59:11727

10.135 Zuk J, Kiefte H, Clouter MJ (1990) J Chem Phys 92:917

10.136 Zuk J, Brake DM, Kiefte H, Clouter MJ (1989) J Chem Phys 91:5285

10.137 Sun L, Zhao Z, Ruoff AL et al (2007) J Phys Cond Matter 19:425206

10.138 Degtyareva O, Canales MM, Bergara A et al (2007) Phys Rev B 76:064123

10.139 Hirai H, Tanaka T, Kawamura T et al (2003) Phys Rev B 68:172102

10.140 Vaidya SN, Kennedy GC (1971) J Chem Phys 55:987

10.141 Nakayama A, Fujihisa H, Aoki K, Charlon RP (2000) Phys Rev B 62:8759

10.142 Kiefte H,, Penney R Clouter MJ (1988) J Chem Phys 88:5846

10.143 Haussühl S (2001) Z Krist 216:339

10.144 Dinnebier RE, van Smaalen S, Olbrich F, Carlson S (2005) Inorg Chem 44:964

10.145 Pravica M, Shen Y, Quina Z et al (2007) J Phys Chem B 111:4103

10.146 Oehzelt M, Resel R, Nakayama A (2002) Phys Rev B 66:174104

10.147 Davidson AJ, Oswald IDH, Francis DJ et al (2008) Cryst Eng Comm 10:162

10.148 Kawasaki S, Hara T, Iwata A (2007) Chem Phys Lett 447:3169

10.149 Sato-Sorensen Y (1983) J Geophys Res B 88:3543

10.150 Duclos SJ, Vohra YK, Ruoff AL et al (1987) Phys Rev B 36:7664

10.151 Yagi T (1978) J Phys Chem Solids 39:563

10.152 Campbell A, Heinz D (1991) J Phys Chem Solids 52:495

10.153 Köhler U, Johannsen PG, Holzapfel WB (1997) J Phys Cond Matter 9:5581

10.154 Campbell A, Heinz D (1994) J Geophys Res B 99:11765

10.155 Vohra YK, Brister KE, Weir ST et al (1986) Science 231:1136

10.156 Quadri SB, Yang J, Ratna BR, Skelton EF (1996) Appl Phys Lett 69:2205; Jiang JZ, Gerward L, Secco R et al (2000) J Appl Phys 87:2658

10.157 Ghandehari K, Luo H, Ruoff AL et al (1995) Phys Rev Lett 74:2264

10.158 Hull S, Berastegui P (1998) J Phys Cond Matter 10:7945

10.159 Boslough M, Ahrens TJ (1984) J Geophys Res B 89:7845

10.160 Richet P, Mao H-K, Bell P (1988) J Geophys Res B 93:15279

10.161 Luo H, Greene RG, Ruoff AL (1994) Phys Rev B 49:15341

10.162 Weir ST, Vohra YK, Ruoff AL (1986) Phys Rev B 33:4221

10.163 Grzybowski TA Ruoff AL (1984) Phys Rev Lett 53:489

10.164 Desgreniers S (1998) Phys Rev B 58:14102

10.165 Ves S, Schwarz U, Christensen N E et al (1990) Phys Rev B 42:9113

10.166 Strössner K, Ves S, Dietrich W et al (1985) Solid State Commun 56:563

10.167 Werner A, Hochmeir HD, Strössner K, Jayaraman A (1983) Phys Rev B 28:3330

10.168 Chattopadhyay T, Santandrea R, von Schnering H-G (1986) Physica B 139–140:353

10.169 Chattopadhyay T, Werner A, von Schnering H-G (1984) Rev Phys Appl 19:807

10.170 Jackson I, Khanna S, Revcolevschi A, Berthon J (1990) J Geophys Res B 95:21671

10.171 Gerward L, Staun Olsen J, Steenstrup S et al (1990) J Appl Cryst 23:515

10.172 Staun Olsen J, Gerward L, Benedict U, Dabos-Seignon S (1990) High Press Res 2:35

10.173 Dankekar D, Abbate A, Frankel J (1994) J Appl Phys 76:4077

10.174 Van Camp PE, Van Doren VE, Devreese J (1991) Phys Rev B 44:9056; Xia Q, Xia H, Ruoff AL (1993) J Appl Phys 73:8198

10.175 Greene RG, Luo H, Ghandehari K, Ruoff AL (1995) J Phys Chem Solids 56:517

10.176 Konczewicz L, Bigenwald P, Cloitre T et al (1996) J Cryst Growth 159:117; Perlin P, Jauberthie-Caillon C, Itie JP et al (1992) Phys Rev B 45:83; Xia H, Xia Q, Ruoff AL (1993) Phys Rev B 47:12925

Weir ST, Vohra YK, Vanderborgh CA, Ruoff AL (1989) Phys Rev B 39:1280

10.178 Weir ST, Vohra YK, Ruoff AL (1987) Phys Rev B 36:4543

10.179 Menoni CS, Spain IL (1987) Phys Rev B 35:7520

10.180 Soma T, Kagaya H-M (1984) Phys Stat Solidi b 121:K1

10.181 Leger JM, Vedel I, Redon A et al (1988) Solid State Commun 66:1173

10.182 Menoni C, Hu J, Spain I (1984) In: Homan C, MacCrone RK, Whalley E (eds) High pressure in science and technology, vol 3. North-Holland, New York

10.183 Liu M, Liu L-G (1986) High Temp-High Press 18: 79

10.184 Holzapfel WB, Hartwig M, Sievers W (2001) J Phys Chem Ref Data 30:515

10.185 Solozhenko VI, Will G, Elf F (1995) Solid State Comm 96:1

10.186 Cynn H Yoo CS, Baer B et al (2001) Phys Rev Lett 86:4552

10.187 Yoo CS, Kohlmann H, Cynn H et al (1999) Solid State Comm 83:5527; Iota V, Yoo CS (2001) Solid State Comm 86:3068; Yoo CS, Kohlmann H, Cynn H et al (2002) Phys Rev B 65:104103; Park J-H, Yoo CS, Iota V et al (2003) Phys Rev B 68:014107; Datchi F, Giordano VM, Munsch P, Saito AM (2009) Phys Rev Lett 103:185701

10.188 Angel RJ (2000) Phys Earth Planet Inter 124:71

10.189 Ono S, Ito E, Katsura T et al (2000) Phys Chem Miner 27:618

10.190 Haines J, Leger JM (1997) Phys Rev B 55:11144

10.191 Haines J, Leger JM, Schulte O (1990) J Phys Cond Matt 8:1631

10.192 Arlt T, Bermejo M, Blanco MA et al (2000) Phys Rev B 61:14414

10.193 Al-Khatatbeh Y, Lee KKM, Kiefer B (2010) Phys Rev B 81:214102

10.194 Haines J, Legar JM, Gorelli F et al (2001) Phys Rev B 64:134110

10.195 Vinet P, Rose JH, Ferrante J, Smith JR (1989) J Phys Cond Matt 1:1941

10.196 Çağın T, Dereli G, Uludoğan M, Tomak M (1999) Phys Rev B 59:3468

10.197 Yokoo M, Kawai N, Nakamura KG, Kondo K-I (2009) Phys Rev B 80:104114

10.198 Pantea C, Stroe I, Ledbetter H et al (2009) Phys Rev B 80:024112

10.199 Holzapfel WB, Hartwig M, Sievers W (2001) J Phys Chem Ref Data 30:5151

10.200 Adams JJ, Agosta DS, Leisure RG et al (2006) J Appl Phys 100:113530

10.201 Nadal M-H, Bourgeois L (2010) J Appl Phys 108:033512

10.202 Ledbetter H, Ogi H, Kai S, Kim S (2004) J Appl Phys 95:4642

10.203 SuzukiY, Fanelli VR, Betts JB et al (2011) Phys Rev B 84:064105

10.204 Dai C, Hu J, Tan H (2009) J Appl Phys 106:043519

10.205 Batsanov SS (2006) Rus Chem Rev 75:601

10.206 Hsueh HC, Chen RK, Vass H et al (1998) Phys Rev B 58:14812

10.207 Qi J, Liu JF, He Y et al (2011) J Appl Phys 109:063520

10.208 Ji C, Zhang F, Hou D et al (2011) J Phys Chem Solids 72:609

10.209 Hou D, Zhang F, Ji C et al (2011) J Appl Phys 110:023524

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Extreme Conditions. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_10

Download citation

Publish with us

Policies and ethics