Spectral Decompositions of Self-adjoint and Normal Operators
- 4.4k Downloads
Abstract
Chapter 5 is devoted to the spectral decomposition of self-adjoint and normal operators. In the first section, the spectral theorem for a single bounded self-adjoint operator is proved. Then the spectral theorem for an unbounded self-adjoint operator is derived from the bounded case by using the bounded transform T(I+T ∗ T)−1/2. The spectral integrals with respect to the corresponding spectral measure are considered as functions of the self-adjoint operator. This functional calculus and a number of important applications (spectrum, fractional powers, Stone’s formulas) are developed. Self-adjoint operators with simple spectra are studied. For an n-tuple of strongly commuting unbounded normal operators, the spectral theorem is proved, and the joint spectrum is defined and investigated. Permutability problems involving unbounded self-adjoint or normal operators are considered, and a number of equivalent characterizations of the strong commutavitity in terms of spectral measures, resolvents, and bounded transforms are given.
Keywords
Strongly Commuting Unbounded Normal Operators Spectral Theorem Bounded Self-adjoint Operator Unbounded NormReferences
Classical Articles
- [HT]Hellinger, E., Toeplitz, O.: Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten. Enzyklopädie d. Math. Wiss. II.C 13, 1335–1616 (1928) Google Scholar
- [Hi]Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner-Verlag, Leipzig (1912) zbMATHGoogle Scholar
- [Ri1]Riesz, F.: Les systèmes d’équations linéaires à une infinité d’inconnues. Gauthiers–Villars, Paris (1913) zbMATHGoogle Scholar
- [Ri2]Riesz, F.: Über die linearen Transformationen des komplexen Hilbertschen Raumes. Acta Sci. Math. Szeged 5, 23–54 (1930) zbMATHGoogle Scholar
- [St2]Stone, M.H.: Linear Transformations in Hilbert Space. Am. Math. Soc., New York (1932) Google Scholar
- [vN1]Von Neumann, J.: Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. 102, 49–131 (1929) CrossRefzbMATHGoogle Scholar
Books
- [AG]Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Ungar, New York (1961) zbMATHGoogle Scholar
- [Bn]Berberian, S.K.: Notes on Spectral Theory. van Nostrand, Princeton (1966) zbMATHGoogle Scholar
- [BSU]Berezansky, Y.M., Sheftel, Z.G., Us, G.F.: Functional Analysis, vol. II. Birkhäuser-Verlag, Basel (1996) CrossRefzbMATHGoogle Scholar
- [BS]Birman, M.S., Solomyak, M.Z.: Spectral Theory of Selfadjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987) Google Scholar
- [Cw]Conway, J.B.: A Course in Functional Analysis. Springer-Verlag, New York (1990) zbMATHGoogle Scholar
- [DS]Dunford, N., Schwartz, J.T.: Linear Operators, Part II. Spectral Theory. Interscience Publ., New York (1963) zbMATHGoogle Scholar
- [RS1]Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York (1972) Google Scholar
- [RN]Riesz, F., Nagy, Sz.-B.: Functional Analysis. Dover, New York (1990) zbMATHGoogle Scholar
- [Ru3]Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973) zbMATHGoogle Scholar
Articles
- [Cd1]Coddington, E.A.: Formally normal operators having no normal extensions. Can. J. Math. 17, 1030–1040 (1965) CrossRefzbMATHMathSciNetGoogle Scholar
- [Mc]McCarthy, C.A.: c p. Isr. J. Math. 5, 249–271 (1967) CrossRefzbMATHGoogle Scholar
- [Ne1]Nelson, E.: Analytic vectors. Ann. Math. 70, 572–614 (1959) CrossRefzbMATHGoogle Scholar
- [Sch3]Schmüdgen, K.: On commuting unbounded selfadjoint operators. Acta Sci. Math. (Szeged) 47, 131–146 (1984) zbMATHMathSciNetGoogle Scholar
- [Sn]Steen, L.A.: Highlights in the history of spectral theory. Am. Math. Monthly 80, 359–381 (1973) CrossRefzbMATHMathSciNetGoogle Scholar