Unbounded Self-adjoint Operators on Hilbert Space pp 363-392 | Cite as
The One-Dimensional Hamburger Moment Problem
- 4.4k Downloads
Abstract
In Chap. 16, we present a short and concise treatment of the one-dimensional Hamburger moment problem with an emphasis on the self-adjoint extension theory. Orthogonal polynomials and the Jacobi operator associated with a moment sequence are developed. Basic results on the existence, the set of solutions, and the uniqueness of the moment problem are given in terms of self-adjoint extensions. The two final sections of this chapter are devoted to the advanced theory of the indeterminate case. The four Nevanlinna functions and the Weyl circles are defined and studied, and all von Neumann solutions are described. This chapter ends with a proof of Nevanlinna’s fundamental theorem on the parameterization of the set of all solutions of the indeterminate moment problem.
Keywords
Moment Problem Self-adjoint Extension Theory Weyl Circle Nevanlinna Function Moment SequenceReferences
Classical Articles
- [Ck]Calkin, J.W.: Abstract symmetric boundary conditions. Trans. Am. Math. Soc. 45, 369–442 (1939) CrossRefMathSciNetGoogle Scholar
- [Hm]Hamburger, H.L.: Über eine Erweiterung des Stieltjesschen Momentenproblems. Math. Ann. 81, 235–319 (1920) and 82, 120–164, 168–187 (1920) CrossRefzbMATHMathSciNetGoogle Scholar
- [Kr1]Krein, M.G.: On Hermitian operators with defect numbers one. Dokl. Akad. Nauk SSSR 43, 339–342 (1944) MathSciNetGoogle Scholar
- [Kr2]Krein, M.G.: On resolvents of an Hermitian operator with defect index (m,m). Dokl. Akad. Nauk SSSR 52, 657–660 (1946) MathSciNetGoogle Scholar
- [Kr3]Krein, M.G.: The theory of self-adjoint extensions of semibounded Hermitian operators and its applications. Mat. Sb. 20, 365–404 (1947) MathSciNetGoogle Scholar
- [Na1]Naimark, M.A.: Spectral functions of a symmetric operator. Izv. Akad. Nauk SSSR, Ser. Mat. 7, 285–296 (1943) zbMATHGoogle Scholar
- [Nv]Nevanlinna, R.: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem. Ann. Acad. Sci. Fenn. A 18, 1–53 (1922) MathSciNetGoogle Scholar
- [Stj]Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8, 1–122 (1894) CrossRefMathSciNetGoogle Scholar
- [vN1]Von Neumann, J.: Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. 102, 49–131 (1929) CrossRefzbMATHGoogle Scholar
- [W2]Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68, 220–269 (1910) CrossRefzbMATHMathSciNetGoogle Scholar
Books
- [Ac]Akhiezer, N.I.: The Classical Moment Problem. Oliver and Boyd, Edinburgh and London (1965) zbMATHGoogle Scholar
- [AHP]Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.): Sturm–Liouville Theory. Past and Present. Birkhäuser-Verlag, Basel (2005) zbMATHGoogle Scholar
- [Be]Berezansky, Y.M.: Expansions in Eigenfunctions of Selfadjoint Operators. Am. Math. Soc., Providence (1968) Google Scholar
- [Br]Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, Berlin (2011) zbMATHGoogle Scholar
- [DS]Dunford, N., Schwartz, J.T.: Linear Operators, Part II. Spectral Theory. Interscience Publ., New York (1963) zbMATHGoogle Scholar
- [GG]Gorbachuk, V.I., Gorbachuk, M.L.: Boundary Value Problems for Operator Differential Equations. Kluwer, Dordrecht (1991) CrossRefGoogle Scholar
- [HS]Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer-Verlag, Berlin (1965) CrossRefzbMATHGoogle Scholar
- [JR]Jörgens, K., Rellich, F.: Eigenwerttheorie Gewöhnlicher Differentialgleichungen. Springer-Verlag, Berlin (1976) CrossRefzbMATHGoogle Scholar
- [Na2]Naimark, M.A.: Linear Differential Operators. Ungar, New York (1968) zbMATHGoogle Scholar
- [ST]Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. Am. Math. Soc., Providence (1943) CrossRefzbMATHGoogle Scholar
- [Tt]Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Clarendon Press, Oxford (1962). Part II (1970) zbMATHGoogle Scholar
Articles
- [AS]Alonso, A., Simon, B.: The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators. J. Oper. Theory 4, 51–270 (1980) MathSciNetGoogle Scholar
- [AN]Ando, T., Nishio, K.: Positive selfadjoint extensions of positive symmetric operators. Tohoku Math. J. 22, 65–75 (1970) CrossRefzbMATHMathSciNetGoogle Scholar
- [As]Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961) CrossRefzbMATHMathSciNetGoogle Scholar
- [AHS]Arlinski, Y.M., Hassi, S., Sebestyen, Z., de Snoo, H.S.V.: On the class of extremal extensions of a nonnegative operator. Oper. Theory Adv. Appl. 127, 41–81 (2001) Google Scholar
- [AT]Arlinski, Y., Tsekanovskii, E.: The von Neumann problem for nonnegative symmetric operators. Integral Equ. Oper. Theory 51, 319–356 (2005) CrossRefGoogle Scholar
- [BE]Bennewitz, C., Everitt, W.N.: The Weyl–Titchmarsh eigenfunction expansion theorem for Sturm–Liouville operators. In [AHP], pp. 137–172 Google Scholar
- [Bi]Birman, M.S.: On the theory of selfadjoint extensions of positive operators. Mat. Sb. 38, 431–450 (1956) MathSciNetGoogle Scholar
- [BMN]Brasche, J.F., Malamud, M.M., Neidhardt, N.: Weyl function and spectral properties of selfadjoint extensions. Integral Equ. Oper. Theory 43, 264–289 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
- [BGW]Brown, B.M., Grubb, G., Wood, I.: M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems. Math. Nachr. 282, 314–347 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
- [Bk]Bruk, V.M.: On a class of boundary value problems with a spectral parameter in the boundary condition. Mat. Sb. 100, 210–216 (1976) MathSciNetGoogle Scholar
- [BGP]Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of selfadjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
- [BC]Buchwalther, H., Casier, G.: La paramétrisation de Nevanlinna dans le problème des moments de Hamburger. Expo. Math. 2, 155–178 (1984) Google Scholar
- [Cd2]Coddington, E.A.: Extension theory of formally normal and symmetric subspaces. Mem. Am. Math. Soc. 134 (1973) Google Scholar
- [CdS]Coddington, E.A., de Snoo, H.S.V.: Positive selfadjoint extensions of positive subspaces. Math. Z. 159, 203–214 (1978) CrossRefzbMATHMathSciNetGoogle Scholar
- [DM]Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problem for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
- [DdS]Dijksma, A., de Snoo, H.S.V.: Selfadjoint extensions of symmetric subspaces. Pac. J. Math. 54, 71–100 (1974) CrossRefzbMATHGoogle Scholar
- [GrW]Grampp, U., Wähnert, Ph.: Das Hamburger’sche Momentenproblem und die Nevanlinna-Parametrisierung. Diplomarbeit, Leipzig (2009) Google Scholar
- [HMS]Hassi, S., Malamud, M., de Snoo, H.S.V.: On Krein’s extension theory of nonnegative operators. Math. Nachr. 274, 40–73 (2004) CrossRefMathSciNetGoogle Scholar
- [Ko]Kochubei, A.N.: Extensions of symmetric operators. Math. Notes 17, 25–28 (1975) CrossRefGoogle Scholar
- [Kd1]Kodaira, K.: Eigenvalue problems for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices. Am. J. Math. 71, 921–945 (1950) CrossRefMathSciNetGoogle Scholar
- [Kd2]Kodaira, K.: On ordinary differential equations of any even order and the corresponding eigenfunction expansions. Am. J. Math. 72, 502–544 (1950) CrossRefzbMATHMathSciNetGoogle Scholar
- [Ma]Malamud, M.M.: Certain classes of extensions of a lacunary Hermitian operator. Ukr. Mat. Zh. 44, 215–233 (1992) CrossRefMathSciNetGoogle Scholar
- [MN]Malamud, M.M., Neidhardt, H.: On the unitary equivalence of absolutely continuous parts of self-adjoint extensions. J. Funct. Anal. 260, 613–638 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
- [Po]Posilicano, A.: A Krein-type formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183, 109–147 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
- [PS]Prokaj, V., Sebestyen, Z.: On extremal positive extensions. Acta Sci. Math. Szeged 62, 485–491 (1996) zbMATHMathSciNetGoogle Scholar
- [Sa]Saakyan, S.N.: Theory of resolvents of symmetric operators with infinite deficiency indices. Dokl. Akad. Nauk Arm. SSR 41, 193–198 (1965) zbMATHGoogle Scholar
- [SeS]Sebestyen, Z., Stochel, J.: Restrictions of positive selfadjoint operators. Acta Sci. Math. (Szeged) 55, 149–154 (1991) zbMATHMathSciNetGoogle Scholar
- [Sm4]Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
- [Vi]Vishik, M.: On general boundary conditions for elliptic differential equations. Tr. Moskv. Mat. Obc. 1, 187–246 (1952) zbMATHGoogle Scholar