Skip to main content

Improving Quality and Content of Oils in Seeds: Strategies, Approaches, and Applications Towards Engineering New Oilseed Crop Plants

  • Chapter
  • First Online:
Book cover Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

Plant oils are the major sources for human nutrition. There is increasing interest in the use of plant oils as renewable sources of industrial feedstocks. In order to alleviate the increasing demand for plant oils, omics approaches have been adopted to facilitate modification of the fatty acid composition in order to improve the nutritional properties and to generate specific physiochemical properties for industrial uses. An overview of the application of omics to aid progress in the engineering of oil quality and seed yield is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • Adamski NM, Anastasiou E, Eriksson S, O’neill CM, Lenhard M (2009) Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci U S A 106:20115–20120

    PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:4710–4717

    Article  PubMed  CAS  Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105:14727–14731

    Article  PubMed  CAS  Google Scholar 

  • Bao X, Pollard M, Ohlrogge J (1998) The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant Physiol 118:183–190

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  PubMed  CAS  Google Scholar 

  • Berneth R, Frentzen M (1990) Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis. Plant Sci 67:21–28

    Article  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A 103:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Gettner S, Somerville C (1999) Genetics engineering of plant lipids. Annu Rev Nutrition 19:197–216

    Article  PubMed  CAS  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Ohlrogge JB (1994) Metabolic Evidence for the involvement of a Δ4-palmitoyl-acyl carrier protein desaturase in petroselinic acid synthesis in coriander endosperm and transgenic tobacco cells. Plant Physiol 104:827–837

    PubMed  CAS  Google Scholar 

  • Cahoon EB, Shanklin J, Ohlrogge JB (1992) Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci U S A 89:11184–11188

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Coughlan SJ, Shanklin J (1997) Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed. Plant Mol Biol 33:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Shah S, Shanklin J, Browse J (1998) A determinant of substrate specificity predicted from the acyl-acyl carrier protein desaturase of developing cat’s claw’s seed. Plant Physiol 117:593–598

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci U S A 96:12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Ripp KG, Hall SE, Kinney AJ (2001) Formation of conjugated Δ8,Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes. J Biol Chem 276:2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67(12):1166–1176

    Google Scholar 

  • Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for suitable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  PubMed  CAS  Google Scholar 

  • Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S (2010) Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  PubMed  CAS  Google Scholar 

  • Chen RM, Ogawa MK, Oe M, Ochia M, Kawashima H (2006) Expression of Δ6,Δ5 desaturase and GLEO elongase genes from Mortierella alpina for production of arachidonic acid in soybean (Glycine max (L.) Merrill) seeds. Plant Sci 170:399–406

    Article  CAS  Google Scholar 

  • Chen M, Mooney BP, Hajduch M, Joshi T, Zhou M, Xu D, Thelen JJ (2009) System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol 150:27–41

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19:221–229

    Article  PubMed  CAS  Google Scholar 

  • Chiron H, Delseny M, Roscoe T (2007) Transcriptional regulation of lipid biosynthesis in crucifer seeds. In: Benning C, Ohlrogge J (eds) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global, Salt Lake City, pp 253–260

    Google Scholar 

  • Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97:6487–6492

    Article  PubMed  CAS  Google Scholar 

  • Damude HG, Kinney AJ (2007) Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 42:179–185

    Article  PubMed  CAS  Google Scholar 

  • Damude HG, Kinney AJ (2008a) Engineering oilseeds to produce nutritional fatty acids. Physiol Plant 132:1–10

    CAS  Google Scholar 

  • Damude HG, Kinney AJ (2008b) Enhancing plant seed oils for human nutrition. Plant Physiol 147:962–968

    Article  CAS  Google Scholar 

  • Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci U S A 103:9446–9451

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K, Edwards P, Hayes T, Cranmer AM, Fillatti J (1996a) Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiol 110:203–210

    Article  CAS  Google Scholar 

  • Dehesh K, Jones A, Knutzon DS, Voelker TA (1996b) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172

    Article  CAS  Google Scholar 

  • Domergue F, Chevalier S, Créach A, Cassagne C, Lessire R (2000) Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase. Lipids 35:487–494

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Abbadi A, Ott C, Zank TK, Zähringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Abbadi A, Heinz E (2005a) Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci 10:112–116

    Article  CAS  Google Scholar 

  • Domergue F, Abbadi A, Zähringer U, Moreau H, Heinz E (2005b) In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  CAS  Google Scholar 

  • Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, Heinz E (2003) Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. J Plant Physiol 160:779–802

    Article  PubMed  CAS  Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  PubMed  CAS  Google Scholar 

  • Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and Implies a set point for triacylglycerol accumulation. Plant Cell 10:613–622

    PubMed  CAS  Google Scholar 

  • Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Mittelsten Scheid O, Hennig L, Köhler C (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5:e1000663

    Article  PubMed  CAS  Google Scholar 

  • Focks N, Benning C (1998) Wrinkled 1: a novel, low seed-soil-mutant Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60

    Article  PubMed  CAS  Google Scholar 

  • Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97–108

    Google Scholar 

  • Hoffmann M, WagnerM, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  PubMed  CAS  Google Scholar 

  • Hughes R, Spielman M, Schruff MC, Larson TR, Graham IA, Scott RJ (2008) Yield assessment of integument-led seed growth following targeted repair of auxin response factor 2. Plant Biotechnol J 6:758–769

    Article  PubMed  CAS  Google Scholar 

  • Jadhav A, Katavic V, Marillia EF, Michael Giblin E, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:958–961

    Article  PubMed  CAS  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    PubMed  CAS  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A 102:3117–3122

    Article  PubMed  CAS  Google Scholar 

  • Jullien PE, Berger F (2010) Parental genome dosage imbalance deregulates imprinting in Arabidopsis. PLoS Genet 6:e1000885

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Yamato KT, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Sakai Y, Fukuzawa H, Ohyama K (2004) Isolation and characterization of delta(6)-desaturase, an ELO-like enzyme and delta(5)-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol 54(3):335–352

    Google Scholar 

  • Kajikawa M, Matsui K, Ochiai M, Tanaka Y, Kita Y, Ishimoto M, Kohzu Y, Shoji S, Yamato KT, Ohyama K, Fukuzawa H, Kohchi T (2008) Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid 6-desaturase, 6-elongase, and 5-desaturase genes. Biosci Biotechnol Biochem 72:435–444

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ (1996) Designer oils for better nutrition. Nat Biotechnol 14:946–946

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Damude HG, Hitz WD, Kolar CW, Liu ZB (2004) Production of very long chain polyunsaturated fatty acids in oilseed plants. E.I. Dupont De Nemours and Company, WO 2004/071467 A2. International Patent Application published under the Patent Cooperation Treaty, WIPO, Geneva, Switzerland

    Google Scholar 

  • Köhler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148

    Article  PubMed  CAS  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122:645–656

    Article  PubMed  CAS  Google Scholar 

  • Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96

    Article  PubMed  CAS  Google Scholar 

  • Larson TR, Edgell T, Byrne J, Dehesh K, Graham IA (2002) Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J 32:519–527

    Article  PubMed  CAS  Google Scholar 

  • Lassner MW, Levering CK, Davies HM, Knutzon DS (1995) Lysophosphatidic acid acyltransferase from Meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol 109:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93(7):1195–1205

    Google Scholar 

  • Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor bean that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 102:17531–17536

    Article  PubMed  CAS  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670–684

    Article  PubMed  CAS  Google Scholar 

  • Marillia EF, Micallef BJ, Micallef M, Weninger A, Pedersen KK, Zou J, Taylor DC (2003) Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase. J Exp Bot 54:259–270

    Article  PubMed  CAS  Google Scholar 

  • Metz JG, Pollard MR, Anderson L, Hayes TR, Lassner MW (2000) Purification of a Jojoba embryo fatty acyl-coenzyme a reductase and expression of Its cDNA in high erucic acid rapeseed. Plant Physiol 122:635–644

    Article  PubMed  CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-Specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic Increase in the proportion of erucic acid. Plant Physiol 136:2665–2675

    Article  PubMed  CAS  Google Scholar 

  • Moire LE, Rezzonico E, Goepfert S, Poirier Y (2004) Impact of unusual fatty acid synthesis on futile cycling through beta-oxydation and on gene expression in transgenic plants. Plant Physiol 134:432–442

    Article  PubMed  CAS  Google Scholar 

  • Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Napier JA (2007) The Production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13L:330–337

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Beaudoin F, Michaelson LV, Sayanova O (2004) The production of long chain polyunsaturated fatty acids in transgenic plants by reverse-engineering. Biochimie 86:785–792

    Article  PubMed  CAS  Google Scholar 

  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theo Appl Genet 118:765–773

    Article  CAS  Google Scholar 

  • Nguyen HT, Mishra G, Whittle E, Bevan SA, Merlo AO, Walsh TA, Shanklin J (2010) Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol 154:1897–1904

    Article  PubMed  CAS  Google Scholar 

  • Nikolau BJ, Perera MA, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54:536–545

    Article  PubMed  CAS  Google Scholar 

  • Nowack MK, Ungru A, Bjerkan KN, Grini PE, Schnittger A (2010) Reproductive cross-talk: seed development in flowering plants. Biochem Soc Trans 38:604–612

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821–826

    PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Driving on biomass. Science 324:1019–1020

    Article  PubMed  CAS  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102:3123–3128

    Article  PubMed  CAS  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    Article  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Liu Q, Mansour M, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP (2010a) Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods 6:8

    Article  CAS  Google Scholar 

  • Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010b) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA delta6-desaturase with omega3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  CAS  Google Scholar 

  • Pollard MR, Anderson L, Fan C, Hawkins DJ, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 284:306–312

    Article  PubMed  CAS  Google Scholar 

  • Puyaubert J, Garbay B, Costaglioli P, Dieryck W, Roscoe TJ, Renard M, Cassagne C, Lessire R (2001) Acyl-CoA elongase expression during seed development in Brassica napus. Biochim Biophys Acta-Mol Cell Biol Lipids 1533:141–152

    Article  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  • Robert SS, Singh SP, Zhou XR, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green AG (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 11375–81

    Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    PubMed  CAS  Google Scholar 

  • Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams SR, Zaharia LI, Taylor DC, Fobert PR (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics 9:619–636

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Yu Y, Katavic V, Haughn GW, Kunst L (2010) Investigation of potential roles of phospholipase D zêta in Arabidopsis thaliana seed oil accumulation. 19th International Symposium on Plant Lipids, Cairns, Poster 18, 11–16 July 2010

    Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    PubMed  CAS  Google Scholar 

  • Smith MA, Moon H, Chowira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    Article  PubMed  CAS  Google Scholar 

  • Snyder CL, Yurchenko OP, Siloto RM, Chen X, Liu Q, Mietkiewska E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16

    Article  CAS  Google Scholar 

  • Somerville CR, Bonetta D (2001) Plants as factories for technical materials. Plant Physiol 125:168–171

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Shantharaj D, Kang X, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Ketterling MG, Li QB, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T (1997) Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143:2725–2731

    CAS  Google Scholar 

  • Tapiero H, Ba GN, Couvreur P, Tew KD (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacoth 56:215–222

    Article  CAS  Google Scholar 

  • Taylor DC, Katavic V, Zou JT, MacKenzie SL, Keller WA, An J, Friesen W, Barton DL, Pedersen K, Giblin EM, Ge Y, Dauk M, Sonntag C, Luciw T, Males D (2001) Field testing of transgenic rapeseed cv.Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8:317–322

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002a) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002b) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  CAS  Google Scholar 

  • van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci U S A 92:6743–6747

    Article  Google Scholar 

  • Venegas-Calerón M, Sayanova O, Napier JA (2010) An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A 94:7685–7690

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  PubMed  CAS  Google Scholar 

  • Voelker T (1996) Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis. Genet Eng 18:111–133

    CAS  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52:335–361

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (1999) The Delta8-Desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Guo J, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 63:670–679

    Google Scholar 

  • Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59:3543–3549

    Article  PubMed  CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol 142:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzi SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Lessire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roscoe, T., Domergue, F., Devic, M., Lessire, R. (2012). Improving Quality and Content of Oils in Seeds: Strategies, Approaches, and Applications Towards Engineering New Oilseed Crop Plants. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_25

Download citation

Publish with us

Policies and ethics