Skip to main content

Proteomics Reveals A Potential Role of the Perisperm in Starch Remobilization During Sugarbeet Seed Germination

  • Chapter
  • First Online:

Abstract

Sugarbeet is a crop of high economic importance because it is one of the two main sources of plant sugar, the other being sugarcane. The sugarbeet seeds have the peculiarity of containing at maturity a large starchy storage tissue, called the perisperm. In contrast to the well-documented cereal endosperm, the physiology of this perisperm is completely unknown. Here, we used proteomics of perisperm isolated either from dry mature or imbibed sugarbeet seeds to unravel the mechanisms of starch remobilization during germination. We also carried out a comparative proteomics analysis with the perisperm isolated from the dry mature sugarbeet seeds. We observed an accumulation of α-amylase in the perisperm isolated from imbibed whole seeds but not from the isolated imbibed perisperm alone, suggesting a role of the embryo in triggering the accumulation of this starch-mobilizing enzyme in the perisperm during germination. In this way, the mechanisms occurring in the sugarbeet seed perisperm during germination would appear to be similar to those documented for the endosperm of cereals. In contrast, an accumulation of β-amylase and α-glucosidase was observed in the isolated imbibed perisperm, suggesting that the embryo was not mandatory for induction of these enzymes in the perisperm during imbibition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal GK, Jwa NS, Iwahashi Y, Yonekura M, Iwahashi H, Rakwal R (2006) Rejuvenating rice proteomics: facts, challenges, and visions. Proteomics 6:5549–5576

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R (2011a) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30:772–853

    CAS  Google Scholar 

  • Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw R, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R (2011b) Time to articulate a vision for the future of plant proteomics—a global perspective. An initiative for establishing the international plant proteomics organization (INPPO). Proteomics 11:1559–1568

    Article  CAS  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Artschwager E (1927) Development of flowers and seed in the sugar beet. J Agric Res 34:1–25

    Google Scholar 

  • Bak-Jensen KS, Laugesen S, Østergaard O, Finnie C, Roepstorff P, Svensson B (2007) Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination. FEBS J 274:2552–2265

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Lonsdale JE, Fath A, Jones RL (1991) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11:1033–1045

    Google Scholar 

  • Bethke PC, Schuurink R, Jones RL (1997) Hormonal signalling in cereal aleurone. J Exp Bot 48:1337–1356

    Article  CAS  Google Scholar 

  • Bewley J, Black M (1994) Seeds: physiology of development and germination. In: Bewley J, Black M (eds). Plenum, New York, pp 460

    Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  PubMed  CAS  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance.Plant Physiol 140:1418–1436

    Google Scholar 

  • Bourgeois M, Jacquin F, Savois V, Sommerer N, Labas V, Henry C, Burstin J (2009) Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9:254–271

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw R, Burlingame A (2005) From proteins to proteomics. IUBMB Life 57:267–272

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. In: Buchanan BB, Gruissem W, Jones RL (eds). American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Buitink J, Leprince O, Hoekstra FA (2000) Dehydration induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds. Plant Physiol 124:1413–1426

    Article  PubMed  CAS  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882

    Article  PubMed  CAS  Google Scholar 

  • Catusse J, Job C, Job D (2008a) Transcriptome- and proteome-wide analyses of seed germination. C R Biologies:815–822

    Google Scholar 

  • Catusse J, Strub JM, Job C, Van Dorsselaer JM, Job D (2008b) Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci U S A 105:10262–10267

    Article  CAS  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Westhoff P, Van Dorsselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Chiba S, Inomata S, Matsui H, Shimomura T (1978) Purification and properties of an α-glucosidase (glucoamylase) in sugar beet seed. Agric Biol Chem 42:241–245

    Article  CAS  Google Scholar 

  • Coimbra S, Salema R (1994) Amaranthus hypochondriacus: seed structure and localization of seed reserves. Ann Bot 74:373–379

    Google Scholar 

  • Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thøgersen IB, Enghild JJ, Stougaard J (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 149:1325–1340

    Google Scholar 

  • de Los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.). Theor Appl Genet 107:54–61

    Google Scholar 

  • de Mercoyrol L, Job C, Job D (1989) Studies on the inhibition by alpha-amanitin of single-step addition reactions and productive RNA synthesis catalysed by wheat germ RNA polymerase II. Biochem J 258:165–169

    PubMed  CAS  Google Scholar 

  • Dumas C, Rogoswki P (2008) Fertilization and early seed formation. C R Biologies 331:715–725

    Article  PubMed  Google Scholar 

  • Elamrani AJ, Raymond P, Saglio P (1992) Nature and utilization of seed reserves during germination and heterotrophic growth of young sugar beet seedlings. Seed Sci Res 2:1–8

    Article  CAS  Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in geminating cereal grain. Annu Rev Plant Physiol Plant Mol Biol 40:305–346

    Article  CAS  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  PubMed  CAS  Google Scholar 

  • Finnie C, Maeda K, Østergaard O, Bak-Jensen KS, Larsen J, Svensson B (2004) Aspects of the barley seed proteome during development and germination. Biochem Soc Trans 32:517–519

    Article  PubMed  CAS  Google Scholar 

  • Finnie C, Andersen B, Shahpiri A, Svensson B (2011) Proteomes of the barley aleurone layer: a model system for plant signalling and protein secretion. Proteomics 11:1595–605

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    Google Scholar 

  • Golovina EA, Hoekstra FA, van Aelst AC (2000) Programmed cell death or desiccation tolerance: two possible routes for wheat endosperm cells. Seed Sci Res 10:365–379

    Article  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Gubler F, Ashford AE, Jacobsen JV (1987) The release of α-amylase through gibberellin-treated barley aleurone cell walls. Planta 172:155–161

    Article  CAS  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Google Scholar 

  • Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ (2010) Systems analysis of seed filling in Arabidopsis thaliana: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 152:2078–2087

    Google Scholar 

  • He D, Han C, Yao J, Shen S, Yang PF (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  PubMed  CAS  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machacova I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060

    Google Scholar 

  • Hilhorst HWM, Karssen CM (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul 11:225–238

    Article  CAS  Google Scholar 

  • Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7:302–308

    Article  PubMed  CAS  Google Scholar 

  • Ho THD, Gomez-Cadenas A, Zentella R, Casaretto J (2003) Crosstalk between gibberellin and abscisic acid in cereal aleurone layer. Plant Growth Regul 22:185–194

    Article  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Postgenomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  CAS  Google Scholar 

  • Houk WG (1938) Endosperm and perisperm of coffee with notes on the morphology of the ovule and seed development. Am J Bot 25:56–60

    Article  Google Scholar 

  • Irar S, Brini F, Goday A, Masmoudi K, Pages M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)—a wider perspective of the proteome. J Proteomics 73:1707–1721

    Article  PubMed  CAS  Google Scholar 

  • Jendrisak JJ (1980) The use of α-amanitin to inhibit in vivo RNA synthesis and germination in wheat embryos. J Biol Chem 255:8529–8533

    Google Scholar 

  • Job C, Kersulec A, Ravasio L, Chareyre S, Pépin R, Job D (1997) The solubilization of the basic subunit of sugarbeet seed 11-S globulin during priming and early germination. Seed Sci Res 7:225–243

    Article  CAS  Google Scholar 

  • Job D (2002) Plant biotechnology in agriculture. Biochimie 84:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Job D, Haynes PA, Zivy M (2011) Special issue plant proteomics. In: Job D, Haynes PA, Zivy M (eds). Proteomics 11:1557–1850

    Google Scholar 

  • Jones RL, Jacobsen JV (1991) Regulation of synthesis and transport of secreted proteins in cereal aleurone. Int Rev Cytol 126:49–88

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Nambara E (2010) Stored and noesynthesized mRNA in Arabidopsis seeds: effect of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Mol Biol 73:119–129

    Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Laidman DL (1983) The role of gibberellins in controlling cellular processes in germinating cereals. Biochem Soc Trans 11:534–547

    PubMed  CAS  Google Scholar 

  • Lawrence DM, Halmer P, Bowles DJ (1990) Mobilisation of storage reserve during germination and early seedling growth of sugar beet. Physiol Plant 78:421–429

    Article  CAS  Google Scholar 

  • Lerman JC, Cigliano EM (1971) New carbon-14 evidence for six hundred years old Canna compacta seed. Nature 232:568–570

    Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signaling in aleurone. Trends Plant Sci 5:102–110

    Article  PubMed  CAS  Google Scholar 

  • Machovic M, Janecek S (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63:2710–2724

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Chiba S, Shimomura T (1978) Substrate-specificity of an alpha-glucosidase in sugar-beet seed. Agric Biol Chem 42:1855–1860

    Article  CAS  Google Scholar 

  • Méchin V, Balliau T, Château-Joubert S, Davanture M, Langella O, Négroni L, Prioul JL, Thévenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    Article  PubMed  Google Scholar 

  • Mendes AJT (1941) Cytological observations in Coffea. VI. Embryo and endosperm development in Coffea arabica L. Am J Bot 28:784–789

    Google Scholar 

  • Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400

    Article  PubMed  CAS  Google Scholar 

  • Mukasa Y, Takahashi H, Taguchi K, Ogata N, Okazaki K, Tanaka M (2003) Accumulation of soluble sugar in true seeds by priming of sugar beet seeds and the effects of priming on growth and yield of drilled plants. Plant Prod Sci 6:74–82

    Article  CAS  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    Google Scholar 

  • Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi MF, Martre P, Branlard G (2010) Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 10:2901–2910

    Article  PubMed  CAS  Google Scholar 

  • Nautrup-Pedersen, G, Dam S, Laursen BS, Siegumfeldt AL, Nielsen K, Goffard N, Staerfeldt HH, Friis C, Sato S, Tabata, S, Lorentzen A, Roepstorff P, Stougaard J (2010) Proteome analysis of pod and seed development in the model legume Lotus japonicus. J Proteome Res 9:5715–5726

    Google Scholar 

  • Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans, Green & Co, London

    Google Scholar 

  • Pestsova E, Meinhard J, Menze A, Fischer U, Windhovel A, Westhoff P (2008) Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC Plant Biol 8:122

    Article  PubMed  Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Google Scholar 

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biologies 331:796–805

    Article  PubMed  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Google Scholar 

  • Ritchie S, Swanson SJ, Gilory S (2000) Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: new insights from cell and molecular biology. Seed Sci Res 10:193–212

    CAS  Google Scholar 

  • Rogers WJ, Michaux S, Bastin M, Bucheli P (1999) Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Sci 149:115–123

    Google Scholar 

  • Sallon S, Solowey E, Cohen Y, Korchinsky R, Egli M, Woodhatch I, Simchoni O, Kislev M (2008) Germination, genetics, and growth of an ancient date seed. Science 320:1464

    Article  PubMed  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred Lotus from China. Am J Bot 82:1367–1380

    Google Scholar 

  • Shen-Miller J (2002) Sacred Lotus, the long-living fruits of China antique. Seed Sci Res 12:131–143

    Google Scholar 

  • Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5:3752–3764

    Article  PubMed  CAS  Google Scholar 

  • Shepherd KA, Macfarlane TD, Colmer TD (2005) Morphology, anatomy and histochemistry of Salicornioideae (Chenopodiaceae) fruits and seeds. Ann Bot 95:917–933

    Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Henson CA (1990) Degradation of native starch granules by barley α-glucosidases. Plant Physiol 94:320–327

    Article  PubMed  CAS  Google Scholar 

  • Sun ZT, Henson CA (1991) A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch Biochem Biophys 284:298–305

    Article  PubMed  CAS  Google Scholar 

  • Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G (2011) Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics 11:371–379

    Google Scholar 

  • Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Han XF, Dong K, Gao LY, Li HY, Ma WJ, Yan YM, Ye XG (2010) Characterization of seed proteome in Brachypodium distachyon. J Cereal Sci 52:177–186

    Google Scholar 

  • Welbaum GE, Bradford KJ (1990) Water relations of seed development and germination in muskmelon (Cucumis melo L.): V. Water relations of imbibition and germination. Plant Physiol 92:1046–1052

    Google Scholar 

  • Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 73:2239–2248

    Google Scholar 

  • Yamasaki Y (2003) Beta-amylase in germinating millet seeds. Phytochemistry 64:935–939

    Article  Google Scholar 

  • Yamasaki Y, Suzuki Y (1980) Two forms of α-glucosidase from sugar-beet seeds. Planta 148:354–361

    Article  CAS  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Google Scholar 

  • Zentella R, Yamauchi D, Ho TH (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the French Ministry of Research. We thank Juliane Meinhard, Andreas Menze, and Uwe Fischer for helpful discussions, and Emeline Leydier, Camille Bechetoille, and Bernadette Claus for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Job .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Catusse, J., Job, C., Job, D. (2012). Proteomics Reveals A Potential Role of the Perisperm in Starch Remobilization During Sugarbeet Seed Germination. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_2

Download citation

Publish with us

Policies and ethics