Skip to main content

Plant Metabolic Pathways: Databases and Pipeline for Stoichiometric Analysis

  • Chapter
  • First Online:

Abstract

Mathematical modeling of plant metabolism offers new approaches to improve the understanding of complex biological processes. In this chapter an overview of resources and tools available for the reconstruction of stoichiometric models and their constraint-based analysis is given, focusing on plant metabolic pathways. To facilitate and support the modeling of metabolism, a pipeline for the constraint-based analysis of crop plant metabolic models is described and the proposed framework is applied in a case study of storage metabolism in developing barley seeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucl Acids Res 34:D504–D506

    Article  PubMed  CAS  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  PubMed  CAS  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan IS, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledge-base and its supplement TrEMBL in 2003. Nucl Acids Res 31:365–370

    Article  PubMed  CAS  Google Scholar 

  • Cakir T, Alsan S, Saybas¸ili H, Akin A, Ulgen KO (2007) Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 4:e48

    Google Scholar 

  • Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucl Acids Res 38:D473–D479

    Article  PubMed  CAS  Google Scholar 

  • Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucl Acids Res 37:D588–D592

    Article  PubMed  CAS  Google Scholar 

  • David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Article  Google Scholar 

  • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Ramakrishna R, Schilling CH, Palsson BØ (1999) Metabolic flux balance analysis. In: Lee SSY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57

    Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  PubMed  CAS  Google Scholar 

  • Famili I, Forster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Palsson BØ (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  PubMed  CAS  Google Scholar 

  • Fèvre FL, Smidtas S, Combe C, Durot M, d’Alché-Buc F, Schachter V (2009) CycSim–an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25:1987–1988

    Article  PubMed  Google Scholar 

  • Förster J, Famili I, Palsson BØ, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7:193–202

    Article  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI BioSystems database. Nucl Acids Res 38:D492–D496

    Article  PubMed  CAS  Google Scholar 

  • Giersch C (2000) Mathematical modelling of metabolism. Curr Opin Plant Biol 3:249–253

    PubMed  CAS  Google Scholar 

  • Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) Ligand: database of chemical compounds and reactions in biological pathways. Nucl Acids Res 30:402–404

    Article  PubMed  CAS  Google Scholar 

  • Grafahrend-Belau E, Weise S, Koschützki D, Scholz U, Junker BH, Schreiber F (2008) MetaCrop: a detailed database of crop plant metabolism. Nucl Acids Res 36:D954–D958

    Article  PubMed  CAS  Google Scholar 

  • Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009a) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25:2755–2757

    Article  CAS  Google Scholar 

  • Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009b) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598

    Article  CAS  Google Scholar 

  • Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucl Acids Res 38:D355–D360

    Article  PubMed  CAS  Google Scholar 

  • Karp PD (1998a) Metabolic databases. Trends Biochem Sci. 23:114–116.

    Google Scholar 

  • Karp PD (1998b) What we do not know about sequence analysis and sequence databases. Bioinformatics 14:753–754.

    Google Scholar 

  • Karp PD, Krummenacker M, Paley S, Wagg J (1999) Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol 17:275–281

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18;S225–S232

    Article  PubMed  Google Scholar 

  • Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucl Acids Res 33:6083–6089

    Article  PubMed  CAS  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  Google Scholar 

  • Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinformatics 7:140–150

    Article  PubMed  Google Scholar 

  • Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform 14:23–33

    PubMed  CAS  Google Scholar 

  • Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92

    Article  PubMed  Google Scholar 

  • Masoudi-Nejad A, Goto S, Jauregui R, Ito M, Kawashima S, Moriya Y, Endo TR, Kanehisa M (2007a) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144:857–866

    Article  CAS  Google Scholar 

  • Masoudi-Nejad A, Goto S, Endo TR, Kanehisa M (2007b) KEGG bioinformatics resource for plant genomics research. Methods Mol Biol 406:437–458

    CAS  Google Scholar 

  • Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucl Acids Res 37:D619–622

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  PubMed  CAS  Google Scholar 

  • Pico AR, Kelder T, Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6:e184

    Google Scholar 

  • Poolman MG, Assmus HE, Fell DA (2004) Applications of metabolic modelling to plant metabolism. J Exp Bot 55:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9):2692–2699

    Google Scholar 

  • Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374

    Article  PubMed  CAS  Google Scholar 

  • Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed  Google Scholar 

  • Rojas I, Golebiewski M, Kania R, Krebs O, Mir S, Weidemann A, Wittig U (2007) Storing and annotating of kinetic data. In Silico Biol 7:S37–S44

    Google Scholar 

  • Sakurai N, Ara T, Ogata Y, Sano R, Ohno T, Sugiyama K, Hiruta A, Yamazaki K, Yano K, Aoki K, Aharoni A, Hamada K, Yokoyama K, Kawamura S, Otsuka H, Tokimatsu T, Kanehisa M, Suzuki H, Saito K, Shibata D (2011) KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucl Acids Res 39:D677–D684

    Article  PubMed  Google Scholar 

  • Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BØ (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498–2504

    Google Scholar 

  • Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617–1626

    Article  PubMed  CAS  Google Scholar 

  • Telgkamp M, Koschützki D, Schwöbbermeyer H, Schreiber F (2007) Community-based linking of biological network resources: databases, formats and tools. J Integr Bioinform 4:71

    Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol. 138:1289–300

    Article  PubMed  CAS  Google Scholar 

  • Tsesmetzis N, Couchman M, Higgins J, Smith A, Doonan JH, Seifert GJ, Schmidt EE, Vastrik I, Birney E, Wu G, D’Eustachio P, Stein LD, Morris RJ, Bevan MW, Walsh SV (2008) Arabidopsis reactome: a foundation knowledgebase for plant systems biology. Plant Cell 20:1426–1436

    Article  PubMed  CAS  Google Scholar 

  • Urbanczik R (2006) SNA–a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinformatics 7:129

    Article  PubMed  Google Scholar 

  • Van Dien SJ, Lidstrom ME (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng 78:296–312

    Article  PubMed  Google Scholar 

  • Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  • Varma A, Boesch BW, Palsson BØ (1993a) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42:59–73

    Article  CAS  Google Scholar 

  • Varma A, Boesch BW, Palsson BØ (1993b) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473

    CAS  Google Scholar 

  • Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao Z, Zhang J, Bryant SH (2010) An overview of the PubChem BioAssay resource. Nucl Acids Res 38:D255–D266

    Article  PubMed  CAS  Google Scholar 

  • Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases.Brief Bioinform 2:126–142

    Article  PubMed  CAS  Google Scholar 

  • Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:55

    Article  PubMed  Google Scholar 

  • Yang Y, Engin L, Wurtele ES, Cruz-Neira C, Dickerson JA (2005) Integration of metabolic networks and gene expression in virtual reality. Bioinformatics 21:3645–3650

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grafahrend-Belau, E., Junker, B.H., Schreiber, F. (2012). Plant Metabolic Pathways: Databases and Pipeline for Stoichiometric Analysis. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_17

Download citation

Publish with us

Policies and ethics