Skip to main content

Digging Deeper into the Seed Proteome: Prefractionation of Total Proteins

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

Seeds are a common experimental system for many reasons. Among these: (i) they occupy a major niche in agriculture and human nutrition; (ii) they are a rich source of critical genetic information; and (iii) they are a near-ideal system for the study of phytohormone action or the transition from either dormancy or quiescence to active growth and development. One important component of all of these considerations is occurrence of the highly-abundant seed storage proteins (SSP). While on the one hand the high levels of proteins present in seeds make them attractive subjects, the SSP themselves are anathema to proteomics analyses. Without some sort of pretreatment removal of SSP, they will be virtually the only proteins identified in shotgun proteomics analyses. Here in, we describe and compare several methods commonly used to deplete samples of SSP, present the relatively recent application of combinatorial-ligand random-peptide libraries to seed proteomics studies, and speculate briefly on the short-term future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayala A, Parrado J, Machado A (1998) Use of Rotofor preparative isoelectrofocusing cell in protein purification procedure. Appl Biochem Biotechnol 69:11–16

    Article  PubMed  CAS  Google Scholar 

  • Bandeira N, Nesvizhskii A, McIntosh M (2011) Advancing next-generation proteomics through computational research. J Proteome Res 10:2895–2895

    Article  PubMed  CAS  Google Scholar 

  • Barnea E, Sorkin R, Ziv T, Beer I, Admon A (2005) Evaluation of prefractionation methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics 5:3367–3375

    Article  PubMed  CAS  Google Scholar 

  • Bier M (1998) Recycling isoelectric focusing and isotachophoresis. Electrophoresis 19:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Boschetti E, Righetti PG (2008a) Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues. BioTechniques 44:663–665

    Article  CAS  Google Scholar 

  • Boschetti E, Righetti PG (2008b) The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteomics 71:255–264

    Article  CAS  Google Scholar 

  • Boschetti E, Righetti PG (2009) The art of observing rare protein species in proteomes with peptide ligand libraries. Proteomics 9:1492–1510

    Article  PubMed  CAS  Google Scholar 

  • Boschetti E, Bindschedler LV, Tang C, Fasoli E, Righetti PG (2009) Combinatorial peptide ligand libraries and plant proteomics: a winning strategy at a price. J Chromatogr A 1216:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Brandon DL, Hernlem BJ (2009) Development of monoclonal antibodies specific for Ricinus agglutinins. Food Agric Immunol 20:11–22

    Article  CAS  Google Scholar 

  • Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA (2008) Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Analyt Technol Biomed Life Sci 861:29–39

    Article  PubMed  CAS  Google Scholar 

  • Cellar NA, Karnoup AS, Albers DR, Langhorst ML, Young SA (2009) Immunodepletion of high abundance proteins coupled on-line with reversed-phase liquid chromatography: a two-dimensional LC sample enrichment and fractionation technique for mammalian proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 877:79–85

    Article  PubMed  CAS  Google Scholar 

  • Chait BT (2011) Mass spectrometry in the postgenomic era. Annu Rev Biochem 80:239–246

    Article  PubMed  CAS  Google Scholar 

  • Chenau J, Michelland S, Sidibe J, Seve M (2008) Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome Sci 6:9

    Article  PubMed  Google Scholar 

  • Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Schuler MA, Godette WD, Zenger V, Beachy RN, Slightom JL (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. Structural homologies of genes and proteins. J Biol Chem 261:9228–9238

    PubMed  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  • Elschenbroich S, Ignatchenko V, Sharma P, Schmitt-Ulms G, Gramolini AO, Kislinger T (2009) Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells. J Proteome Res 8:4860–4869

    Article  PubMed  CAS  Google Scholar 

  • Esen A (1990) An immunodominant site of gamma-zein1 is in the region of tandem hexapeptide repeats. J Protein Chem 9:453–460

    Article  PubMed  CAS  Google Scholar 

  • Fasoli E, D’Amato A, Kravchuk AV, Boschetti E, Bachi A, Righetti PG (2011) Popeye strikes again: the deep proteome of spinach leaves. J Proteomics 74:127–136

    Article  PubMed  CAS  Google Scholar 

  • Feeney KA, Wellner N, Gilbert SM, Halford NG, Tatham AS, Shewry PR, Belton PS (2003) Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 72:123–131

    Article  PubMed  CAS  Google Scholar 

  • Field JM, Shewry PR, Miflin BJ (1983) Aggregation states of alcohol-soluble storage proteins of barley, rye, wheat and maize. J Sci Food Agric 34:362–369

    Article  PubMed  CAS  Google Scholar 

  • Gibbs PE, Strongin KB, McPherson A (1989) Evolution of legume seed storage proteins—a domain common to legumins and vicilins is duplicated in vicilins. Mol Biol Evol 6:614–623

    PubMed  CAS  Google Scholar 

  • Hirabayashi J (2004) Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J 21:35–40

    Article  PubMed  Google Scholar 

  • Hochstrasser AC, James RW, Pometta D, Hochstrasser D (1991) Preparative isoelectrofocusing and high resolution 2-dimensional gel electrophoresis for concentration and purification of proteins. Appl Theor Electrophor 1:333–337

    PubMed  CAS  Google Scholar 

  • Hortin GL, Sviridov D (2010) The dynamic range problem in the analysis of the plasma proteome. J Proteomics 73:629–636

    Article  PubMed  CAS  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  PubMed  CAS  Google Scholar 

  • Hörth P, Miller CA, Preckel T, Wenz C (2006) Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Mol Cell Proteomics 5:1968–1974

    Article  PubMed  Google Scholar 

  • Krishnan HB, Natarajan SS (2009) A rapid method for depletion of rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70:1958–1964

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB, Oehrle NW, Natarajan SS (2009) A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics 9:3174–3188

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB (2000) Biochemistry and molecular biology of soybean seed storage proteins. J New Seeds 2:1–25

    Article  Google Scholar 

  • Lauer I, Foetisch K, Kolarich D, Ballmer-Weber BK, Conti A, Altmann F, Vieths S, Scheurer S (2004) Hazelnut (Corylus avellana) vicilin Cor a11: molecular characterization of a glycoprotein and its allergenic activity. Biochem J 383:327–334

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Google Scholar 

  • Lis H, Sharon N (1973) The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem 42:541–574

    Article  PubMed  CAS  Google Scholar 

  • Maruyama N, Katsube T, Wada Y, Oh MH, Barba De La Rosa AP, Okuda E, Nakagawa S, Utsumi S (1998) The roles of the N-linked glycans and extension regions of soybean beta-conglycinin in folding, assembly and structural features. Eur J Biochem 258:854–862

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Johnston ML (2006) Chemical cross-linking immobilized concanavalin A for use in proteomic analyses. Prep Biochem Biotechnol 36:203–214

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Preťová A, Olmedilla A, Klubicova K, Obert B, Hajduch M (2011) Using proteomics to study sexual reproduction in angiosperms. Sexual Plant Reprod 24:9–22

    Article  CAS  Google Scholar 

  • Ogata Y, Charlesworth MC, Muddiman DC (2005) Evaluation of protein depletion methods for the analysis of total-, phospho- and glycoproteins in lumbar cerebrospinal fluid. J Proteome Res 4:837–845

    Article  PubMed  CAS  Google Scholar 

  • Osborne TB (1908) Our present knowledge of plant proteins. Science 28:417–427

    Article  PubMed  CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ (2003) Manipulation of rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Petrash JM, DeLucas LJ, Bowling E, Egen N (1991) Resolving isoforms of aldose reductase by preparative isoelectric focusing in the Rotofor. Electrophoresis 12:84–90

    Article  PubMed  CAS  Google Scholar 

  • Richardson MR, Liu S, Ringham HN, Chan V, Witzmann FA (2008) Sample complexity reduction for two-dimensional electrophoresis using solution isoelectric focusing prefractionation. Electrophoresis 29:2637–2644

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Boschetti E, Monsarrat B (2007) The “invisible proteome”: how to capture the low abundance proteins via combinatorial ligand libraries. Curr Proteomics 4:198–208

    Article  Google Scholar 

  • Righetti PG, Boschetti E, Zanella A, Fasoli E, Citterio A (2010) Plucking, pillaging and plundering proteomes with combinatorial peptide ligand libraries. J Chromatogr A 1217:893–900

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS (2003) Prefractionation techniques in proteome analysis. Proteomics 3:1397–1407

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  PubMed  Google Scholar 

  • Schneider C, Newman RA, Sutherland DR, Asser U, Greaves MF (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem 257:10766–10769

    PubMed  CAS  Google Scholar 

  • Scruggs SB, Reisdorph R, Armstrong ML, Warren CM, Reisdorph N, Solaro RJ, Buttrick PM (2010) A novel, in-solution separation of endogenous cardiac sarcomeric proteins and identification of distinct charged variants of regulatory light chain. Mol Cell Proteomics 9:1804–1818

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    PubMed  CAS  Google Scholar 

  • Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T (2003) Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomics 2:262–270

    PubMed  CAS  Google Scholar 

  • Thorsell A, Portelius E, Blennow K, Westman-Brinkmalm A (2007) Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21;771–778

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJ (2011) Lectins as tools to select for glycosylated proteins. Methods Mol Biol 753:289–297

    Article  PubMed  Google Scholar 

  • Vestal ML (2011) The future of biological mass spectrometry. J Am Soc Mass Spectrom 22:953–959

    Article  PubMed  CAS  Google Scholar 

  • Vincent D, Balesdent MH, Gibon J, Claverol S, Lapaillerie D, Lomenech AM, Blaise F, Rouxel T, Martin F, Bonneu M, Amselem J, Dominguez V, Howlett BJ, Wincker P, Joets J, Lebrun MH, Plomion C (2009) Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Electrophoresis 32:4118–4136

    Article  Google Scholar 

  • Wagner L, Wermann M, Rosche F, Rahfeld JU, Hoffmann T, Demuth HU (2011) Isolation of dipeptidyl peptidase IV (DP 4) isoforms from porcine kidney by preparative isoelectric focusing to improve crystallization. Biol Chem 392:665–677

    Article  PubMed  CAS  Google Scholar 

  • Wilson IB (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Han DK (2006) Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics 3:611–619

    Article  PubMed  CAS  Google Scholar 

  • Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5:3304–3313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján A. Miernyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miernyk, J.A., Johnston, M.L. (2012). Digging Deeper into the Seed Proteome: Prefractionation of Total Proteins. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_14

Download citation

Publish with us

Policies and ethics