Skip to main content

Networks of Seed Storage Protein Regulation in Cereals and Legumes at the Dawn of the Omics Era

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

The regulation of gene expression in the developing seed has received much attention due to its economic importance but also because it represents a paradigm for plant gene regulation. The wealth of information obtained on a few well-studied systems is potentially much more widely applicable. Recent findings have revealed the participation of functionally homologous transcription factors in the cereal endosperm and cotyledon of dicots, suggesting these two regulation networks are composed of conserved or related elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    PubMed  CAS  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White R, Millar AA (2010) The microRNA159-regulated GAMYB-like genes Inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    PubMed  CAS  Google Scholar 

  • Ambrose MJ, Wang TL, Cook SK, Hedley CL (1987) An analysis of seed development in Pisum sativum. J Exp Bot 38:1909–1920

    Google Scholar 

  • Bäumlein H, Nagy I, Villarroel R, Inzé D, Wobus U (1992) Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J 2:233–239

    PubMed  Google Scholar 

  • Bäumlein H, Miséra S, Luerßen H, Kölle K, Horstmann C, Wobus U, Müller AJ (1994) The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J 6:379–387

    Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    PubMed  CAS  Google Scholar 

  • Bobb AJ, Chern MS, Bustos MM (1997) Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucl Acids Res 25:641–647

    PubMed  CAS  Google Scholar 

  • Bollini R, Chrispeels MJ (1978) Characterization and subcellular localization of vicilin and phytohemagglutinin, the two major reserve proteins of Phaseolus vulgaris. Planta 142:291–298

    CAS  Google Scholar 

  • Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30

    PubMed  CAS  Google Scholar 

  • Borisjuk L, Rolletschek H, Wobus U, Weber H (2003) Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot 54:503–512

    PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A 103:3468–3473

    PubMed  CAS  Google Scholar 

  • Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92

    PubMed  CAS  Google Scholar 

  • Burgess SR, Shewry P (1986) Identification of homologous globulins from embryos of wheat, barley, rye, and oats. J Exp Bot 37:1863–1871

    CAS  Google Scholar 

  • Burr FA, Burr B (1982) Three mutations in Zea mays affecting zein accumulation: a comparison of zein polypeptides, in-vitro synthesis and processing, mRNA levels, and genomic organization. J Cell Biol 94:201–206

    PubMed  CAS  Google Scholar 

  • Casey R. (1999). Distribution of some properties of seed globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 617–633

    Google Scholar 

  • Casson SA, Lindsey K (2006) The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol 142:526–541

    PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    PubMed  CAS  Google Scholar 

  • Chandrasekharan MB, Bishop KJ, Hall TC (2003) Module-specific regulation of the β-phaseolin promoter during embryogenesis. Plant J 33:853–866

    PubMed  CAS  Google Scholar 

  • Chaw SM, Chang CC, Chen HL, Li WH (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    PubMed  CAS  Google Scholar 

  • Chern MS, Bobb AJ, Bustos MM (1996a) The Regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Cell 8:305–321

    CAS  Google Scholar 

  • Chern MS, Eiben HG, Bustos MM (1996b) The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos. Plant J 10:135–148

    CAS  Google Scholar 

  • Ciceri P, Gianazza E, Lazzari B, Lippoli G, Genga A, Hoschek G, Schmidt RJ, Viotti A (1997) Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell 9:97–108

    PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Case R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 109–139

    Google Scholar 

  • Corke FMK, Hedley CL, Wang TL (1990) An analysis of seed development Pisum sativum. XI. Cellular development and the deposition of storage protein in mature embryos grown in vivo and in vitro. Protoplasma 155:127–135

    Google Scholar 

  • Cuddeford D (1995) Oats for animal feed. In: Welch RW (ed) The oat crop: production and utilization. Chapman and Hall, London, pp 321–358

    Google Scholar 

  • de Pater S, Pham K, Chua NH, Memelink J, Kijne J (1993) A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. Plant Cell 5:877–886

    PubMed  CAS  Google Scholar 

  • de Pater S, Katagiri F, Kijne J, Chua NH (1994) bZIP proteins bind to a palindromic sequence without an ACGT core located in a seed-specific element of the pea lectin promoter. Plant J 6:133–140

    PubMed  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Isabel-La MI, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464

    PubMed  CAS  Google Scholar 

  • Ericson ML, Rödin J, Lenman M, Glimelius K, Josefsson LG, Rask L (1986) Structure of the rapeseed 1.7S storage protein, napin, and its precursor. J Biol Chem 261:14576–14581

    PubMed  CAS  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    PubMed  CAS  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerström M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15--S45

    Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat, and maize. Nucl Acids Res 13:7327–7339

    PubMed  CAS  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    PubMed  CAS  Google Scholar 

  • Gampala SSL, Finkelstein RR, Sun SSM, Rock CD (2002) ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. J Biol Chem 277:1689–1694

    PubMed  CAS  Google Scholar 

  • Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J (2006) DRTF: a database of rice transcription factors. Bioinformatics 22:1286–1287

    PubMed  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7:373–385

    PubMed  CAS  Google Scholar 

  • Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen J (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17:1–9

    PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    PubMed  CAS  Google Scholar 

  • Häger KP, Braun H, Czihal A, Müller B, Bäumlein H (1995) Evolution of seed storage protein genes: legumin genes of Ginkgo biloba. J Mol Evol 41:457–466

    PubMed  Google Scholar 

  • Halford NG, Shewry PR (2007) The structure and expression of cereal storage protein genes. In: Olsen OA (ed) Plant cell monographs. endosperm: development and molecular biology, vol 8. Springer, Berlin, pp 196–218

    Google Scholar 

  • Hall TC, McLeester RC, Bliss FA (1977) Equal expression of the maternal and paternal alleles for the polypeptide subunits of the major storage protein of the bean Phaseolus vulgaris L. Plant Physiol 59:1122–1124

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack MCU, Holdsworth MJ, Bevan MW (1993) In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. EMBO J 12:545–554

    PubMed  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

    PubMed  CAS  Google Scholar 

  • Heck GR, Chamberlain AK, Ho THD (1993) Barley embryo globulin 1 gene, Beg1: characterization of cDNA, chromosome mapping and regulation of expression. Mol Gen Genet 239:209–218

    PubMed  CAS  Google Scholar 

  • Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    PubMed  CAS  Google Scholar 

  • Hernández-Sebastià C, Marsolais F, Saravitz C, Israel D, Dewey RE, Huber SC (2005) Free amino acid profiles suggest a possible role for asparagine in the control of storage-product accumulation in developing seeds of low- and high-protein soybean lines. J Exp Bot 56:1951–1963

    PubMed  Google Scholar 

  • Higgins TJV, Chandler PM, Randall PJ, Spencer D, Beach LR, Blagrove RJ, Kortt AA, Inglis AS (1986) Gene structure, protein structure, and regulation of the synthesis of a sulfur-rich protein in pea seeds. J Biol Chem 261:11124–11130

    PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci U S A 96:15348–15353

    Google Scholar 

  • Huang J, Bhinu VS, Li X, Dallal Bashi Z, Zhou R, Hannoufa A (2009) Pleiotropic changes in Arabidopsisf5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230:1057–1069

    PubMed  CAS  Google Scholar 

  • Hwang YS, Ciceri P, Parsons RL, Moose SP, Schmidt RJ, Huang N (2004) The Maize O2 and PBF proteins act additively to promote transcription from storage protein gene promoters in rice endosperm cells. Plant Cell Physiol 45:1509–1518

    PubMed  CAS  Google Scholar 

  • Jones SI, Gonzalez DO, Vodkin LO (2010) Flux of transcript patterns during soybean seed development. BMC genomics 11:136

    PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    PubMed  CAS  Google Scholar 

  • Kawagoe Y, Campell BR, Murai N (1994) Synergism between CACGTG (G-box) and CACCTG cis-elements is required for activation of the bean seed storage protein β-phaseolin gene. Plant J 5:885–890

    PubMed  CAS  Google Scholar 

  • Kawagoe Y, Murai N (1996) A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTG of the bean seed storage protein [beta]-phaseolin gene. Plant Sci 116:47–57

    CAS  Google Scholar 

  • Keith K, Kraml M, Dengler NG, McCourt P (1994) fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6:589–600

    PubMed  CAS  Google Scholar 

  • Kent NL (1966) Subaleurone endosperm cells of high protein content. Cereal Chem 43:585–601

    CAS  Google Scholar 

  • Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4:343–355

    PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  CAS  Google Scholar 

  • Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183:499–502

    PubMed  CAS  Google Scholar 

  • Kriz AL (1999) 7S globulins of cereals. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 477–498

    Google Scholar 

  • Kroj T, Savino G, Valon C, Giraudat J, Parcy F (2003) Regulation of storage protein gene expression in Arabidopsis. Development 130:6065–6073

    PubMed  CAS  Google Scholar 

  • Ladin BF, Tierney ML, Meinke DW, Hosángadi P, Veith M, Beachy RN (1987) Developmental regulation of {beta}-conglycinin in soybean axes and cotyledons. Plant Physiol 84:35–41

    PubMed  CAS  Google Scholar 

  • Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    PubMed  CAS  Google Scholar 

  • Lara P, Oñate-Sánchez L, Abraham Z, Ferrándiz C, Díaz I, Carbonero P, Vicente-Carbajosa J (2003) Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem 278:21003–21011

    PubMed  CAS  Google Scholar 

  • Laroche J, Li P, Bousquet J (1995) Mitochondrial DNA and monocot-dicot divergence time. Mol Biol Evol 12:1151–1156

    CAS  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    PubMed  CAS  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107:8063–8070

    PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023

    PubMed  CAS  Google Scholar 

  • Lilley GG, Inglis AS (1986) Amino acid sequence of conglutin [delta], a sulfur-rich seed protein of Lupinus angustifolius L.: sequence homology with the C-III [alpha]-amylase inhibitor from wheat. FEBS Lett 195:235–241

    CAS  Google Scholar 

  • Lohmer S, Maddaloni M, Motto M, Di Fonzo N, Hartings H, Salamini F, Thompson RD (1991) The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J 10:617–624

    PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    PubMed  CAS  Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    PubMed  CAS  Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532

    PubMed  CAS  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    PubMed  CAS  Google Scholar 

  • Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62

    PubMed  CAS  Google Scholar 

  • Mönke G, Altschmied L, Tewes A, Reidt W, Mock HP, Bäumlein H, Conrad U (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219:158–166

    PubMed  Google Scholar 

  • Moreno-Risueno MA, Gonzalez N, Diaz I, Parcy F, Carbonero P, Vicente-Carbajosa J (2008) FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant J 53:882–894

    PubMed  CAS  Google Scholar 

  • Müntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    PubMed  Google Scholar 

  • Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J 26:627–635

    PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interaction in seeds. Trends Plant Sci 8:213–217

    PubMed  CAS  Google Scholar 

  • Oeda K, Salinas J, Chua NH (1991) A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10:1793–1802

    PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844

    PubMed  CAS  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102:3123–3128

    PubMed  CAS  Google Scholar 

  • Osborne TB (1924) The vegetable proteins (2nd edn). Longmans, Green & Co, London

    Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed  CAS  Google Scholar 

  • Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS, Pagès M (1993) The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol 21:259–266

    PubMed  CAS  Google Scholar 

  • Pysh LD, Aukerman MJ, Schmidt RJ (1993) OHP1: a maize basic domain/leucine zipper protein that interacts with Opaque2. Plant Cell 5:227–236

    PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    PubMed  CAS  Google Scholar 

  • Reidt W, Ellerstrom M, Kölle K, Towes A, Tiedemann J, Altschmied L, Baumlein H (2001) FUS3-dependent gene regulation during late embryogenesis. J Plant Physiol 158:411–418

    CAS  Google Scholar 

  • Rider SD Jr, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    PubMed  CAS  Google Scholar 

  • Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P (2006) Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J 47:269–281

    PubMed  CAS  Google Scholar 

  • Salon C, Munier-Jolain NG, Duc G, Voisin AS, Grandgirard D, Larmure A, Emery RJN, Ney B (2001) Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21:539–552

    Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    PubMed  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    PubMed  CAS  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A 87:46–50

    PubMed  CAS  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    PubMed  CAS  Google Scholar 

  • Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    PubMed  CAS  Google Scholar 

  • Shotwell MA (1999) Oat globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 389–400.

    Google Scholar 

  • Shutov AD, Baumlein H, Blattner FR, Müntz K (2003) Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. J Exp Bot 54:1645–1654

    PubMed  CAS  Google Scholar 

  • Singh NK, Shepherd KW, Langridge P, Gruen LC (1991) Purification and biochemical characterization of triticin, a legumin-like protein in wheat endosperm. J Cereal Sci 13:207–219

    CAS  Google Scholar 

  • Singh NK, Donovan GR, Carpenter HC, Skerritt JH, Langridge P (1993) Isolation and characterization of wheat triticin cDNA revealing a unique lysine-rich repetitive domain. Plant Mol Biol 22:227–237

    PubMed  CAS  Google Scholar 

  • Singh NK, Shepherd KW, Langridge P, Gruen LC, Skerritt JH, Wrigley CW (1988) Identification of legumin-like proteins in wheat. Plant Mol Biol 11:633–639

    CAS  Google Scholar 

  • Singletary GW, Doehlert DC, Wilson CM, Muhitch MJ, Below FE (1990) Response of enzymes and storage proteins of maize endosperm to nitrogen supply. Plant Physiol 94:858–864

    PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    PubMed  CAS  Google Scholar 

  • Smith BD (1998) The emergence of agriculture. Scientific American Library, New York

    Google Scholar 

  • Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    PubMed  Google Scholar 

  • Stöger E, Parker M, Christou P, Casey R (2001) Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol 125:1732–1742

    PubMed  Google Scholar 

  • Stöger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    PubMed  Google Scholar 

  • Stöger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    PubMed  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci U S A 105:3151–3156

    PubMed  CAS  Google Scholar 

  • Sugliani M, Brambilla V, Clerkx EJM, Koornneef M, Soppe WJJ (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22:1936–1946

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    PubMed  CAS  Google Scholar 

  • Suzuki A, Wu CY, Washida H, Takaiwa F (1998) Rice MYB protein OSMYB5 specifically binds to the AACA motif conserved among promoters of genes for storage protein glutelin. Plant Cell Physiol 39:555–559

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, Cocciolone S, McCarty DR (2001) Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J 28:409–418

    PubMed  CAS  Google Scholar 

  • Suzuki M, Ketterling MG, Li QB, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132:1664–1677

    PubMed  CAS  Google Scholar 

  • Suzuki M, Wang HHY, McCarty DR (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    PubMed  CAS  Google Scholar 

  • Takaiwa F, Ogawa M, Okita TW (1999) Rice glutelins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 401–425

    Google Scholar 

  • Tegeder M, Wang XD, Frommer WB, Offler CE, Patrick JW (1999) Sucrose transport into developing seeds of Pisum sativum L. Plant J 18:151–161

    PubMed  CAS  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    PubMed  CAS  Google Scholar 

  • Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci U S A 104:2543–2547

    PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    PubMed  CAS  Google Scholar 

  • Tzitzikas EN, Vincken JP, de Groot J, Gruppen H, Visser RGF (2006) Genetic variation in pea seed globulin composition. J Agric Food Chem 54:425–433

    PubMed  CAS  Google Scholar 

  • Vasil V, Marcotte WR Jr, Rosenkrans L, Cocciolone SM, Vasil IK, Quatrano RS, McCarty DR (1995) Overlap of viviparous1 (VP1) and abscisic acid response elements in the em promoter: G-box elements are sufficient but not necessary for VP1 transactivation. Plant Cell 7:1511–1518

    PubMed  CAS  Google Scholar 

  • Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580

    PubMed  CAS  Google Scholar 

  • Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580

    PubMed  CAS  Google Scholar 

  • Verdier J, Thompson RD (2008) Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol 49:1263–1271

    PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A 94:7685–7690

    PubMed  CAS  Google Scholar 

  • Vigeolas H, van Dongen JT, Waldeck P, Huhn D, Geigenberger P (2003) Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiol 133:2048–2060

    PubMed  CAS  Google Scholar 

  • Wang GF, Wang H, Zhu J, Zhang J, Zhang XW, Wang F, Tang YP, Mei B, Xu ZK, Song RT (2010) An expression analysis of 57 transcription factors derived from ESTs of developing seeds in maize (Zea mays). Plant Cell Rep 29:545–559

    PubMed  CAS  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    PubMed  CAS  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2:169–174

    Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    PubMed  CAS  Google Scholar 

  • Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J, Hause B, Varshney A, Sreenivasulu N, Strickert M, Kumlehn J, Weschke W, Weber H (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152:698–710

    PubMed  CAS  Google Scholar 

  • Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21:455–467

    PubMed  CAS  Google Scholar 

  • West M, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745

    PubMed  CAS  Google Scholar 

  • Wilkinson M, Lenton J, Holdsworth M (2005) Transcripts of Vp-1 homoeologues are alternatively spliced within the Triticeae tribe. Euphytica 143:243–246

    CAS  Google Scholar 

  • Williams BA, Tsang A (1992) Nucleotide sequence of an abscisic acid-responsive, embryo-specific maize gene. Plant Physiol 100:1067–1068

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A 86:6201–6205

    PubMed  CAS  Google Scholar 

  • Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque2 in transgenic rice plants. Plant J 14:673–683

    PubMed  CAS  Google Scholar 

  • Wu CY, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    PubMed  CAS  Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucl Acids Res 37:916–930

    PubMed  CAS  Google Scholar 

  • Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 141:1694–1707

    PubMed  CAS  Google Scholar 

  • Yang X, Tuskan GA, Cheng MZM (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142:820–830

    PubMed  CAS  Google Scholar 

  • Yasuda H, Tada Y, Hayashi Y, Jomori T, Takaiwa F (2005) Expression of the small peptide GLP-1 in transgenic plants. Transgenic Res 14:677–684

    PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    PubMed  CAS  Google Scholar 

  • Yoshihara T, Takaiwa F (1996) Cis-regulatory elements responsible for quantitative regulation of the rice seed storage protein glutelin GluA-3 gene. Plant Cell Physiol 37:107–111

    PubMed  CAS  Google Scholar 

  • Yupsanis T, Burgess SR, Jackson PJ, Shewry PR (1990) Characterization of the major protein component from aleurone cells of barley (Hordeum vulgare L.). J Exp Bot 41:385–392

    CAS  Google Scholar 

  • Zhang H, Ogas J (2009) An epigenetic perspective on developmental regulation of seed genes. Mol Plant 2:610–627

    PubMed  CAS  Google Scholar 

  • Zheng Z, Kawagoe Y, Xiao S, Li Z, Okita T, Hau TL, Lin A, Murai N (1993) 5’ distal and proximal cis-acting regulator elements are required for developmental control of a rice seed storage protein glutelin gene. Plant J 4:357–366

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thompson, R.D., Verdier, J. (2012). Networks of Seed Storage Protein Regulation in Cereals and Legumes at the Dawn of the Omics Era. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_11

Download citation

Publish with us

Policies and ethics