Skip to main content

Molecular Chaperones and Protein-Folding Catalysts in Biological Fluids

  • Chapter
  • First Online:
  • 988 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

Abstract

Although yet to be fully accepted by the wider scientific community, it is clear that heat shock (stress) proteins can be released from a number of different cell types via mechanisms that do not involve overt cell death. These proteins have now been found in a number of biological fluids, in which they have the potential to elicit a range of essential functions. This chapter summarises elements of the current literature relating to the presence of heat shock proteins that have been found in biological fluids and highlights the role(s) of these, as appropriate. Although much progress has been made, we need to better structure our studies in order to provide more informative insights into the functions of these proteins and perhaps consider their presence in a broader context which involves the application of Systems Biology principles. It is likely that heat shock protein profiling will provide more insight into the physiological significance of these multifunctional proteins, the sequence conservation of which illustrates their importance to organismal regulation and homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfakry H, Paju S, Sinisalo J et al (2011) Periodontopathogen- and host-derived immune response in acute coronary syndrome. Scand J Immunol 74:383–389

    PubMed  CAS  Google Scholar 

  • Anderton SM, Van Der Zee R, Prakken B, Noordzij A, Van Eden W (1995) Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J Exp Med 181:943–952

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft S-K, Kurt-Jones EA et al (2000) Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med 6:435–442

    PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E et al (2002) Novel signal transduction pathway utilized by extracellular HSP70. Role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    PubMed  CAS  Google Scholar 

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    PubMed  CAS  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-γ enhances tumor recognition: active release of heat shock protein 72. J Immunol 175:2900–2912

    PubMed  CAS  Google Scholar 

  • Berberian P, Johnson A, Bond M (1990) Exogenous 70kD heat shock protein increases survival of normal and atheromatous arterial cells. FASEB J 4:A1031

    Google Scholar 

  • Bhattacharjee G, Ahamed J, Pedersen B et al (2005) Regulation of tissue factor–mediated initiation of the coagulation cascade by cell surface grp78. Arterioscler Thromb Vasc Biol 25:1737–1743

    PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599

    PubMed  CAS  Google Scholar 

  • Birk OS, Gur SL, Elias D et al (1999) The 60-kDa heat shock protein modulates allograft rejection. Proc Nat Acad Sci U S A 96:5159–5163

    CAS  Google Scholar 

  • Boilard M, Reyes-Moreno C, Lachance C et al (2004) Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod 71:1879–1889

    PubMed  CAS  Google Scholar 

  • Borges TJ, Porto BN, Teixeira CA et al (2010) Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4+CD25 +regulatory T cells. PLoS One 5:e14264

    Google Scholar 

  • Broadley SA, Vanags D, Williams B et al (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Multiple Sclerosis 15:329–336

    PubMed  CAS  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    PubMed  CAS  Google Scholar 

  • Campbell RM, Scanes CG (1995) Endocrine peptides ‘moonlighting’ as immune modulators: roles for somatostatin and GH-releasing factor. J Endocrinol 147:383–396

    PubMed  CAS  Google Scholar 

  • Cavanagh, AC, and Morton, H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560

    PubMed  CAS  Google Scholar 

  • Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624

    PubMed  CAS  Google Scholar 

  • Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442

    PubMed  CAS  Google Scholar 

  • Chen W, Syldath U, Bellmann K, Burkart V, Kold H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    PubMed  CAS  Google Scholar 

  • Chimini C, Rubartelli A (2005) Novel pathways of protein secretion. In: Henderson B, Pockley AG (eds) Molecular chaperones and cell signalling. Cambridge University Press, New York, pp 45–60

    Google Scholar 

  • Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS (2004) Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 50:1164–1171

    PubMed  CAS  Google Scholar 

  • Davidson DJ, Haskell C, Majest S et al (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663–4672

    PubMed  CAS  Google Scholar 

  • Detanico T, Rodrigues L, Sabritto AC et al (2004) Mycobacterial heat shock protein 70 induced interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol 135:336–342

    PubMed  CAS  Google Scholar 

  • Dutta SK, Girotra M, Singla M et al (2012) Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas 41:530–534

    Google Scholar 

  • Elliott RM, Lloyd RE, Fazeli A et al (2009) Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa. Reproduction 137:191–203

    PubMed  CAS  Google Scholar 

  • Faassen AE, O’leary JJ, Rodysill KJ, Bergh N, Hallgren HM (1989) Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res 183:326–334

    PubMed  CAS  Google Scholar 

  • Fargnoli J, Kunisada T, Fornace AJJ, Schneider EL, Holbrook NJ (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A 87:846–850

    PubMed  CAS  Google Scholar 

  • Fleshner M, Campisi J, Amiri L, Diamond DM (2004) Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones. Psychoneuroendocrinology 29:1142–1152

    PubMed  CAS  Google Scholar 

  • Flohé SB, Bruggemann J, Lendemans S et al (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348

    PubMed  Google Scholar 

  • Frostegård J, Pockley AG (2005) Heat shock protein release and naturally-occurring, exogenous heat shock proteins. In: Henderson B, Pockley AG (ed) Molecular chaperones and cell signalling. Cambridge University Press, New York, pp 195–219

    Google Scholar 

  • Gao B, Tsan MF (2003a) Endotoxin contamination in recombinant human Hsp70 preparation is responsible for the induction of TNFα release by murine macrophages. J Biol Chem 278:174–179

    CAS  Google Scholar 

  • Gao B, Tsan MF (2003b) Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor α from murine macrophages. J Biol Chem 278:22523–22529

    CAS  Google Scholar 

  • Gao B, Tsan MF (2004) Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem Biophys Res Commun 317:1149–1154

    PubMed  CAS  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    PubMed  CAS  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172:972–980

    PubMed  CAS  Google Scholar 

  • Georgiou AS, Sostaric E, Wong CH et al (2005) Gametes alter the oviductal secretory proteome. Mol Cell Proteomics 4:1785–1796

    PubMed  CAS  Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    PubMed  CAS  Google Scholar 

  • Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 31:960–968

    PubMed  CAS  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    PubMed  CAS  Google Scholar 

  • Grundtman C, Wick G (2011) The autoimmune concept of atherosclerosis. Curr Opin Lipidol 22:327–334

    PubMed  CAS  Google Scholar 

  • Haen SP, Gouttefangeas C, Schmidt D et al (2011) Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 16:495–504

    PubMed  CAS  Google Scholar 

  • Hamelin C, Cornut E, Poirier F et al (2011) Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J 278:4845–4859

    PubMed  CAS  Google Scholar 

  • Henderson B, Pockley AG (2010) Molecular chaperones and protein folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leuk Biol 88:445–462

    CAS  Google Scholar 

  • Henderson B, Calderwood SK, Coates AR et al (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    PubMed  CAS  Google Scholar 

  • Heydari AR, Conrad CC, Richardson A (1995) Expression of heat shock genes in hepatocytes is affected by age and food restriction in rats. J Nutrition 125:410–418

    CAS  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    PubMed  CAS  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417

    PubMed  CAS  Google Scholar 

  • Jeffery CJ (2009) Moonlighting proteins—an update. Mol Biosyst 5:345–350

    PubMed  CAS  Google Scholar 

  • Johnson AD, Berberian PA, Bond MG (1990) Effect of heat shock proteins on survival of isolated aortic cells from normal and atherosclerotic cynomolgus macaques. Atherosclerosis 84:111–119

    PubMed  CAS  Google Scholar 

  • Johnson AD, Tytell M (1993) Exogenous Hsp70 becomes cell associated, but not internalised by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol 29A:807–812

    CAS  Google Scholar 

  • Johnson BJ, Le TT, Dobbin CA et al (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    PubMed  CAS  Google Scholar 

  • Kingston AE, Hicks CA, Colston MJ, Billingham MEJ (1996) A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 103:77–82

    PubMed  CAS  Google Scholar 

  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    PubMed  CAS  Google Scholar 

  • Kovalchin JT, Mendonca C, Wagh MS, Wang R, Chandawarkar RY (2006) In vivo treatment of mice with heat shock protein, gp96, improves survival of skin grafts with minor and major antigenic disparity. Transplant Immunol 15:179–185

    CAS  Google Scholar 

  • Lachance C, Bailey JL, Leclerc P (2007) Expression of Hsp60 and Grp78 in the human endometrium and oviduct, and their effect on sperm functions. Hum Reprod 22:2606–2614

    PubMed  CAS  Google Scholar 

  • Lancaster GI, Febbraio MA (2005a) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    CAS  Google Scholar 

  • Lancaster GI, Febbraio MA (2005b) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 11:46–52

    Google Scholar 

  • Lebherz-Eichinger D, Ankersmit HJ, Hacker S et al (2012) HSP27 and HSP70 serum and urine levels in patients suffering from chronic kidney disease. Clin Chim Acta 413:282–286

    PubMed  CAS  Google Scholar 

  • Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants. Circulation 106:196–201

    PubMed  CAS  Google Scholar 

  • Li J, Zhao X, Zhang S, Wang S, Du P, Qi G (2011a) ApoB-100 and HSP60 peptides exert a synergetic role in inhibiting early atherosclerosis in immunized ApoE-null mice. Protein Pept Lett 18:733–740

    CAS  Google Scholar 

  • Li Y, Si R, Feng Y et al (2011b) Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem 286:31308–31319

    CAS  Google Scholar 

  • Lloyd RE, Elliott RM, Fazeli A, Watson PF, Holt WV (2009) Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro. Reprod Fertil Dev 21:408–418

    PubMed  CAS  Google Scholar 

  • Luna E, Postol E, Caldas C et al (2007) Treatment with encapsulated Hsp60 peptide (p277) prolongs skin graft survival in a murine model of minor antigen disparity. Scand J Immunol 66:62–70

    PubMed  CAS  Google Scholar 

  • Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857

    PubMed  CAS  Google Scholar 

  • Marin-Briggiler CI, Gonzalez-Echeverria MF, Munuce MJ et al (2010) Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding. Fertil Steril 93:1574–1584

    PubMed  CAS  Google Scholar 

  • Marmot MG, Smith GD, Stansfeld S et al (1991) Health inequalities among British civil servants: the Whitehall II study. Lancet 337:1387–1393

    PubMed  CAS  Google Scholar 

  • Maron R, Sukhova G, Faria A-M et al (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106:1708–1715

    PubMed  CAS  Google Scholar 

  • Mirza S, Muthana M, Fairburn B, Slack LK, Hopkinson K, Pockley AG (2006) The stress protein gp96 is not an activator of resting rat bone marrow-derived dendritic cells, but is a co-stimulator and activator of CD3+ T cells. Cell Stress Chaperones 11:364–378

    PubMed  CAS  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NF-ĸB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281:13694–13707

    PubMed  CAS  Google Scholar 

  • Molvarec A, Rigo J Jr, Lazar L et al (2009) Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones 14:151–159

    PubMed  CAS  Google Scholar 

  • Molvarec A, Rigo J Jr, Nagy B et al (2007) Serum heat shock protein 70 levels are decreased in normal human pregnancy. J Reprod Immunol 74:163–169

    PubMed  CAS  Google Scholar 

  • Molvarec A, Tamasi L, Losonczy G, Madach K, Prohaszka Z, Rigo J Jr (2010) Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress Chaperones 15:237–247

    PubMed  CAS  Google Scholar 

  • Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397

    PubMed  CAS  Google Scholar 

  • Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S (1994) Diminished heat shock protein 70 mRNA induction in aged rats after ischemia. Am J Physiol 267:H1795–H1803

    PubMed  CAS  Google Scholar 

  • Njemini R, Lambert M, Demanet C, Mets T (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58:664–669

    PubMed  CAS  Google Scholar 

  • Njemini R, Demanet, C, Mets T (2004) Inflammatory status as an important determinant of heat shock protein 70 serum concentrations during aging. Biogerontology 5:31–38

    PubMed  CAS  Google Scholar 

  • Njemini R, Demanet C, Mets T (2005) Comparison of two ELISAs for the determination of Hsp70 in serum. J Immunol Methods 306:176–182

    PubMed  CAS  Google Scholar 

  • Njemini R, Bautmans I, Onyema OO, Van Puyvelde K, Demanet C, Mets T (2011) Circulating heat shock protein 70 in health, aging and disease. BMC Immunol 12:24

    PubMed  CAS  Google Scholar 

  • Noonan FP, Halliday WJ, Morton H, Clunie GJ (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651

    PubMed  CAS  Google Scholar 

  • Novo G, Cappello F, Rizzo M et al (2011) Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res 157:285–292

    PubMed  CAS  Google Scholar 

  • Pahlavani MA, Cheung TH, Chesky JA, Richardson A (1988) Influence of exercise on the immune function of rats of various ages. J App Physiol 64:1997–2001

    CAS  Google Scholar 

  • Pockley AG, Shepherd J, Corton J (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377

    PubMed  CAS  Google Scholar 

  • Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35

    PubMed  CAS  Google Scholar 

  • Pockley AG, Wu R, Lemne C, Kiessling R, De Faire U, Frostegård J (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307

    PubMed  CAS  Google Scholar 

  • Pockley AG, Georgiades A, Thulin T, De Faire U, Frostegård J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238

    PubMed  CAS  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory role of stress proteins. Trends Biochem Sci 3:71–79

    Google Scholar 

  • Quintana FJ, Carmi P, Mor F, Cohen IR (2003) DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J Immunol 171:3533–3541

    PubMed  CAS  Google Scholar 

  • Quintana FJ, Carmi P, Mor F, Cohen IR (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:3712–37120

    PubMed  CAS  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontology 36:341–352

    Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95

    PubMed  CAS  Google Scholar 

  • Richardson A, Landry SJ, Georgopoulos C (1998) The ins and outs of a molecular chaperone machine. Trends Biochem Sci 23:138–143

    PubMed  CAS  Google Scholar 

  • Rizzo M, Cappello F, Marfil R et al (2012) Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 17:399–407

    Google Scholar 

  • Robinson MB, Tidwell JL, Gould T et al (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    PubMed  CAS  Google Scholar 

  • Shamaei-Tousi A, D’aiuto F, Nibali L et al (2007) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS One 2:e1198

    Google Scholar 

  • Shields AM, Panayi GS, Corrigall VM (2011) Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis? Clin Exp Immunol 165:292–300

    Google Scholar 

  • Slack LK, Muthana M, Hopkinson K et al (2007) Administration of the stress protein gp96 prolongs rat cardiac allograft survival, modifies rejection-associated inflammatory events and induces a state of peripheral T cell hyporesponsiveness. Cell Stress Chaperones 12:71–82

    PubMed  CAS  Google Scholar 

  • Tamasi L, Bohacs A, Tamasi V et al (2010) Increased circulating heat shock protein 70 levels in pregnant asthmatics. Cell Stress Chaperones 15:295–300

    PubMed  CAS  Google Scholar 

  • Tanaka S, Kimura Y, Mitani A et al (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    PubMed  CAS  Google Scholar 

  • Terry DF, Wyszynski DF, Nolan VG et al (2006) Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev 127:862–868

    PubMed  CAS  Google Scholar 

  • Tidwell JL, Houenou LJ, Tytell M (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9:88–98

    PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    PubMed  CAS  Google Scholar 

  • Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21:445–455

    PubMed  CAS  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. J Immunol 152:5398–5403

    PubMed  CAS  Google Scholar 

  • Van Eden W (2008) XToll, a recombinant chaperonin 10 as an anti-inflammatory immunomodulator. Curr Opin Investig Drugs 9:523–533

    PubMed  CAS  Google Scholar 

  • Van Eden W, Van Der Zee R, Prakken B (2005) Heat shock proteins induce T-cell regulation of chronic inflammation. Nat Immunol 5:318–330

    CAS  Google Scholar 

  • Van Puijvelde GH, Van Es T, Van Wanrooij EJ et al (2007) Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 27:2677–2683

    PubMed  Google Scholar 

  • Vanags D, Williams B, Johnson B et al (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863

    PubMed  CAS  Google Scholar 

  • Wendling U, Paul L, Van Der Zee R, Prakken B, Singh M, Van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    PubMed  CAS  Google Scholar 

  • Williams B, Vanags D, Hall S et al (2008) Efficacy and safety of chaperonin 10 in patients with moderate to severe plaque psoriasis: evidence of utility beyond a single indication. Arch Dermatol 144:683–685

    PubMed  Google Scholar 

  • Wu CT, Ou LS, Yeh KW, Lee WI, Huang JL (2011) Serum heat shock protein 60 can predict remission of flare-up in juvenile idiopathic arthritis. Clin Rheumatol 30:959–965

    PubMed  Google Scholar 

  • Xu Q, Schett G, Perschinka H et al (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    PubMed  CAS  Google Scholar 

  • Young D, Romain E, Moreno C, O’brien R, Born W (1993) Molecular chaperones and the immune system response. Phil Trans Royal Soc Lond 339:363–367

    CAS  Google Scholar 

  • Yuan J, Dunn P, Martinus RD (2011) Detection of Hsp60 in saliva and serum from type 2 diabetic and non-diabetic control subjects. Cell Stress Chaperones 16:689–693

    PubMed  CAS  Google Scholar 

  • Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR (2006) Heat shock protein 60 enhances CD4+CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032

    PubMed  CAS  Google Scholar 

  • Zhu J, Quyyumi AA, Wu H et al (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Graham Pockley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pockley, A. (2012). Molecular Chaperones and Protein-Folding Catalysts in Biological Fluids. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_3

Download citation

Publish with us

Policies and ethics