Skip to main content

GRP78 (BiP): A Multifunctional Cell Surface Receptor

  • Chapter
  • First Online:
Cellular Trafficking of Cell Stress Proteins in Health and Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

  • 1119 Accesses

Abstract

The endoplasmic reticulum (ER) 78 kDa glucose-regulated protein (GRP78), also known as BiP, plays a central role in a variety of physiological processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. When expressed in plasma cell membranes, GRP78 functions as a receptor which recognizes extracellular ligands that stimulate cell proliferation, and may also behave as an autoantigen. GRP78 is a signaling receptor for activated α2-macroglobulin, plasminogen kringle 5, and microplasminogen, and serves as a co-receptor, associated with MHC-I, in viral entry of cocksackie B. It is also a receptor for entry of dengue fever and Borna disease viruses. Furthermore, it regulates tissue factor procoagulant activity, it functions as a receptor for the angiogenic peptides RoY and ADAM15, and is also a partner of the teratocarcinoma-derived growth factor 1 (Cripto), T-cadherin, Par-4, and the DnaJ-like protein MTJ-1. These associations suggest a unique cell surface GRP78 topography which is compartmentalized to respond differently to agonists that bind to either its NH2- or COOH-terminal domains. In this chapter, we discuss the physiological characteristics of these interactions, and the possible mechanisms involved in transportation of GRP78 from the ER to the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641

    PubMed  CAS  Google Scholar 

  • Bhattacharjee G, Ahamed J, Pedersen B et al (2005) Regulation of tissue factor-mediated initiation of the coagulation cascade by cell surface grp78. Arterioscler. Thromb Vasc Biol 25:1737–1743

    Google Scholar 

  • Bianco C, Strizzi L, Mancino M et al (2008) Regulation of Cripto-1 signaling and biological activity by caveolin-1 in mammary epithelial cells. Am J Pathol 172:345–357

    Article  PubMed  CAS  Google Scholar 

  • Bickel PE (2002) Lipid raft and insulin signaling. Am J Physiol Endocrinol Metab 282:E1–E10

    PubMed  CAS  Google Scholar 

  • Bodman-Smith MD, Corrigal VM, Berglin E et al (2004) Antibody response to the human stress protein BiP in rheumatoid arthritis. Rheumatology 43:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138:377–388

    Article  PubMed  CAS  Google Scholar 

  • Chevalier M, Rhee H, Elguindi EC, Blond S (2000) Interaction of murine BiP/GRP78 with the DnaJ homologue MTJ1. J Biol Chem 275:19620–19627

    Article  PubMed  CAS  Google Scholar 

  • Chinni SR, Falchetto R, Gercel-Taylor C, Shabanowitz J, Hunt DF, Taylor DD (1997) Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients. Clin Cancer Res 1557–1564

    Google Scholar 

  • Ciupitu AMT, Petersson M, O’Donnell CL, Williams K, Jindal S, Kiessling R, Welsh RM (1998) Immunization with a limphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 187:685–691

    Article  PubMed  CAS  Google Scholar 

  • Davidson DJ, Haskell C, Majest S et al (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663–4672

    Article  PubMed  CAS  Google Scholar 

  • de Ridder GG, Gonzalez-Gronow M, Ray R, Pizzo SV (2011) Autoantibodies against cell surface GRP78 promote tumor growth in a murine model of melanoma. Melanoma Res. 21:35–43

    Article  CAS  Google Scholar 

  • De Santis ML, Kannan S, Smith GH et al (1997) Cripto-1 inhibits beta-casein expressioin in mammary epithelial cells through a p21ras-and phosphatidylinositol 3’-kinase-dependent pathway. Cell Growth Differ 8:1257–1266

    PubMed  Google Scholar 

  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathgways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:419–421

    Article  Google Scholar 

  • Dudek J, Benedix J, Cappel S et al (2009) Functions and pathologies of Bip and its interaction partners. Cell Mol Life Sci 66:1556–1569

    Article  PubMed  CAS  Google Scholar 

  • Ebert AD, Wechselberger C, Frank S et al (1999) “Cripto-1 induces phosphatidylinositol 3”-kinase-dependent phosphorylation of AKT- and glycogen synthase kinase 3beta in human cervical carcinoma cells. Cancer Res 59:4502–4505

    PubMed  CAS  Google Scholar 

  • Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, Pizzo SV (2006) Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res 66:11424–11431

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gronow M, Kaczowka SJ, Payne S, Wang F, Gawdi G, Pizzo SV (2007) Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel. J Biol Chem 282:32811–32820

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV (2009) GRP78: A multifunctional receptor on the cell surface. Antiox Red Sig 11:2299–2306

    Article  CAS  Google Scholar 

  • Gray PC, Shani G, Aung K, Kelber J, Vale W (2006) Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol 26:9268–9278

    Article  PubMed  CAS  Google Scholar 

  • Guderman T, Grosse R, Schultz G (2000) Contribution of receptor/G protein signaling to cell growth and transformation. Naunyn Schmiedebergs Arch Pharmacol 361:345–362

    Article  Google Scholar 

  • Hardy B, Battler A, Weiss C, Kudasi O, Raiter A (2008) Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells. Biochem Pharmacol 75:891–899

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Horie M, Daito T, Ikuta K, Tomonaga K (2009) Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J Virol 83:12622–12625

    Article  PubMed  CAS  Google Scholar 

  • Jindadamrongwech S, Theparit C, Smith DR (2004) Identification of GRP78 (BiP) as a liver celll expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927

    Article  PubMed  CAS  Google Scholar 

  • Joshi MB, Philippova M, Ivavov D, Allenspach R, Erne P, Rensik TJ (2005) T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 19:1737–1739

    PubMed  CAS  Google Scholar 

  • Kannan S, De Santis M, Lohmeyer M et al (1997) Cripto enhances the tyrosyne phosphorylation of Shc and activates mitogen-activated kinase (MAPK) in mammary epithelial cells. J Biol Chem 272:3330–3335

    Article  PubMed  CAS  Google Scholar 

  • Kelber JA, Panopoulos AD, Shani G et al (2009) Blockade of Cripto binding to cell curface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 28:2324–2336

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Lillo AM, Steiniger SC et al (2006) Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45:9434–9444

    Article  PubMed  CAS  Google Scholar 

  • Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746:350–363

    Article  CAS  Google Scholar 

  • Lee AS, Bell J, Ting J (1984) Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem 259:4616–4621

    PubMed  CAS  Google Scholar 

  • Lee AS (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–23

    Article  CAS  Google Scholar 

  • Li Z, Menoret A, and Sristava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  PubMed  CAS  Google Scholar 

  • Limjindaporn T, Wongwiwat W, Noisakran S et al (2009) Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem. Biophy Res Commun 379:196–200

    Article  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumor development: Friend or foe? Nat Rev Cancer 4:966–977

    Article  PubMed  CAS  Google Scholar 

  • Macario AJL, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  PubMed  CAS  Google Scholar 

  • Marincola FM, Jafee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  PubMed  CAS  Google Scholar 

  • Markoff LJ, Innis BL, Houghten R, Henchal LSD (1991) Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis 164:294–307

    Article  PubMed  CAS  Google Scholar 

  • Mintz PJ, Kim J, Do KA et al (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotech 21:57–63

    Article  CAS  Google Scholar 

  • Misra UK, Pizzo SV (1998a) Binding of receptor-recognized forms of α2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase. J Biol Chem 273:13399–13402

    Article  CAS  Google Scholar 

  • Misra UK, Pizzo SV (1998b) Ligation of the α2M, signaling receptor elevates the levels of p21Ras-GTP in macrophages. Cell Signal 10:441–445

    Article  CAS  Google Scholar 

  • Misra UK, Pizzo SV (1999) Upregulation of macrophage plasma membrane and nuclear phospholipase D activity on ligation of the α2macroglobulin signaling receptor: Involvement of heterotrimeric and monomeric G proteins. Arch Biochem Biophys 36:68–80

    Article  Google Scholar 

  • Misra UK, Pizzo SV (2004a) Potentiation of signal transduction mitogenesis and cellular proliferation upon binding of receptor-recognized forms of α2-macroglobulin to 1-LN prostate cancer cells. Cell 16:487–496

    CAS  Google Scholar 

  • Misra UK, Pizzo SV (2004b) Regulation of phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of α2-macroglobulin. Role in mitogenesis and cell proliferation. J Biol Chem 277:4069–4078

    Article  Google Scholar 

  • Misra UK, Pizzo SV (2004c) Activation of Akt/PDK signaling in macrophages upon binding of receptor-recognized forms of α2-macroglobulin to its cellular receptor. Effect of silencing the CREB gene. J Cell Biochem 93:1020–1032

    Article  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2008) Heterotrimeric Gαq11 co-immunoprecipitates with surface anchored GRP78 from plasma membranes of α2M*-stimulated macrophages. J Cell Biochem 104:96–104

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2010a) Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI3-kinase/Akt signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol Ther 9:1–11

    Google Scholar 

  • Misra UK, Pizzo SV (2010b) Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15:173–182

    Article  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2010c) PTF-α inhibits antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Biochim Biophys Res Commun 391:272–276

    Article  CAS  Google Scholar 

  • Misra UK, Chu CT, Rubenstein DS, Gawdi G, Pizzo SV (1993) Receptor-recognized α2-macroglobulin-methyl amine elevates intracellular calcium, inositolphosphates and cyclic AMP in murine peritoneal macrophages. Biochem J 290:885–891

    PubMed  CAS  Google Scholar 

  • Misra UK, Gawdi G, Pizzo SV (1995) Ligation of the α2-macroglobulin signaling receptor on macreophages induces protein phosphorylation and an increase in cytosolic pH. Biochem J 309:151–158

    PubMed  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of GRP78 in alpha-2-macroglobulin induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with but not necessary for GRP78-mediated signal transduction. J Biol Chem 277:42082–42087

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV (2004) A novel receptor function for the heat shock protein GRP78: Silencing of GRP78 gene expression attenuates alpha-2M*-induced signaling. Cell Signal 16:929–938

    Article  PubMed  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV (2005) Binding of activated α2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280:26278–26286

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NF-κB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281:13694–13707

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Mowery Y, Kaczowka S, Pizzo SV (2009) Ligation of cancer cell surface GRP78 with antibodies directed against its COOH- terminal domain up-regulates p53 activity and promotes apoptosis. Mol Cancer Ther 8:1350–1362

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Kaczowka S, Pizzo SV (2010) Inhibition of NF-κB1 and NF-κB2 activation in prostate cancer cells treated with antibody against the carboxy terminal domain of GRP78: Effect of p53 upregulation. Biochim. Biophys Res Commun 392:538–542

    Article  CAS  Google Scholar 

  • Misra UK, Payne S, Pizzo SV (2011a) Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop:A role for secreted prostate-specific antigen. J Biol Chem 286:1248–1259

    Article  CAS  Google Scholar 

  • Misra UK, Mowery YM, Gawdi G, Pizzo SV (2011b) Loss of cell surface TFII-I promotes apoptosis in prostate cancer cells stimulated with activated α2-macroglobulin. J Cell Biochem 112:1685–1695

    Google Scholar 

  • Miyake H, Hara I, Arakawa S, Kamidoro S (2000) Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cell, J Cell Biochem 77:396–408

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–293

    Article  PubMed  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:13694–13707

    Article  Google Scholar 

  • Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci U S A 76:791–795

    Article  PubMed  CAS  Google Scholar 

  • Patel TB (2004) Single transmembrane spanning heterotrimeric G-protein-coupled receptors and their signaling cascades. Pharmacol Rev 56:371–385

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L (2005) Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta 1746:295–304

    Article  PubMed  CAS  Google Scholar 

  • Philippova MP, Bochkov VN, Stambolsky DV, Tkachuk VA, Resink TJ (1998) T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 429:207–210

    Article  PubMed  CAS  Google Scholar 

  • Philippova M, Ivanov D, Joshi MB et al (2008) Identification of proteins associating with glycosylphosphatidylinositol-anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/Bip in T-cadherin-dependent cell survival. Mol Cell Biol 28:4004–4017

    Article  PubMed  CAS  Google Scholar 

  • Pohle T, Brandlein S, Ruoff N, Müller-Hermelink HK, Vollmers HP (2004) Lipoptosis tumor-specific cell death by antibody-induced intracellular lipid accumulation. Cancer Res 64:3900–3906

    Article  PubMed  CAS  Google Scholar 

  • Poppleton H, Shu H, Fulgham D, Bertics P, Patel TB (1996) Activation of Gsalpha by the epidermal growth factor receptor involves phosphorylation. J Biol Chem 271:6947–6951

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Shiu RPC, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–947

    Article  PubMed  CAS  Google Scholar 

  • Raiter A, Weiss CD, Bechor Z et al (2010) Activation of GRP78 on endothelial cell membranes by an ADAM15-derived peptide induces angiogenesis. J Vasc Res 47:399–411

    Article  CAS  Google Scholar 

  • Rauschert N, Brändlein S, Holzinger E, Hensel F, Müller-Hermelink HK, Vollmers HP (2008) A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 88:375–386

    Article  PubMed  CAS  Google Scholar 

  • Reddy R, Mao C, Baumeister P, Austin R, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors. J Biol Chem 278:20915–20924

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG et al (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18:3681–3691

    Article  PubMed  CAS  Google Scholar 

  • Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–423

    Article  PubMed  CAS  Google Scholar 

  • Saloman DS, Bianco C, Ebert AD et al (2000) The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer. Endocr Relat Cancer 7:199–226

    Article  PubMed  CAS  Google Scholar 

  • Scandra JJ, Subjeck JR, Hughes CS (1984) Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc Natl Acad Sci U S A 81:4843–4947

    Article  Google Scholar 

  • Seliger B, Atkins D, Bock M, Ritz U, Ferrone S, Huber C, Storkel S (2003) Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigen-processing down-regulation. Clin Cancer Res 9:1721–1727

    PubMed  CAS  Google Scholar 

  • Selim MA, Burchette JL, Bowers EV et al (2011) Changes in oligosaccharide chains of autoantibodies to GRP78 expressed during progression of malignant melanoma stimulate melanoma cell growth and survival. Mel Res (in press)

    Google Scholar 

  • Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC (2008) GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor β signaling and enhance cell growth. Mol Cell Biol 28:666–677

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipids rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–29

    Article  PubMed  CAS  Google Scholar 

  • Strizzi L, Bianco C, Normanno N, Salomon D (2005) Cripto-1: A multifunctional modulator during embryogenesis and oncogenesis. Oncogene 24:5731–5741

    Article  PubMed  CAS  Google Scholar 

  • Stone KR, Smith RE, Joklik WK (1974) Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses. Virology 58:86–100

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Fradelizi D, Triantafilou K (2001) Major histocompatibility class one molecule associates with glucose-regulated protein (GRP78) on the cell surface. Hum Immunol 62:764–770

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Fradelizi D, Wilson K, Triantafilou K (2002) GRP78, a co-receptor for Coxsackie virus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Yin Y, Hua H et al (2009) Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response. J Cell Mol Med 13:3888–3897

    Article  PubMed  Google Scholar 

  • Watanabe K, Bianco C, Strizzi L et al (2007) Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J Biol Chem 282:31643–31655

    Article  PubMed  CAS  Google Scholar 

  • Watson LM, Chan AK, Berry LR et al (2003) Overexpression of the 78-kDa glucose-regulated protein/immunoglobulin-binding protein (GRP78/BiP) inhibits tissue factor procoagulant activity. J Biol Chem 278:17438–17447

    Article  PubMed  CAS  Google Scholar 

  • Weinreb I, Goldstein D, Irish J, Perez-Ordoñez B (2009) Expression patterns of Trk-A, Trk-B, GRP78 and p75NRT in olfactory neuroblastoma. Human Pathol 40:1330–1335

    Article  CAS  Google Scholar 

  • Whelan SA, Hightower IE (1985) Differential induction of glucose-regulated and heat-shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J Cell Physiol 125:251–258

    Article  PubMed  CAS  Google Scholar 

  • Xie P, Browning DD, Hay N, Mackman N, Ye RD (2000) Activation of NF-κB by bradykinin through a Galpha(q)- and Gceta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem 275:24907–24914

    Article  PubMed  CAS  Google Scholar 

  • Ying M, Sannerud R, Flatmark T, Saraste J (2002) Colocalization of Ca2+-ATPase and GRP94 with p58 and the effects of thapsigargin on protein recycling suggests the participation of the pre-Golgi intermediate compartment in intracellular Ca2+ storage. Eur J Cell Biol 81:469–483

    Article  PubMed  CAS  Google Scholar 

  • Yoshida I, Monji A, Tashiro K, Nakamura K, Inoue R, Kanba S (2006) Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells. Neurochem Int 48:696–702

    Article  PubMed  CAS  Google Scholar 

  • Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Rangnekar VM (2008) Apoptosis and tumor resistance conferred by Par-4. Cancer Biol Ther 7:1867–1874

    Article  PubMed  CAS  Google Scholar 

  • Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, Takano Y (2008) Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinoma. Hum Pathol 39:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Zhuang L, Scolyer RA, Lee CS et al (2009) Expression of glucose-regulated to progression of melanoma. Histopathology 54:462–470

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gonzalez-Gronow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gonzalez-Gronow, M., Pizzo, S., Misra, U. (2012). GRP78 (BiP): A Multifunctional Cell Surface Receptor. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_15

Download citation

Publish with us

Policies and ethics