Skip to main content

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

  • 994 Accesses

Abstract

There is a dichotomy between the intracellular and extracellular effector functions of HSPA1A. The enhanced expression of intracellular HSPA1A primarily promotes protein chaperoning, transport and folding of naïve, aberrantly folded, or mutated proteins, resulting in cytoprotection when cells are exposed to a variety of stressful stimuli. In contrast, exposure of immunocompetent cells to extracellular HSPA1A activates antigen presenting cell-mediated effectors functions; including enhanced pro-inflammatory and anti-inflammatory responses, chemokine and co-stimulatory molecule expression and in anti-tumor surveillance. In addition, extracellular HSPA1A has been shown to play a role in situations of acute psychological stress and exercise. This chapter covers recent advances in understanding the complex nature of extracellular HSPA1A and briefly discusses the biological significance of circulating serum HSPA1A to host physiology and includes recent application of HSPA1A-based immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Muller S, Arese P, Turrini F (2009) Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 8:113

    Article  PubMed  Google Scholar 

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee H-G, de la Salle H, Schild H (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Baltimore D (1988) I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546

    Article  PubMed  CAS  Google Scholar 

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Bergmeier LA, Babaahmady K, Pido-Lopez J, Heesom KJ, Kelly CG, Lehner T (2010) Cytoskeletal proteins bound to heat-shock protein 70 may elicit resistance to simian immunodeficiency virus infection of CD4(+) T cells. Immunology 129:506–515

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Blachere NE, Srivastava PK (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276:17163–17171

    Article  PubMed  CAS  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  PubMed  CAS  Google Scholar 

  • Botzler C, Issels R, Multhoff G (1996) Heat-shock protein 72 cell-surface expression on human lung carcinoma cells in associated with an increased sensitivity to lysis mediated by adherent natural killer cells. Cancer Immunol Immunotherap 43:226–230

    Article  CAS  Google Scholar 

  • Botzler C, Schmidt J, Luz A, Jennen L, Issels R, Multhoff G (1998) Differential Hsp70 plasma-membrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency. Int J Cancer 77:942–948

    Article  CAS  Google Scholar 

  • Calderwood SK, Theriault J, Gray PJ, Gong J (2007) Cell surface receptors for molecular chaperones. Methods 43:199–206

    Article  CAS  Google Scholar 

  • Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94:43–52

    PubMed  CAS  Google Scholar 

  • Campisi J, Leem TH, Greenwood BN, Hansen MK, Moraska A, Higgins K, Smith TP, Fleshner M (2003) Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. Am J Physiol Regul Integr Comp Physiol 284:R520–R530

    PubMed  CAS  Google Scholar 

  • Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2003) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233

    Article  PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362

    Article  PubMed  CAS  Google Scholar 

  • Farkas B, Hantschel M, Magyarlaki M, Becker B, Scherer K, Landthaler M, Pfister K, Gehrmann M, Gross C, Mackensen A, Multhoff G (2003) Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 13:147–152

    Article  PubMed  CAS  Google Scholar 

  • Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    Article  CAS  Google Scholar 

  • Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476

    PubMed  Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279

    Article  CAS  Google Scholar 

  • Gross C, Holler E, Stangl S, Dickinson A, Pockley AG, Asea AA, Mallappa N, Multhoff G (2008) An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation. Leuk Res 32:527–534

    Article  PubMed  CAS  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    Article  PubMed  CAS  Google Scholar 

  • Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5:438–442

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, Pockley AG (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    Article  PubMed  CAS  Google Scholar 

  • Jonasch E, Wood C, Tamboli P, Pagliaro LC, Tu SM, Kim J, Srivastava P, Perez C, Isakov L, Tannir N (2008) Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer 98:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota J, Kohno S, Yui K (2002) Merozoite surface protein 1-specific immune response is protective against exoerythrocytic forms of Plasmodium yoelii. Infect Immun 70:6075–6082

    Article  PubMed  CAS  Google Scholar 

  • Kleinjung T, Arndt O, Feldmann HJ, Bockmuhl U, Gehrmann M, Zilch T, Pfister K, Schonberger J, Marienhagen J, Eilles C, Rossbacher L, Multhoff G (2003) Heat shock protein 70 (Hsp70) membrane expression on head-and-neck cancer biopsy-a target for natural killer (NK) cells. Int J Radiat Oncol Biol Phys 57:820–826

    Article  PubMed  CAS  Google Scholar 

  • Lehner T (2003) Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine 21(Suppl 2):S68–S76

    Article  PubMed  Google Scholar 

  • Lehner T, Anton PA (2002) Mucosal immunity and vaccination against HIV. AIDS 16(Suppl 4):S125–S132

    PubMed  CAS  Google Scholar 

  • Lehner T, Shearer GM (2002) Alternative HIV vaccine strategies. Science 297:1276–1277

    Article  PubMed  CAS  Google Scholar 

  • Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D, Srivastava PK, Brennan MF (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964–1972

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  PubMed  CAS  Google Scholar 

  • Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S, Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245

    PubMed  CAS  Google Scholar 

  • McLeish KR, Dean WL, Wellhausen SR, Stelzer GT (1989) Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. Inflammation 13:681–692

    Article  PubMed  CAS  Google Scholar 

  • Morner A, Jansson M, Bunnik EM, Scholler J, Vaughan R, Wang Y, Montefiori DC, Otting N, Bontrop R, Bergmeier, LA, Singh M, Wyatt RT, Schuitemaker H, Biberfeld G, Thorstensson R, Lehner T (2011) Immunization with recombinant HLA classes I and II, HIV-1 gp140, and SIV p27 elicits protection against heterologous SHIV infection in rhesus macaques. J Virol 85:6442–6452

    Article  PubMed  Google Scholar 

  • Moser C, Schmidbauer C, Gurtler U, Gross C, Gehrmann M, Thonigs G, Pfister K, Multhoff G (2002) Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress Chaperones 7:365–373

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995) CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374–1382

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350

    PubMed  CAS  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344

    Article  PubMed  CAS  Google Scholar 

  • Murshid A, Theriault J, Gong J, Calderwood SK (2011) Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 787:289–302

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada Y, Kodama T, Doi T (2002) HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun 290:858–864

    Article  PubMed  CAS  Google Scholar 

  • Noble EG, Moraska A, Mazzeo RS, Roth DA, Olsson MC, Moore RL, Fleshner M (1999) Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol 86:1696–1701

    PubMed  CAS  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003

    PubMed  CAS  Google Scholar 

  • Pilla L, Patuzzo R, Rivoltini L, Maio M, Pennacchioli E, Lamaj E, Maurichi A, Massarut S, Marchiano A, Santantonio C, Tosi D, Arienti F, Cova A, Sovena G, Piris A, Nonaka D, Bersani I, Di Florio A, Luigi M, Srivastava PK, Hoos A, Santinami M, Parmiani G (2006) A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 55:958–968

    Article  PubMed  CAS  Google Scholar 

  • Pullen SS, Dang TT, Crute JJ, Kehry MR (1999) CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem 274:14246–14254

    Article  PubMed  CAS  Google Scholar 

  • Reed RC, Nicchitta CV (2000) Chaperone-mediated cross-priming: a hitchhiker’s guide to vesicle transport (review). Int J Mol Med 6:259–264

    PubMed  CAS  Google Scholar 

  • Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167:4844–4852

    PubMed  CAS  Google Scholar 

  • Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P (2004) Heat shock proteins and immune response: methods to madness. Methods 32:1–2

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK (2000) Heat shock protein-based novel immunotherapies. Drug News Perspect 13:517–522

    Article  PubMed  CAS  Google Scholar 

  • Stangl S, Gross C, Pockley AG, Asea AA, Multhoff G (2008) Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress Chaperones 13:221–230

    Article  PubMed  Google Scholar 

  • Stangl S, Gehrmann M, Dressel R, Alves F, Dullin C, Themelis G, Ntziachristos V, Staeblein E, Walch A, Winkelmann I, Multhoff G (2011) In vivo imaging of CT26 mouse tumours by using cmHsp70.1 monoclonal antibody. J Cell Mol Med 15:874–887

    Article  CAS  Google Scholar 

  • Tang D, Khaleque MA, Jones EL, Theriault JR, Li C, Wong WH, Stevenson MA, Calderwood SK (2005) Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10:46–58

    Article  PubMed  CAS  Google Scholar 

  • Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Theriault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  • Walker CM, Moody DJ, Stites DP, Levy JA (1986) CD8  + lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lehner T (2011) Induction of innate immunity in control of mucosal transmission of HIV. Curr Opin HIV AIDS 6:398–404

    Article  PubMed  Google Scholar 

  • Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  • Wang Y, Theriault JR, He H, Gong J, Calderwood SK (2004) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279:32651–32659

    Article  PubMed  CAS  Google Scholar 

  • Whittall T, Peters B, Rahman D, Kingsley CI, Vaughan R, Lehner T (2011) Immunogenic and tolerogenic signatures in human immunodeficiency virus (HIV)-infected controllers compared with progressors and a conversion strategy of virus control. Clin Exp Immunol 166:208–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Princess Bempong, Shahrum Lillard and Viraj Mehta for expert technical assistance, and all the faculty and staff members of the Division of Investigative Pathology for helpful discussions. This work was supported in part a Research Advancement Award from Scott & White Memorial Hospital and Clinic (to P.K.), the US National Institutes of Health grant RO1CA91889, Scott & White Hospital and Clinic, the Texas A&M Health Science Center College of Medicine, the Central Texas Veterans Health Administration and an Endowment from the Cain Foundation (to A.A.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexzander Asea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asea, A., Kaur, P. (2012). The Chaperokine Activity of HSPA1A. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_13

Download citation

Publish with us

Policies and ethics