Skip to main content

Chaperonin 60: An Unexpected Cell Surface Receptor in Prokaryotes and Eukaryotes

  • Chapter
  • First Online:
  • 1074 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

Abstract

The chaperonin (Cpn)60 protein is a fascinating molecule which, under different circumstances, exists on the cell surface or is secreted from the cell. In all the various compartments in which the Cpn60 protein is found in organisms ranging from bacteria, to invertebrates to vertebrates it has evolved a wide range of additional, moonlighting, functions. Among the most unusual of these functions is the ability of this protein to exist on cell surfaces and act like a conventional agonist receptor. This chapter reviews the unexpected receptor and adhesive functions of the Cpn60 pantheon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alard JE, Hillion S, Guillevin L, Saraux A, Pers JO, Youinou P, Jamin C (2011) Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides. PLoS ONE 6:e14654

    Article  PubMed  CAS  Google Scholar 

  • Amini HR, Ascencio F, Ruiz-Bustos E, Romero MJ, Wadström T (1996) Cryptic domains of a 60 kDa heat shock protein of Helicobacter pylori bound to bovine lactoferrin. FEMS Immunol Med Microbiol 16:247–255

    Article  PubMed  CAS  Google Scholar 

  • Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:3645–3657

    Article  PubMed  CAS  Google Scholar 

  • Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthésy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434

    Article  PubMed  CAS  Google Scholar 

  • Bocharov AV, Vishnyakova TG, Baranova IN, Remaley AT, Patterson AP, Eggerman TL (2000) Heat shock protein 60 is a high-affinity high-density lipoprotein binding protein. Biochem Biophys Res Commun 277:228–235

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski K, Martinez V, Gupta RS (1992) Immunocytochemical localization of heat-shock protein 60-related protein in beta-cell secretory granules and its altered distribution in non-obese diabetic mice. Diabetologia 35:316–324

    Article  PubMed  CAS  Google Scholar 

  • Burkholder KM, Bhunia AK (2010) Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60. Infect Immun 78:5062–5073

    Article  PubMed  CAS  Google Scholar 

  • Carroll MV, Sim RB, Bigi F, Jäkel A, Antrobus R, Mitchell DA (2010) Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein Cell 1:859–870

    Article  PubMed  CAS  Google Scholar 

  • Cehovin A, Coates AR, Riffo-Vasquez Y, Tormay P, Botanch C, Altare F, Henderson B (2010) Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun 78:3196–3206

    Article  PubMed  CAS  Google Scholar 

  • Chong A, Lima CA, Allan DS, Nasrallah GK, Garduño RA (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77:4724–4739

    Article  PubMed  CAS  Google Scholar 

  • Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328

    Article  PubMed  CAS  Google Scholar 

  • Ensgraber M, Loos M (1992) A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 60:3072–3078

    PubMed  CAS  Google Scholar 

  • Esaguy N, Aguas AP (1997) Subcellular localization of the 65-kDa heat shock protein in mycobacteria by immunoblotting and immunogold ultracytochemistry. J Submicrosc Cytol Pathol 29:85–90

    PubMed  CAS  Google Scholar 

  • Fernandez RC, Logan SM, Lee SH, Hoffman PS (1996) Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 64:1968–1976

    PubMed  CAS  Google Scholar 

  • Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Morrissey LW, DeMars R, Welch WJ et al (1990) Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250:1269–1273

    Article  PubMed  CAS  Google Scholar 

  • Foteinos G, Xu Q (2009) Immune-mediated mechanisms of endothelial damage in atherosclerosis. Autoimmunity 42:627–633

    Article  PubMed  CAS  Google Scholar 

  • Friedland JS, Shattock R, Remick DG, Griffin GE (1993) Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells. Clin Exp Immunol 91:58–62

    Article  PubMed  CAS  Google Scholar 

  • Frisk A, Ison CA, Lagergård T (1998) GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66:1252–1257

    PubMed  CAS  Google Scholar 

  • Garduno RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998a) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180:505–513

    CAS  Google Scholar 

  • Garduno RA, Garduno E, Hoffman PS (1998b) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610

    CAS  Google Scholar 

  • Goh YC, Yap CT, Huang BH, Cronshaw AD, Leung BP, Lai PB, Hart SP, Dransfield I, Ross JA (2011) Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell Mol Life Sci 68:1581–1592

    Article  PubMed  CAS  Google Scholar 

  • Goulhen F, Hafezi A, Uitto VJ, Hinode D, Nakamura R, Grenier D, Mayrand D (1998) Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect Immun 66:5307–5313

    PubMed  CAS  Google Scholar 

  • Gupta RS, Ramachandra NB, Bowes T, Sigh B (2008) Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. In Novartis Foundation Symposium 291:59–73

    Article  CAS  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Burkart V, Kolb H (2003) Different heat shock protein 60 species share pro-inflammatory activity but not binding sites on macrophages. FEBS Lett 533:105–109

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, Burkart V, van der Zee R, Lillicrap M, Gaston H, Kolb H (2004) Identification of the heat shock protein 60 epitope involved in receptor binding on macrophages. FEBS Lett 568:65–69

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305

    PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, Gomez FJ, Lillicrap M, Gaston H, van der Zee R, Kolb H, Burkart V (2006) Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 580:115–120

    Article  PubMed  CAS  Google Scholar 

  • Hanada R, Hanada T, Penninger JM (2010) Physiology and pathophysiology of the RANKL/RANK system. Biol Chem 391:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Rao SP, Catanzaro A (1997) Binding of the 68-kilodalton protein of Mycobacterium avium to alpha(v)beta3 on human monocyte-derived macrophages enhances complement receptor type 3 expression. Infect Immun 65:1211–1216

    PubMed  CAS  Google Scholar 

  • Henderson B, Mesher J (2007) The search for the chaperonin 60 receptors. Methods 43:223–228

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, Pockley AG (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Martin A (2011) Bacterial moonlighting proteins and bacterial virulence. Curr Topics Microbiol Immunol (in press)

    Google Scholar 

  • Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147:87–96

    PubMed  CAS  Google Scholar 

  • Hickey TB, Thorson LM, Speert DP, Daffé M, Stokes RW (2009) Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77:3389–3401

    Article  PubMed  CAS  Google Scholar 

  • Hickey TB, Ziltener HJ, Speert DP, Stokes RW (2010) Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol 12:1634–1647

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Henderson B, Lund PA, Tormay P, Liu HL, Gurcha SS, Besra GS , Coates ARM (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546

    Google Scholar 

  • Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Sawamura T (2007) Lectin-like oxidized LDL receptor-1 as extracellular chaperone receptor: its versatile functions and human diseases. Methods 43:218–222

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesan B, Koo OK, Kim KP, Burkholder KM, Mishra KK, Aroonnual A, Bhunia AK (2010) LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 156:2782–2795

    Article  PubMed  CAS  Google Scholar 

  • Jaradat ZW, Wampler JW, Bhunia AW (2003) A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Med Microbiol Immunol 192:85–91

    PubMed  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Youngmia P, Boel G, Kochar J, Pancholi V (2005) Group A streptococcal surface GAPDF, SDH recognises uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 350:27–41

    Article  PubMed  CAS  Google Scholar 

  • Kabbani N (2008) Proteomics of membrane receptors and signaling. Proteomics 8:4146–4155

    Article  PubMed  CAS  Google Scholar 

  • Kaneda K, Masuzawa T, Yasugami K, Suzuki T, Suzuki Y, Yanagihara Y (1997) Glycosphingolipid-binding protein of Borrelia burgdorferi sensu lato. Infect Immun 65:3180–3185

    PubMed  CAS  Google Scholar 

  • Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelson CC, Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185:1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S (2010) Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol 86:319–326

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2002) Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 42:349–379

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  PubMed  CAS  Google Scholar 

  • Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332

    Article  PubMed  CAS  Google Scholar 

  • Kirby AC, Meghji S, Nair SP, White P, Reddi K, Nishihara T, Nakashima K, Willis AC, Sim R, Wilson M, Henderson B (1995) The potent bone resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest 96:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    PubMed  CAS  Google Scholar 

  • Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612

    Article  PubMed  CAS  Google Scholar 

  • Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK (2009) Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81:3094–3101

    Article  PubMed  CAS  Google Scholar 

  • Lin FY, Lin YW, Huang CY, Chang YJ, Tsao NW, Chang NC, Ou KL, Chen TL, Shih CM, Chen YH (2011) GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits. J Immunol 186:4405–4414

    Article  PubMed  CAS  Google Scholar 

  • Long KH, Gomez FJ, Morris RE, Newman SL (2003) Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 170:487–494

    PubMed  CAS  Google Scholar 

  • Maguire M, Coates AR, Henderson B (2002) Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 7:317–329

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • Milligan G, Canals M, Pediani JD, Ellis J, Lopez-Gimenez JF (2006) The role of GPCR dimerisation/oligomerisation in receptor signalling. Ernst Schering Found Symp Proc 2:145–161

    Article  PubMed  Google Scholar 

  • Moreno-Brito V, Yáñez-Gómez C, Meza-Cervantez P, Avila-González L, Rodríguez MA, Ortega-López J, González-Robles A, Arroyo R (2005) A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol 7:245–258

    Article  PubMed  CAS  Google Scholar 

  • Märker T, Kriebel J, Wohlrab U, Habich C (2010) Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction. Biochem Biophys Res Commun 391:1634–1640

    Article  PubMed  Google Scholar 

  • Mitchell LA, Nixon B, Aitken RJ (2007) Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol Hum Reprod 13:605–613

    Article  PubMed  CAS  Google Scholar 

  • N’Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE (2009) TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 184:215–223

    Article  PubMed  Google Scholar 

  • Nettles KW, Greene GL (2005) Ligand control of coregulator recruitment to nuclear receptors. Annu Rev Physiol 67:309–333

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K, Burkart V, Flohé S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  PubMed  CAS  Google Scholar 

  • Pantzar M, Teneberg S, Lagergård T (2006) Binding of Haemophilus ducreyi to carbohydrate receptors is mediated by the 58.5-kDa GroEL heat shock protein. Microbes Infect 8:2452–2458

    Article  PubMed  CAS  Google Scholar 

  • Peetermans WE, Raats CJ, Langermans JA, van Furth R (1994) Mycobacterial heat-shock protein 65 induces proinflammatory cytokines but does not activate human mononuclear phagocytes. Scand J Immunol 39:613–617

    Article  PubMed  CAS  Google Scholar 

  • Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Prüll C-R, Maehle A-H, Halliwell R F (2009) A short history of the drug receptor concept. Palgrave McMillan, London

    Book  Google Scholar 

  • Randhawa AK, Ziltener HJ, Stokes RW (2008) CD43 controls the intracellular growth of Mycobacterium tuberculosis through the induction of TNF-alpha-mediated apoptosis. Cell Microbiol 10:2105–2117

    Article  PubMed  CAS  Google Scholar 

  • Rang HP (2006). The receptor concept: pharmacology’s big idea. Br J Pharmacol 147(Suppl 1):S9–S16

    PubMed  CAS  Google Scholar 

  • Reddi K, Meghji S, Nair SP, Arnett TR, Miller AD, Preuss M, Wilson M, Henderson B, Hill P (1998) The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation. J Bone Miner Res 13:1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Rha YH, Taube C, Haczku A, Joetham A, Takeda K, Duez C, Siegel M, Aydintug MK, Born WK, Dakhama A, Gelfand EW (2002) Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J Immunol 169:5300–5307

    PubMed  Google Scholar 

  • Shamaei-Tousi A, Steptoe A, O’Donnell K, Palmen J, Stephens JW, Hurel SJ, Marmot M, Homer K, D’Aiuto F, Coates AR, Humphries SE, Henderson B (2007) Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors. Cell Stress Chaperones 12:384–392

    Article  PubMed  CAS  Google Scholar 

  • Song F, Zhang X, Ren XB, Zhu P, Xu J, Wang L, Li YF, Zhong N, Ru Q, Zhang DW, Jiang JL, Xia B, Chen ZN (2011) Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity: direct binding between CyPA and the ectodomain of CD147. J Biol Chem 286:8197–8203

    Article  PubMed  CAS  Google Scholar 

  • Speth C, Prohászka Z, Mair M, Stöckl G, Zhu X, Jöbstl B, Füst G, Dierich MP (1999) A 60 kD heat-shock protein-like molecule interacts with the HIV transmembrane glycoprotein gp41. Mol Immunol 36:619–628

    Article  PubMed  CAS  Google Scholar 

  • Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110:284–294

    Article  PubMed  CAS  Google Scholar 

  • Stillman B, Stewart D (2004) The genome of Homo sapiens. Cold Spring Harbor, New York

    Google Scholar 

  • Teitler M, Herrick-Davis K, Purohit A (2002) Constitutive activity of G-protein coupled receptors: emphasis on serotonin receptors. Curr Top Med Chem 2:529–538

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Szász C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick RL (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2:338–345

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    Article  PubMed  CAS  Google Scholar 

  • Tsugawa H, Ito H, Ohshima M, Okawa Y (2007) Cell adherence-promoted activity of Plesiomonas shigelloides groEL. J Med Microbiol 56:23–29

    Article  PubMed  CAS  Google Scholar 

  • Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO (2010) Ecto-F1-ATPase: a moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 16:5925–5935

    PubMed  CAS  Google Scholar 

  • Verdegaal ME, Zegveld ST, van Furth R (1996) Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol 157:369–376

    PubMed  CAS  Google Scholar 

  • Wampler JL, Kim KP, Jaradat Z, Bhunia AK (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936

    Article  PubMed  CAS  Google Scholar 

  • Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, Shirahata T, Sakaguchi S, Katamine S (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198:5–17

    Article  PubMed  CAS  Google Scholar 

  • Winrow VR, Mesher J, Meghji S, Morris CJ, Fox S, Coates AR, Tormay P, Blake D, Henderson B (2008) The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts. Cell Microbiol 10:2091–2104

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Zhang W, Lu C (2008) Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 45:159–166

    Article  PubMed  CAS  Google Scholar 

  • Wuppermann FN, Mölleken K, Julien M, Jantos CA, Hegemann JH (2008) Chlamydia pneumoniae GroEL1 protein is cell surface associated and required for infection of HEp-2 cells. J Bacteriol 190:3757–3767

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Zhu H, Guo L, Ruan Y, Wang L, Sun L, Zhou L, Wu W, Yun X, Shen A, Gu J (2010) Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 185:2306–2313

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Osaki T, Taguchi H, Hanawa T, Yamamoto T, Kamiya S (1996) Flow cytometric analysis of the heat shock protein 60 expressed on the cell surface of Helicobacter pylori. J Med Microbiol 45:270–277

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Osaki T, Kurihara N, Taguchi H, Hanawa T, Yamamoto T, Kamiya S (1997a) Heat-shock protein 60 homologue of Helicobacter pylori is associated with adhesion of H. pylori to human gastric epithelial cells. J Med Microbiol 46:825–831

    Article  CAS  Google Scholar 

  • Yamaguchi H, Osaki T, Taguchi H, Hanawa T, Yamamoto T, Fukuda M, Kawakami H, Hirano H, Kamiya S (1997b) Growth inhibition of Helicobacter pylori by monoclonal antibody to heat-shock protein 60. Microbiol Immunol 41:909–916

    CAS  Google Scholar 

  • Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Protein function. Chaperonin turned insect toxin. Nature 411:44

    Article  PubMed  CAS  Google Scholar 

  • Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17:1567–1569

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, B. (2012). Chaperonin 60: An Unexpected Cell Surface Receptor in Prokaryotes and Eukaryotes. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_11

Download citation

Publish with us

Policies and ethics