Skip to main content

Target for Diverse Chemical Modifications

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

The chapter begins with an historical perspective of GAPDH isozymes that is juxtaposed to the fact that there is only one somatic functional gene in humans that is virtually identical among the mammalian species. Over the many years of GAPDH research, dozens of labs have reported the existence of multiple forms of GAPDH, which mostly vary as a function of charge with an occasional report of truncated forms. These observations are in part due to GAPDH being a substrate for many enzymatically-controlled post-translational modifications. While target residues have been identified and predictive algorithms have implicated certain residues, this area of research appears to be in its infancy regarding GAPDH. Equally fascinating, the uniquely susceptible nature of GAPDH to non-enzymatic reactions, that typically are associated with cell stress, such as oxidation and nitration, is also discussed. Two metabolic gases, nitric oxide and hydrogen sulfide, which are enzymatically produced, appear to exert their signaling properties through non-enzymatic reaction with GAPDH. Models of cellular decline are also proposed, including the compelling hypothesis that states cell compromise occurs by the physically blocking the function of chaperonins (i.e. dual-ring multiple-subunit molecular chaperones) by the attachment of misfolded GAPDH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Charlesworth D (1972) Starch-gel electrophoresis of four enzymes from human red blood cells: glyceraldehyde-3-phosphate dehydrogenase, fructoaldolase, glyoxalase II and sorbitol dehydrogenase. Ann Hum Genet 35:477–484

    PubMed  CAS  Google Scholar 

  2. Edwards YH, Clark P, Harris H (1976) Isozymes of glyceraldehyde-3-phosphate dehydrogenase in man and other mammals. Ann Hum Genet 40:67–77

    PubMed  CAS  Google Scholar 

  3. Glaser PE, Gross RW (1995) Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203

    PubMed  CAS  Google Scholar 

  4. Morgenegg G, Winkler GC, Hübscher U et al (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 47:54–62

    PubMed  CAS  Google Scholar 

  5. Sneve ML, Øverbye A, Fengsrud M et al (2005) Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 1:157–162

    PubMed  CAS  Google Scholar 

  6. Fengsrud M, Raiborg C, Berg TO et al (2000) Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem J 352:773–781

    PubMed  CAS  Google Scholar 

  7. Epner DE, Coffey DS (1996) There are multiple forms of glyceraldehyde-3-phosphate dehydrogenase in prostate cancer cells and normal prostate tissue. Prostate 28:372–378

    PubMed  CAS  Google Scholar 

  8. Yarbrough PO, Hecht RM (1984) Two isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Caenorhabditis elegans. Isolation, properties, and immunochemical characterization. J Biol Chem 259:14711–14720

    PubMed  CAS  Google Scholar 

  9. Huang XY, Barrios LA, Vonkhorporn P et al (1989) Genomic organization of the glyceraldehyde-3-phosphate dehydrogenase gene family of Caenorhabditis elegans. J Mol Biol 206:411–424

    PubMed  CAS  Google Scholar 

  10. Figge RM, Schubert M, Brinkmann H (1999) Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Mol Biol Evol 16:429–440

    PubMed  CAS  Google Scholar 

  11. Martin W, Brinkmann H, Savonna C (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90:8692–8696

    PubMed  CAS  Google Scholar 

  12. Blattner FR, Plunkett GR, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    PubMed  CAS  Google Scholar 

  13. Vander Jagt DL, Robinson B, Taylor KK (1992) Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem 267:4364–4369

    PubMed  CAS  Google Scholar 

  14. Thornalley PJ (1988) Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem J 254:751–755

    PubMed  CAS  Google Scholar 

  15. Aguilera L, Giménez R, Badia J et al (2009) NAD+ -dependent post-translational modification of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase. Int Microbiol 12:187–192

    PubMed  CAS  Google Scholar 

  16. Alvarez AH, Martinez-Cadena G, Silva ME et al (2007) Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Exp Parasitol 117:349–356

    PubMed  CAS  Google Scholar 

  17. Kots AY, Sergienko EA, Bulargina TV et al (1993) Glyceraldehyde-3-phosphate activates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. FEBS Lett 324:33–36

    PubMed  CAS  Google Scholar 

  18. Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89:9382–9385

    PubMed  CAS  Google Scholar 

  19. Deveze-Alvarez M, García-Soto J, Martínez-Cadena G (2001) Glyceraldehyde-3-phosphate dehydrogenase is negatively regulated by ADP-ribosylation in the fungus Phycomyces blakesleeanus. Microbiology 147:2579–2584

    PubMed  CAS  Google Scholar 

  20. Kawamoto RM, Caswell AH (1986) Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes. Biochemistry 25:657–661

    PubMed  CAS  Google Scholar 

  21. Pattin AE, Ochs S, Theisen CS et al (2010) Isoflurane’s effect on interfacial dynamics in GAPDH influences methylglyoxal reactivity. Arch Biochem Biophys 498:7–12

    PubMed  CAS  Google Scholar 

  22. Tisdale EJ (2002) Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem 277:3334–3341

    PubMed  CAS  Google Scholar 

  23. Reiss N, Kanety H, Schlessinger J (1986) Five enzymes of the glycolytic pathway serve as substrates for purified epidermal-growth-factor-receptor kinase. Biochem J 239:691–697

    PubMed  CAS  Google Scholar 

  24. Seo J, Jeong J, Kim YM et al (2008) Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 7:587–602

    PubMed  CAS  Google Scholar 

  25. Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    PubMed  CAS  Google Scholar 

  26. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    PubMed  CAS  Google Scholar 

  27. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    PubMed  CAS  Google Scholar 

  28. Dephoure N, Zhou C, Villen J et al (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105:10762–10767

    PubMed  CAS  Google Scholar 

  29. Gauci S, Helbig AO, Slijper M et al (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81:4493–4501

    PubMed  CAS  Google Scholar 

  30. Mayya V, Lundgren DH, Hwang S-I et al (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2:ra46

    PubMed  Google Scholar 

  31. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509

    PubMed  CAS  Google Scholar 

  32. Brodie AE, Reed DJ (1987) Reversible oxidation of glyceraldehyde 3-phosphate dehydrogenase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem Biophys Res Commun 148:120–125

    PubMed  CAS  Google Scholar 

  33. Brodie AE, Reed DJ (1990) Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides. Arch Biochem Biophys 276:212–218

    PubMed  CAS  Google Scholar 

  34. Witt D (2008) Recent developments in disulfide bond formation. Synthesis 16:2491–2509

    Google Scholar 

  35. Cumming RC, Schubert D (2005) Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J 19:2060–2062

    PubMed  CAS  Google Scholar 

  36. Nakajima H, Amano W, Fujita A et al (2007) The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem 282:26562–26574

    PubMed  CAS  Google Scholar 

  37. Nakajima H, Amano W, Kubo T et al (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 284:34331–34341

    PubMed  CAS  Google Scholar 

  38. Parker DJ, Allison WS (1969) The mechanism of inactivation of glyceraldehyde 3-phosphate dehydrogenase by tetrathionate, o-iodosobenzoate, and iodine monochloride. J Biol Chem 244:180–189

    PubMed  CAS  Google Scholar 

  39. Eaton P, Wright N, Hearse DJ et al (2002) Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol 34:1549–1560

    PubMed  CAS  Google Scholar 

  40. Maller C, Schröder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14:49–60

    PubMed  CAS  Google Scholar 

  41. Jeong J, Jung Y, Na S (2011) Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics 10:M110.000513

    PubMed  Google Scholar 

  42. Schmalhausen EV, Pleteń AP, Muronetz VI (2003) Ascorbate-induced oxidation of glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 308:492–496

    PubMed  CAS  Google Scholar 

  43. Alderson NL, Wang Y, Blatnik M et al (2006) S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch Biochem Biophys 450:1–8

    PubMed  CAS  Google Scholar 

  44. Blatnik M, Thorpe SR, Baynes JW (2008) Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Ann N Y Acad Sci 1126:272–275

    PubMed  CAS  Google Scholar 

  45. Blatnik M, Frizzell N, Thorpe SR et al (2008) Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: formation of S-(2-succinyl)cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress. Diabetes 57:41–49

    PubMed  CAS  Google Scholar 

  46. Frizzell N, Lima M, Baynes JW (2011) Succination of proteins in diabetes. Free Radic Res 45:101–109

    PubMed  CAS  Google Scholar 

  47. Yeo WS, Lee SJ, Lee JR et al (2008) Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep 41:194–203

    PubMed  CAS  Google Scholar 

  48. Tyther R, Ahmeda A, Johns E et al (2007) Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats. Proteomics 7:4555–4564

    PubMed  CAS  Google Scholar 

  49. Kanski J, Alterman MA, Schöneich C (2003) Proteomic identification of age-dependent protein nitration in rat skeletal muscle. Free Radic Biol Med 35:1229–1239

    PubMed  CAS  Google Scholar 

  50. Buchczyk DP, Briviba K, Hartl FU et al (2000) Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination. Biol Chem 381:121–126

    PubMed  CAS  Google Scholar 

  51. Buchczyk DP, Grune T, Sies H et al (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol Chem 384:237–241

    PubMed  CAS  Google Scholar 

  52. Guingab-Cagmat JD, Stevens SM Jr, Ratliff MV et al (2011) Identification of tyrosine nitration in UCH-L1 and GAPDH. Electrophoresis 32:1692–1705

    PubMed  CAS  Google Scholar 

  53. Ahmed N, Argirov OK, Minhas HS et al (2002) Cordeiro CA, Thornalley PJ. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem J 364:1–14

    PubMed  CAS  Google Scholar 

  54. Seidler NW, Kowalewski C (2003) Methylglyoxal-induced glycation affects protein topography. Arch Biochem Biophys 410:149–154

    PubMed  CAS  Google Scholar 

  55. Seidler NW, Seibel I (2000) Glycation of aspartate aminotransferase and conformational flexibility. Biochem Biophys Res Commun 277:47–50

    PubMed  CAS  Google Scholar 

  56. Richard JP (1984) Acid-base catalysis of the elimination and isomerization reactions of triose phosphates. J Am Chem Soc 106:4926–4936

    CAS  Google Scholar 

  57. Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    PubMed  CAS  Google Scholar 

  58. Pompliano DL, Peyman A, Knowles JR (1990) Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry 29:3186–3194

    PubMed  CAS  Google Scholar 

  59. McLellan AC, Thornalley PJ, Benn J et al (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 87:21–29

    CAS  Google Scholar 

  60. Beeri MS, Moshier E, Schmeidler J et al (2011) Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev 132:583–587

    PubMed  CAS  Google Scholar 

  61. Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11

    PubMed  CAS  Google Scholar 

  62. Koop DR, Casazza JP (1985) Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem 260:13607–13612

    PubMed  CAS  Google Scholar 

  63. Yagihashi S, Yamagishi SI, Wada RR et al (2001) Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 124:2448–2458

    PubMed  CAS  Google Scholar 

  64. Baba SP, Barski OA, Ahmed Y et al (2009) Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 58:2486–2497

    PubMed  CAS  Google Scholar 

  65. Lee HJ, Howell SK, Sanford RJ (2005) Methylglyoxal can modify GAPDH activity and structure. Ann N Y Acad Sci 1043:135–145

    PubMed  CAS  Google Scholar 

  66. Morgan PE, Dean RT, Davies MJ (2002) Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys 403:259–269

    PubMed  CAS  Google Scholar 

  67. Seidler NW, Yeargans GS (2002) Effects of thermal denaturation on protein glycation. Life Sci 70:1789–1799

    PubMed  CAS  Google Scholar 

  68. Zhao W, Devamanoharan PS, Varma SD (2000) Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate. Free Radic Res 33:23–30

    PubMed  CAS  Google Scholar 

  69. Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    PubMed  CAS  Google Scholar 

  70. Beisswenger PJ, Howell SK, Smith K et al (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637:98–106

    PubMed  CAS  Google Scholar 

  71. Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 268:6388–6393

    PubMed  CAS  Google Scholar 

  72. He RQ, Li YG, Wu XQ et al (1995) Inactivation and conformation changes of the glycated and non-glycated D-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation. Biochim Biophys Acta 1253:47–56

    PubMed  Google Scholar 

  73. LoPachin RM, Barber DS, Gavin T (2008) Molecular mechanisms of the conjugated alpha, beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 104:235–249

    PubMed  CAS  Google Scholar 

  74. Ishii T, Tatsuda E, Kumazawa S et al (2003) Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 42:3474–3480

    PubMed  CAS  Google Scholar 

  75. Martyniuk CJ, Fang B, Koomen JM et al (2011) Molecular mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by α, β-unsaturated carbonyl derivatives. Chem Res Toxicol 24:2302–2311

    PubMed  CAS  Google Scholar 

  76. Kanazawa K, Ashida H (1991) Target enzymes on hepatic dysfunction caused by dietary products of lipid peroxidation. Arch Biochem Biophys 288:71–78

    PubMed  CAS  Google Scholar 

  77. Fukuda A, Osawa T, Hitomi K et al (1996) 4-Hydroxy-2-nonenal cytotoxicity in renal proximal tubular cells: protein modification and redox alteration. Arch Biochem Biophys 333:419–426

    PubMed  CAS  Google Scholar 

  78. Jürgens G, Lang J, Esterbauer H (1986) Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta 875:103–114

    PubMed  Google Scholar 

  79. Mahdy HM, Tadros MG, Mohamed MR et al (2011) The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 59:770–778

    PubMed  CAS  Google Scholar 

  80. Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:72

    Google Scholar 

  81. Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113:14–26

    PubMed  CAS  Google Scholar 

  82. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    PubMed  CAS  Google Scholar 

  83. Seal G, Brech K, Karp SJ et al (1988) Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome. Proc Natl Acad Sci USA 85:2339–2343

    PubMed  CAS  Google Scholar 

  84. Sen N, Hara MR, Ahmad AS et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91

    PubMed  CAS  Google Scholar 

  85. Hara MR, Thomas B, Cascio MB et al (2006) Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA 103:3887–3889

    PubMed  CAS  Google Scholar 

  86. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    PubMed  CAS  Google Scholar 

  87. Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    PubMed  CAS  Google Scholar 

  88. Dawson VL, Kizushi VM, Huang PL et al (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16:2479–2487

    PubMed  CAS  Google Scholar 

  89. Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    PubMed  CAS  Google Scholar 

  90. Sawa A, Khan AA, Hester LD et al (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94:11669–11674

    PubMed  CAS  Google Scholar 

  91. Naletova IN, Muronetz VI, Schmalhausen EV (2006) Unfolded, oxidized, and thermoinactivated forms of glyceraldehyde-3-phosphate dehydrogenase interact with the chaperonin GroEL in different ways. Biochim Biophys Acta 1764:831–888

    PubMed  CAS  Google Scholar 

  92. Polyakova OV, Roitel O, Asryants RA et al (2005) Misfolded forms of glyceraldehydes-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme. Protein Sci 14:921–928

    PubMed  CAS  Google Scholar 

  93. Ferns JE, Theisen CS, Fibuch EE et al (2012) Protection against protein aggregation by alpha-crystallin as a mechanism of preconditioning. Neurochem Res 37:244–252

    PubMed  CAS  Google Scholar 

  94. Mescam M, Vinnakota KC, Beard DA (2011) Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. J Biol Chem 286:21100–21109

    PubMed  CAS  Google Scholar 

  95. Sweet WL, Blanchard JS (1990) Fumarase: viscosity dependence of the kinetic parameters. Arch Biochem Biophys 277:196–202

    PubMed  CAS  Google Scholar 

  96. Didierjean C, Corbier C, Fatih M et al (2003) Crystal structure of two ternary complexes of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus with NAD and D-glyceraldehyde 3-phosphate. J Biol Chem 278:12968–12976

    PubMed  CAS  Google Scholar 

  97. Cochrane CG (1991) Cellular injury by oxidants. Am J Med 91:23S–30S

    PubMed  CAS  Google Scholar 

  98. Hyslop PA, Hinshaw DB, Halsey WA et al (1988) Mechanisms of oxidant-mediated injury. J Biol Chem 263:1665–1675

    PubMed  CAS  Google Scholar 

  99. Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656

    PubMed  CAS  Google Scholar 

  100. McAlister L, Holland MJ (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027

    PubMed  CAS  Google Scholar 

  101. Hill BG, Ramana KV, Cai J et al (2010) Measurement and identification of S-glutathiolated proteins. Methods Enzymol 473:179–197

    PubMed  CAS  Google Scholar 

  102. Jung CH, Thomas JA (1996) S-Glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys 335:61–72

    PubMed  CAS  Google Scholar 

  103. Shenton D, Perrone G, Quinn KA et al (2002) Regulation of protein S-thiolation by glutaredoxin 5 in yeast. J Biol Chem 277:16853–16859

    PubMed  CAS  Google Scholar 

  104. Sturm N, Jortzik E, Mailu BM et al (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog 5:e1000383

    PubMed  Google Scholar 

  105. Anderson LE, Li D, Prakash N et al (1995) Identification of potential redox-sensitive cysteines in cytosolic forms of fructosebisphosphatase and glyceraldehyde-3-phosphate dehydrogenase. Planta 196:118–124

    PubMed  CAS  Google Scholar 

  106. Li D, Stevens FJ, Schiffer M et al (1994) Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes. Biophys J 67:29–35

    PubMed  CAS  Google Scholar 

  107. Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    CAS  Google Scholar 

  108. Scheibe R (1991) Redox-modulation of chloroplast enzymes: a common principle for individual control. Plant Physiol 96:1–3

    PubMed  CAS  Google Scholar 

  109. Souza JM, Radi R (1998) Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Arch Biochem Biophys 360:187–194

    PubMed  CAS  Google Scholar 

  110. Lind C, Gerdes R, Schuppe-Koistinen I et al (1998) Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin. Biochem Biophys Res Commun 247:481–486

    PubMed  CAS  Google Scholar 

  111. Robien MA, Bosch J, Buckner FS et al (2006) Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 A resolution reveals intriguing extra electron density in the active site. Proteins 62:570–577

    PubMed  CAS  Google Scholar 

  112. Yan H, Lou MF, Fernando MR et al (2006) Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Mol Vis 12:1153–1159

    PubMed  CAS  Google Scholar 

  113. Wong JJ, Pung YF, Sze NS et al (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 103:10735–10740

    PubMed  CAS  Google Scholar 

  114. Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 31:119–130

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). Target for Diverse Chemical Modifications. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_6

Download citation

Publish with us

Policies and ethics