Skip to main content

Radiofrequency Ablation in Cancer Therapy: Tuning in to in situ Tumor Vaccines

  • Chapter
  • First Online:

Part of the book series: The Tumor Microenvironment ((TTME,volume 5))

Abstract

Radiofrequency ablation (RFA) is a minimally invasive therapy for the local destruction of primary tumors and unresectable metastases, primarily in the liver. The clinical efficacy of RFA is mainly determined by the destruction of tumor mass. However, after ablation tumor antigens become instantly available for leucocytes, and the ablation procedure creates an inflammatory environment that may contribute to stimulate innate and adaptive anti-tumor immunity. Unfortunately, immune responses induced by RFA are only occasionally strong enough to lead to spontaneous regression of tumors. Combination of tumor debulking by RFA with immune stimulatory approaches that increase antigen presentation and induction of anti-tumor T cell reactivity is a promising strategy to prevent local recurrences and to induce long-term systemic protection against residual disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tiong L, Maddern GJ (2011) Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg 98:1210–1224

    PubMed  CAS  Google Scholar 

  2. Guglielmi A, Ruzzenente A, Valdegamberi A et al (2008) Radiofrequency ablation versus surgical resection for the treatment of hepatocellular carcinoma in cirrhosis. J Gastrointest Surg 12:192–198

    PubMed  Google Scholar 

  3. Rossi S, Di Stasi M, Buscarini E et al (1996) Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. AJR Am J Roentgenol 167:759–768

    PubMed  CAS  Google Scholar 

  4. Guglielmi A, Ruzzenente A, Battocchia A et al (2003) Radiofrequency ablation of hepatocellular carcinoma in cirrhotic patients. Hepato Gastroenterol 50:480–484

    Google Scholar 

  5. Buscarini L, Buscarini E, Di Stasi M et al (2001) Percutaneous radiofrequency ablation of small hepatocellular carcinoma: long-term results. Eur Radiol 11:914–921

    PubMed  CAS  Google Scholar 

  6. Giovannini M, Moutardier V, Danisi C et al (2003) Treatment of hepatocellular carcinoma using percutaneous radiofrequency thermoablation: results and outcomes in 56 patients. J Gastrointest Surg 7:791–796

    PubMed  Google Scholar 

  7. Abdalla EK, Vauthey J-N, Ellis LM et al (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239:818–825

    PubMed  Google Scholar 

  8. Machi J, Oishi AJ, Sumida K et al (2006) Long-term outcome of radiofrequency ablation for unresectable liver metastases from colorectal cancer: evaluation of prognostic factors and effectiveness in first- and second-line management. Cancer J 12:318–326

    PubMed  Google Scholar 

  9. Elias D, De Baere T, Smayra T et al (2002) Percutaneous radiofrequency thermoablation as an alternative to surgery for treatment of liver tumour recurrence after hepatectomy. Br J Surg 89:752–756

    PubMed  CAS  Google Scholar 

  10. Henn AR, Levine EA, McNulty W et al (2003) Percutaneous radiofrequency ablation of hepatic metastases for symptomatic relief of neuroendocrine syndromes. AJR Am J Roentgenol 181:1005–1010

    PubMed  Google Scholar 

  11. Zgodzinski W, Espat N-J (2005) Radiofrequency ablation for incidentally identified primary intrahepatic cholangiocarcinoma. World J Gastroenterol 11: 5239–5240

    PubMed  Google Scholar 

  12. Sudheendra D, Barth MM, Hegde U et al (2006) Radiofrequency ablation of lymphoma. Blood 107:1624–1626

    PubMed  CAS  Google Scholar 

  13. Owen RP, Ravikumar TS, Silver CE et al (2002) Radiofrequency ablation of head and neck tumors: dramatic results from application of a new technology. Head Neck 24:754–758

    PubMed  Google Scholar 

  14. Zlotta AR, Djavan B, Matos C et al (1998) Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br J Urol 81:265–275

    PubMed  CAS  Google Scholar 

  15. Thanos L, Mylona S, Pomoni M et al (2006) Percutaneous radiofrequency thermal ablation of primary and metastatic lung tumors. Eur J Cardiothorac Surg 30:797–800

    PubMed  Google Scholar 

  16. Susini T, Nori J, Olivieri S et al (2007) Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol 104:304–310

    PubMed  Google Scholar 

  17. Poggi G, Gatti C, Melazzini M et al (2003) Percutaneous ultrasound-guided radiofrequency thermal ablation of malignant osteolyses. Anticancer Res 23:4977–4983

    PubMed  Google Scholar 

  18. Mouraviev V, Joniau S, Van Poppel H et al (2007) Current status of minimally invasive ablative techniques in the treatment of small renal tumours. Eur Urol 51:328–336

    PubMed  Google Scholar 

  19. Goldberg SN, Solbiati L, Halpern EF et al (2000) Variables affecting proper system grounding for radiofrequency ablation in an animal model. J Vasc Interv Radiol 11:1069–1075

    PubMed  CAS  Google Scholar 

  20. Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127:208–223

    PubMed  Google Scholar 

  21. Vanagas T, Gulbinas A, Sadauskiene I et al (2009) Apoptosis is activated in an early period after radiofrequency ablation of liver tissue. Hepato Gastroenterol 56:1095–1099

    Google Scholar 

  22. Wiersinga WJ, Jansen MC, Straatsburg IH et al (2003) Lesion progression with time and the effect of vascular occlusion following radiofrequency ablation of the liver. Br J Surg 90:306–312

    PubMed  CAS  Google Scholar 

  23. Ohno T, Kawano K, Sasaki A et al (2001) Expansion of an ablated site and induction of apoptosis after microwave coagulation therapy in rat liver. J Hepatobiliary Pancreat Surg 8:360–366

    PubMed  CAS  Google Scholar 

  24. Llovet JM, Vilana R, Brú C et al (2001) Increased risk of tumor seeding after percutaneous radiofrequency ablation for single hepatocellular carcinoma. Hepatology 33:1124–1129

    PubMed  CAS  Google Scholar 

  25. Kato T, Reddy KR (2001) Radiofrequency ablation for hepatocellular carcinoma: help or hazard? Hepatology 33:1336–1337

    PubMed  CAS  Google Scholar 

  26. Papavasiliou P, Fisher T, Kuhn J et al (2010) Circulating tumor cells in patients undergoing surgery for hepatic metastases from colorectal cancer. Proc (Bayl Univ Med Cent) 23:11–14

    Google Scholar 

  27. Hung AJ, Ma Y, Zehnder P et al (2011) Percutaneous radiofrequency ablation of virtual tumours in canine kidney using global positioning system-like technology. BJU Int 109:1398–1403

    PubMed  Google Scholar 

  28. Bazrafshan B, Hübner F, Farshid P et al (2011) A liver-mimicking MRI phantom for thermal ablation experiments. Med Phys 38:2674–2684

    PubMed  CAS  Google Scholar 

  29. Will K, Krug J, Jungnickel K et al (2010) MR-compatible RF ablation system for online treatment monitoring using MR thermometry. Conference Proceeding. IEEE Eng Med Biol Soc 2010:1601–1604

    Google Scholar 

  30. Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8:271–280

    PubMed  CAS  Google Scholar 

  31. Matzinger P (2002) An innate sense of danger. Ann N Y Acad Sci 961:341–342

    PubMed  Google Scholar 

  32. Ferguson TA, Choi J, Green DR (2011) Armed response: how dying cells influence T-cell functions. Immunol Rev 241:77–88

    PubMed  CAS  Google Scholar 

  33. Ghanamah M, Berber E, Siperstein A (2006) Pattern of carcinoembryonic antigen drop after laparoscopic radiofrequency ablation of liver metastasis from colorectal carcinoma. Cancer 107:149–153

    PubMed  Google Scholar 

  34. den Brok MHMGM, Sutmuller RPM, Nierkens S et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95:896–905

    PubMed  CAS  Google Scholar 

  35. den Brok MHMGM, Sutmuller RPM, Nierkens S et al (2006) Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res 66:7285–7292

    PubMed  CAS  Google Scholar 

  36. Nierkens S, den Brok MH, Sutmuller RPM et al (2008) In vivo colocalization of antigen and CpG within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res 68:5390–5396

    PubMed  CAS  Google Scholar 

  37. Fietta AM, Morosini M, Passadore I et al (2009) Systemic inflammatory response and downmodulation of peripheral CD25 + Foxp3 +  T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Human Immunol 70:477–486

    CAS  Google Scholar 

  38. Ali MY, Grimm CF, Ritter M et al (2005) Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol 43:817–822

    PubMed  CAS  Google Scholar 

  39. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    PubMed  CAS  Google Scholar 

  40. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    PubMed  CAS  Google Scholar 

  41. Feng H, Zeng Y, Whitesell L et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97: 3505–3512

    PubMed  CAS  Google Scholar 

  42. Melcher A, Todryk S, Hardwick N et al (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4:581–587

    PubMed  CAS  Google Scholar 

  43. Lanneau D, Brunet M, Frisan E et al (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12: 743–761

    PubMed  CAS  Google Scholar 

  44. Chalmin F, Ladoire S, Mignot G et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    PubMed  CAS  Google Scholar 

  45. Spisek R, Charalambous A, Mazumder A et al (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845

    PubMed  CAS  Google Scholar 

  46. Liu Q, Zhai B, Yang W et al (2009) Abrogation of local cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine. Mol Ther 17:2049–2057

    PubMed  CAS  Google Scholar 

  47. Liu G-J, Moriyasu F, Hirokawa T et al (2010) Expression of heat shock protein 70 in rabbit liver after contrast-enhanced ultrasound and radiofrequency ablation. Ultrasound Med Biol 36:78–85

    PubMed  Google Scholar 

  48. Rai R, Richardson C, Flecknell P et al (2005) Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res 129:147–151

    PubMed  CAS  Google Scholar 

  49. Yang W-L, Nair DG, Makizumi R et al (2004) Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol 11:399–406

    PubMed  Google Scholar 

  50. Haen SP, Gouttefangeas C, Schmidt D et al (2011) Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 16:495–504

    PubMed  CAS  Google Scholar 

  51. Palumbo R, Sampaolesi M, De Marchis F et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449

    PubMed  CAS  Google Scholar 

  52. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    PubMed  CAS  Google Scholar 

  53. Rovere-Querini P, Capobianco A, Scaffidi P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports 5:825–830

    PubMed  CAS  Google Scholar 

  54. Yang D, Chen Q, Yang H et al (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66

    PubMed  CAS  Google Scholar 

  55. Dumitriu IE, Baruah P, Manfredi AA et al (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    PubMed  CAS  Google Scholar 

  56. Mitola S, Belleri M, Urbinati C et al (2006) Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol 176:12–15

    PubMed  CAS  Google Scholar 

  57. Andersson U, Wang H, Palmblad K et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    PubMed  CAS  Google Scholar 

  58. Tian J, Avalos, AM, Mao S-Y et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    PubMed  CAS  Google Scholar 

  59. Harris HE, Raucci A (2006) Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Reports 7:774–778

    PubMed  CAS  Google Scholar 

  60. Hwang J, Kalinin A, Hwang M et al (2007) Role of Scarf and its binding target proteins in epidermal calcium homeostasis. J Biol Chem 282:18645–18653

    PubMed  CAS  Google Scholar 

  61. Arnaudeau S, Frieden M, Nakamura K et al (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705

    PubMed  CAS  Google Scholar 

  62. Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS letters 397: 269–272

    PubMed  CAS  Google Scholar 

  63. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    PubMed  CAS  Google Scholar 

  64. Korbelik M, Zhang W, Merchant S (2011) Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 60:1431–1437

    PubMed  CAS  Google Scholar 

  65. Dromi SA, Walsh MP, Herby S et al (2009) Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiol 251:58–66

    Google Scholar 

  66. Zerbini A, Pilli M, Fagnoni F et al (2008) Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother 31:271–282

    PubMed  Google Scholar 

  67. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696

    PubMed  CAS  Google Scholar 

  68. Robbins SH, Walzer T, Dembélé D et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9:R17

    Google Scholar 

  69. Bachem A, Guttler S, Hartung E et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8+  dendritic cells. J Exp Med 207:1273–1281

    PubMed  CAS  Google Scholar 

  70. Jongbloed SL, Kassianos AJ, McDonald KJ et al (2010) Human CD141 + (BDCA-3) dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207:1247–1260

    PubMed  CAS  Google Scholar 

  71. Crozat K, Guiton R, Contreras V et al (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8 +  dendritic cells. J Exp Med 207:1283–1292

    PubMed  CAS  Google Scholar 

  72. Shortman K and Heath WR (2010) The CD8 +  dendritic cell subset. Immunol Rev 234:18–31

    PubMed  CAS  Google Scholar 

  73. Sancho D, Joffre OP, Keller AM et al (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458:899–903

    PubMed  CAS  Google Scholar 

  74. Reboulet RA, Hennies CM, Garcia Z et al (2010) Prolonged antigen storage endows merocytic dendritic cells with enhanced capacity to prime anti-tumor responses in tumor-bearing mice. J Immunol 185:3337–3347

    PubMed  CAS  Google Scholar 

  75. Bedoui S, Prato S, Mintern J et al (2009) Characterization of an immediate splenic precursor of CD8 +  dendritic cells capable of inducing antiviral T cell responses. J Immunol 182:4200–4207

    PubMed  CAS  Google Scholar 

  76. Wissniowski TT, Hänsler J, Neureiter D et al (2003) Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res 63:6496–6500

    PubMed  CAS  Google Scholar 

  77. den Brok MHMGM, Sutmulle RPM, Van Der Voort R et al (2004) In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Canc Res 64:4024–4029

    CAS  Google Scholar 

  78. Napoletano C, Taurino F, Biffoni M et al (2008) RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. Int J Oncol 32:481–490

    PubMed  Google Scholar 

  79. Widenmeyer M, Shebzukhov Y, Haen SP et al (2011) Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. Int J Canc 128: 2653–2662

    CAS  Google Scholar 

  80. Zerbini A, Pilli M, Penna A et al (2006) Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Canc Res 66:1139–1146

    CAS  Google Scholar 

  81. Hansler J, Wissniowski T-T, Schuppan D et al (2006) Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 12:3716–3721

    PubMed  Google Scholar 

  82. Hiroishi K, Eguchi J, Baba T et al (2010) Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45:451–458

    PubMed  CAS  Google Scholar 

  83. Zerbini A, Pilli M, Laccabue D et al (2010) Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterol 138:1931–1942

    CAS  Google Scholar 

  84. Billiard F, Buard V, Benderitter M et al (2011) Abdominal γ-radiation induces an accumulation of function-impaired regulatory T cells in the small intestine. Int J Radiat Oncol Biol Phys 80:869–876

    PubMed  CAS  Google Scholar 

  85. Habibi M, Kmieciak M, Graham L et al (2009) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat 114:423–431

    PubMed  Google Scholar 

  86. Rao P, Escudier B, de Baere T (2011) Spontaneous regression of multiple pulmonary metastases after radiofrequency ablation of a single metastasis. Cardiovasc Intervent Radiol 34:424–430

    PubMed  Google Scholar 

  87. Machi J, Bueno RS, Wong LL (2005) Long-term follow-up outcome of patients undergoing radiofrequency ablation for unresectable hepatocellular carcinoma. World J Surg 29:1364–1373

    PubMed  Google Scholar 

  88. Goldberg SN, Girnan GD, Lukyanov AN et al (2002) Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiol 222:797–804

    Google Scholar 

  89. Lesterhuis WJ, Punt CJA, Hato SV et al (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 121:3100–3108

    PubMed  CAS  Google Scholar 

  90. Arcangeli G, Casale C, Colistro F et al (1991) One versus four heat treatments in combination with radiotherapy in metastatic mammary carcinoma. Int J Radiat Oncol Biol Phys 21:1569–1574

    PubMed  CAS  Google Scholar 

  91. Van Der Zee J, González González D, van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch deep hyperthermia group. Lancet 355:1119–1125

    PubMed  CAS  Google Scholar 

  92. Kim JH, Hahn EW, Ahmed SA (1982) Combination hyperthermia and radiation therapy for malignant melanoma. Cancer 50:478–482

    PubMed  CAS  Google Scholar 

  93. Kamisawa T, Tu Y, Egawa N et al (2005) Thermo-chemo-radiotherapy for advanced bile duct carcinoma. World J Gastroenterol 11:4206–4209

    PubMed  Google Scholar 

  94. Chi K-H, Liu S-J, Li C-P et al (2005) Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 28:129–135

    PubMed  Google Scholar 

  95. Nikitina EY, Gabrilovich DI (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Canc 94:825–833

    CAS  Google Scholar 

  96. Teitz-Tennenbaum S, Li Q, Rynkiewicz S et al (2003) Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Canc Res 63:8466–8475

    CAS  Google Scholar 

  97. Kumagi T, Akbar SMF, Horiike N et al (2003) Increased survival and decreased tumor size due to intratumoral injection of ethanol followed by administration of immature dendritic cells. Int J Oncol 23: 949–955

    PubMed  CAS  Google Scholar 

  98. Machlenkin A, Goldberger O, Tirosh B et al (2005) Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res 11:4955–4961

    PubMed  CAS  Google Scholar 

  99. Udagawa M, Kudo-Saito C, Hasegawa G et al (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation. Clinc Canc Res 12:7465–7475

    CAS  Google Scholar 

  100. Jalili A, Makowski M, Switaj T et al (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10:4498–4508

    PubMed  CAS  Google Scholar 

  101. Saji H, Song W, Furumoto K et al (2006) Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin Cancer Res 12:2568–2574

    PubMed  CAS  Google Scholar 

  102. Engleman EG Phase I intratumoral dendritic cell immunotherapy in thermally ablated liver metastases. ClinicalTrials.gov, http://clinicaltrials.gov/ct2/show/NCT00185874. Accessed 13 June 2012

    Google Scholar 

  103. Nierkens S, den Brok MH, Roelofsen T et al (2009) Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice. PloS one 4:e8368

    Google Scholar 

  104. Nierkens S, den Brok MH, Garcia Z et al (2011) immune adjuvant efficacy of cpg oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 71:6428–6437

    PubMed  CAS  Google Scholar 

  105. Saito K, Araki K, Reddy N et al (2011) Enhanced local dendritic cell activity and tumor-specific immunoresponse in combined radiofrequency ablation and interleukin-2 for the treatment of human head and neck cancer in a murine orthotopic model. Head Neck 33:359–367

    PubMed  Google Scholar 

  106. Iida N, Nakamoto Y, Baba T et al (2010) Antitumor effect after radiofrequency ablation of murine hepatoma is augmented by an active variant of CC chemokine ligand 3/macrophage inflammatory protein-1alpha. Cancer Res 70:6556–6565

    PubMed  CAS  Google Scholar 

  107. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    PubMed  CAS  Google Scholar 

  108. de Vries IJM, Bernsen MR, Lesterhuis WJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23:5779–5787

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gosse J. Adema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nierkens, S., den Brok, M., Ruers, T., Adema, G. (2013). Radiofrequency Ablation in Cancer Therapy: Tuning in to in situ Tumor Vaccines. In: Keisari, Y. (eds) Tumor Ablation. The Tumor Microenvironment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4694-7_3

Download citation

Publish with us

Policies and ethics