Skip to main content

Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

Abstract

The allochthonous calcarean sponge Paraleucilla magna has proliferated in the western Mediterranean during the last decade, where it currently shows a highly patchy distribution with dense populations in the neighboring of sea farms and slightly eutrophised marinas, and more sparse populations in well-preserved habitats. To gain knowledge about the species invasive capacity, we studied spatial genetic differentiation and structure, clonality, and temporal differentiation, in three close populations of P. magna at the NE of the Iberian Peninsula, in three successive years. The study hypothesis was that the species is able to proliferate under favorable conditions in newly colonized habitats but populations can easily disappear where perturbations occur with some frequency. Samples were genotyped for nine polymorphic microsatellites. Spatial genetic structure was found in the three populations of 2006. One population disappeared in 2007, and the other two remained slightly differentiated, while the three populations were in place again in 2008, and showed very low (but significant) F ST values, and non-significant D values. Low but statistically significant differentiation also occurred for the three populations between years. Results showed high-allele diversity, but heterozygote deficit and changes in allele frequencies in the populations over the 3 years, which are consistent with some genetic drift. The whole population descriptors pointed to the species as a good opportunistic colonizer as it has been hypothesized, but highly sensitive to stochastic events affecting recruitment. This suggests a high impact of the species in favorable habitats (sea culture and sheltered zones) and a low-medium influence in native communities.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison, J. A. & M. W. Hart, 2005. Spawning, copulation and inbreeding coefficients in marine invertebrates. Biology Letters 1: 450–453.

    Article  CAS  Google Scholar 

  • Agell, G., J. Frotscher, M. Guardiola, M. Pascual & M. J. Uriz, in press. Characterization of nine microsatellite loci for the calcarean sponge Paraleucilla magna Klautau et al. 2004 introduced to the Mediterranean Sea. Conservation Genetics. doi:10.1007/s12686-011-9560-Y.

  • Astanei, I., E. Gosling, J. Wilson & E. Powell, 2005. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology 14: 1655–1666.

    Article  CAS  Google Scholar 

  • Briggs, J. C., 2007. Marine biogeography and ecology: invasions and introductions. J. Biogeo. 34: 193–198.

    Article  Google Scholar 

  • Blanquer, A. & M. J. Uriz, 2010. Population genetics at three spatial scales of rare sponge living in fragmented habitats. BMC Evolutionary Biology 10: 13.

    Article  Google Scholar 

  • Blanquer, A., M. J. Uriz & J. Caujapé-Castells, 2009. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fussion events. Marine Ecology Progress Series 380: 95–102.

    Article  Google Scholar 

  • Calderón, I., N. Ortega, S. Duran, M. Becerro, M. Pascual & X. Turon, 2007. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology 16: 1799–1810.

    Article  Google Scholar 

  • Carlon, D. B., 1999. The evolution of mating systems in tropical reef corals. Trends in Ecology & Evolution 14: 491–495.

    Article  Google Scholar 

  • Coles, S. L., R. C. DeFelice, & L. G. Eldredge, 2002. Non indigenous marine species in Kane’Ohe Bay, O’Ahu, Hawaii. Bishop Museum Hawaii. Biological Survey Technical Report, Honolulu, 24: 353 pp.

    Google Scholar 

  • Crawford, N. G., 2010. SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources 10: 556–557.

    Article  Google Scholar 

  • DeFelice, R. C., L. G. Eldredge & J. T. Carlton, 2001. A guidebook of introduced marine species in Hawaii. Non indigenous marine invertebrates. In Eldredge, L. G. & C. M. Smith (eds), Bishop Museum Technical Report, Honolulu, 21: 70 pp.

    Google Scholar 

  • Dailianis, T. & C. S. Tsigenopoulos, 2010. Characterization of polymorphic microsatellite markersfor the endangered Mediterranean bath sponge Spongia officinalis L. Conservation Genetics 11: 1155–1158.

    Article  CAS  Google Scholar 

  • Dailianis T., C. S. Tsigenopoulos, C. Dounas & E. Voultsiadou, 2011. Genetic diversity of the imperiled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean sea: patterns of population differentiation and implications for taxonomy and conservation. Molecular Ecology (in press).

    Google Scholar 

  • Duran, S. M. Pascual, A. Estoup, & X. Turon, 2004a. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology, 13: 511–522.

    Google Scholar 

  • Duran, S., M. Pascual & X. Turon, 2004b. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology 144: 31–35.

    Article  CAS  Google Scholar 

  • Evanno, G. S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14(8): 2611–2620.

    Google Scholar 

  • Ereskovsky, A. V., 2010. Development of Sponges from the Class Calcarea Bowerbank, 1864 In The Comparative Embryology of Sponges. Springer, Dordrecht, Chapt. 1: 3–36.

    Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  Google Scholar 

  • Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    CAS  Google Scholar 

  • Falush, D., M. Stephens & J. K. Pritchard, 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.

    Article  CAS  Google Scholar 

  • Frotscher, P. J. & M. J., Uriz, 2008. Reproduction and life cycle of the calcarean sponge Paraleucilla magna in the Mediterranean Sea. XV Simposio Ibérico de Estudios de Bentos Marino, Blanes, Book of Abstracts.

    Google Scholar 

  • Galil, B. S., 2006. The Suez Canal. The marine caravan—the Suez Canal and the erythrean invasion. Monographiae Biologicae 83: 207–300.

    Google Scholar 

  • Gerlach, G., A. Jueterbock, P. Kraemer, J. Deppermann & P. Harmand, 2010. Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Molecular Ecology 19: 3845–3852.

    Article  Google Scholar 

  • Goudet, J., M. Raymond, T. de-Meeus & F. Rousset, 1996. Testing differentiation in diploid populations. Genetics 144(4): 1933–1940.

    CAS  Google Scholar 

  • Grosberg, R. K., 1987. Limited dispersal and proximity-dependent mating success in the colonial ascidian Botryllus schlosseri. Evolution 41: 372–384.

    Article  Google Scholar 

  • Hubisz, M., D. Falush, M. Stephens & J. Pritchard, 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.

    Article  Google Scholar 

  • Jost, L., 2008. GST and its relatives do not measure differentiation. Molecular Ecology 17(18): 40.

    Article  Google Scholar 

  • Kaiser, J. & R. Gallagher, 1997. Does diversity lure invaders? Science 277: 1204–1205.

    Article  CAS  Google Scholar 

  • Klautau, M., L. C. Monteiro & R. Borojevic, 2004. First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nv. Zootaxa 710:1–8.

    Google Scholar 

  • Longo, C., F. Mastrototaro & G. Corriero, 2007. Occurrence of Paraleucilla magna (Porifera:Calcarea) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 87: 1749–1755.

    Article  Google Scholar 

  • Manly, B. F. J., 1997. Randomization, bootstrap and Monte Carlo methods in biology. Chapman& Hall Computational Statistics 24(2): 371–372.

    Google Scholar 

  • Meirmans, P. & P. W. Hedrick, 2011. Assessing population structure: F ST and related measures. Molecular Ecology Resources 11(1): 5–18.

    Article  Google Scholar 

  • Pascual, M., J. Balanyà, A. Latorre & L. Serra, 1997. Analysis of the variability of Drosophila azteca and Drosophila athabasca populations revealed by random amplified polymorphic DNA. Journal of Zoological Systematics and Evolutionary Research 35: 159–164.

    Google Scholar 

  • Perez, T., B. Perrin, S. Carteron, J. Vacelet & N. Boury-Esnault, 2006. Celtodoryx girardae gen nov.sp.nov., a new sponge species (Poecilosclerida: Demospongiae) invading the Gulf of Morbihan (North East Atlantic, France). Cahiers de Biologie Marine 47: 205–214.

    Google Scholar 

  • Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  Google Scholar 

  • Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.

    Google Scholar 

  • Rousset, F., 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

    Article  Google Scholar 

  • Stenberg, P. & M. Lundmark, 2002. MLGsim: a program for detecting clones using a simulation approach. Umea University, Umea.

    Google Scholar 

  • Streftaris, N. & A. Zenetos, 2006. Alien marine species in the Mediterranean—the 100 ‘worst invasives’ and their impact. Mediterranean Marine Science 7: 87–118.

    Google Scholar 

  • Thomsen, M. S., T. Wernberg, J. D. Olden, J. N. Griffin & B. R. Silliman, 2011. A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology 400: 322–327.

    Article  Google Scholar 

  • Uriz, M. J., 1982. Morfología y comportamiento, de la larva parenquímula de Scopalina lophyropoda Schmidt 1862 (demospongia, Halichondria) y la formación del rhagon. Investigación Pesquera 42:213–322.

    Google Scholar 

  • Uriz, M. J., M. Maldonado, X. Turon & R. Martí, 1998. How reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Marine Ecology Progress Series 167: 137–148.

    Article  Google Scholar 

  • Uriz, M. J., X. Turon & S. Mariani, 2008. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Marine Ecology 29(2): 280–297.

    Article  Google Scholar 

  • Van Oosterhout, C., W. F. Hutchinson, D. P. Wills & P. Shipley, 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3): 535–538.

    Article  Google Scholar 

  • Xavier J., 2010. Biodiversity and phylogeography of Northeast Atlantic and Mediterranean sponges. PhD dissertation. University of Amsterdam, Amsterdam: 149 pp.

    Google Scholar 

  • Weir, B. S. & C. C. Cockerman, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Zammit, P. P., C. Longo & P. J. Schembri, 2009. Occurrence of Paraleucilla magna Klautau et al., 2004 (porífera: Calcarea) in Malta. Mediterranean Marine Science 10(2): 135–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Guardiola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Guardiola, M., Frotscher, J., Uriz, M.J. (2011). Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean. In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_8

Download citation

Publish with us

Policies and ethics