Skip to main content

Epibiont–basibiont interactions: examination of ecological factors that influence specialization in a two-sponge association between Geodia vosmaeri (Sollas, 1886) and Amphimedon erina (de Laubenfels, 1936)

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:
Book cover Ancient Animals, New Challenges

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

  • 721 Accesses

Abstract

The objective of this study was to determine what ecological benefits Geodia vosmaeri (Gv) and Amphimedon erina (Ae) gain from their symbiosis. The prevailing, though untested, hypotheses are that Ae protects Gv from predators through chemical defenses and that Gv provides Ae access to substrata. Data from our experiments support these hypotheses. During field surveys, Ae was never found growing without Gv in this habitat. Ae was the only epibiont on 81% of the Gv surveyed. Field feeding assays using chemical extracts indicated that Ae is less palatable than Gv. Laboratory feeding assays using sponge tissue demonstrated that spongivorous sea stars avoided contact with Ae tissue and frequently accepted Gv tissue for consumption. In caging experiments, predator exclusion had no effect on Gv tissue loss. Amphimedon erina may benefit from the vertical substrata represented by Gv colonies because Ae grown in a vertical orientation experienced less tissue loss compared to Ae grown horizontally. Taken together, our results provide empirical support for the hypothesis that Gv is afforded chemical protection from predators through Ae and some evidence that Ae benefits from growing on Gn substrata.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ávila, E., J. L. Carballo, & J. A. Cruz-Barraza, 2007. Symbiotic relationships between sponges and other organisms from the Sea of Cortes (Mexican Pacific coast): same problems, same solutions. Porifera Research: Biodiversity, Innovation and Sustainability: 147–156.

    Google Scholar 

  • Burns, E. & M. Ilan, 2003. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. II. Physical defense. Marine Ecology Progress Series 252: 115–123.

    Article  Google Scholar 

  • Callaway, R. M., 2007. Positive interactions and interdependence in plant communities. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Cardenas, P., 2010. Phylogeny, taxonomy and evolution of the Astrophorida (Porifera, Demospongiae). Ph.D. Dissertation. University of Bergen (http://bora.uib.no/handle/1956/4020).

  • Chanas, B. & J. R. Pawlik, 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Marine Ecology Progress Series 127: 195–211.

    Article  Google Scholar 

  • de Laubenfels, M. W., 1936. A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in General, with material for a revision of the families and orders of the Porifera. Papers from Tortugas Laboratory, 30: 1–225, pls 1–22.

    Google Scholar 

  • Dunlap, M. & J. R. Pawlik, 1996. Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Marine Biology 126: 117–123.

    Article  Google Scholar 

  • Engel, S. & J. R. Pawlik, 2000. Allelopathic activities of sponge extracts. Marine Ecology Progress Series 207: 273–281.

    Article  Google Scholar 

  • Engel, S. & J. R. Pawlik, 2005a. Interactions among Florida sponges. I. Reef habitats. Marine Ecology Progress Series 303: 133–144.

    Article  Google Scholar 

  • Engel, S. & J. R. Pawlik, 2005b. Interactions among Florida sponges. II. Mangrove habitats. Marine Ecology Progress Series 303: 145–152.

    Article  Google Scholar 

  • Graham, M. H. & M. S. Edwards, 2001. Statistical significance versus fit: estimating the importance of individual factors in ecological analysis of variance. Oikos 93: 505–513.

    Article  Google Scholar 

  • Hay, M. E., Q. E. Kappel & W. Fenical, 1994. Synergisms in plant defenses against herbivores—interactions of chemistry, calcification, and plant-quality. Ecology 75: 1714–1726.

    Article  Google Scholar 

  • Hill, M. S., 1996. Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Marine Biology 125: 649–654.

    Article  Google Scholar 

  • Hill, M. S., 1998. Spongivory on Caribbean reefs releases corals from competition with sponges. Oecologia 117: 143–150.

    Article  Google Scholar 

  • Hill, M. S. & A. L. Hill, 2002. Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. The Biological Bulletin 202: 86–95.

    Article  Google Scholar 

  • Hill, M. S., N. A. Lopez & K. A. Young, 2005. Anti-predator defenses in western North Atlantic sponges with evidence of enhanced defense through interactions between spicules and chemicals. Marine Ecology Progress Series 291: 93–102.

    Article  Google Scholar 

  • Hollander, M. & D. A. Wolfe, 1999. Nonparametric statistical methods. Wiley-Interscience, Inc., New York.

    Google Scholar 

  • Jones, A., J. Blum & J. Pawlik, 2005. Testing for defensive synergy in Caribbean sponges: bad taste or glass spicules? Journal of Experimental Marine Biology and Ecology 322: 67–81.

    Article  Google Scholar 

  • Mack, G. A. & J. H. Skillings, 1980. A Friedman-type rank test for main effects in a two-factor. ANOVA Journal of the American Statistical Association 75: 947–951.

    Article  Google Scholar 

  • Meylan, A., 1988. Spongivory in hawksbill turtles: a diet of glass. Science 239: 393–395.

    Article  CAS  Google Scholar 

  • Palumbi, S., 1985. Spatial variation in an alga-sponge commensalism and the evolution of ecological interactions. The American Naturalist 126: 267–274.

    Article  Google Scholar 

  • Pawlik, J. R., B. Chanas, R. J. Toonen & W. Fenical, 1995. Defenses of Caribbean sponges against predatory reef fish: I. Chemical deterrency. Marine Ecology Progress Series 127: 183–194.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., S. E. McMurray & T. P. Henkel, 2007. Abiotic factors control sponge ecology in Florida mangroves. Marine Ecology Progress Series 339: 93–98.

    Article  Google Scholar 

  • Rützler, K., 1970. Spatial competition among Porifera: solution by epizoism. Oecologia 5: 85–95.

    Article  Google Scholar 

  • Ruzicka, R. & D. F. Gleason, 2009. Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. Journal of Experimental Marine Biology and Ecology 380: 36–46.

    Article  Google Scholar 

  • Sarà, M., 1970. Competition and cooperation in sponge populations. Symposium of the Zoological Society of London 25: 273–284.

    Google Scholar 

  • Silva, C. M. M., 2002. Revisão das espécies de Geodia Lamarck, 1815 (Porifera, Astrophorida, Geodiidae) do Atlântico Ocidental e Pacífico Oriental. Ph.D. Dissertation. Universidade de São Paulo, São Paulo.

    Google Scholar 

  • Sollas, W. J., 1886. Preliminary account of the tetractinellid sponges dredged by H.N.S. Challenger, 1872–1876. Part. I. The Choristida. Scientific Proceedings of the Royal Dublin Society. (new ser.) 5: 177–199.

    Google Scholar 

  • Southwell, M. W., J. B. Weisz, C. S. Martens & N. Lindquist, 2008. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnology and Oceanography 53: 986–996.

    Article  CAS  Google Scholar 

  • Waddell, B. & J. R. Pawlik, 2000a. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Marine Ecology Progress Series 195: 125–132.

    Article  Google Scholar 

  • Waddell, B. & J. R. Pawlik, 2000b. Defenses of Caribbean sponges against invertebrate predators: II. Assays with sea stars. Marine Ecology Progress Series 195: 133–144.

    Article  Google Scholar 

  • Weisz, J. B., A. J. Massaro, B. D. Ramsby & M. S. Hill, 2010. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biological Bulletin 219: 189–197.

    Google Scholar 

  • Wilcox, T. P., M. Hill & K. DeMeo, 2002. Observations on a new two-sponge symbiosis from the Florida Keys. Coral Reefs 21: 198–204.

    Google Scholar 

  • Wulff, J. L., 1995. Sponge-feeding by the Caribbean starfish Oreaster reticulatus. Marine Biology 123: 313–325.

    Article  Google Scholar 

  • Wulff, J. L., 1997a. Mutualisms among species of coral reef sponges. Ecology 78: 146–159.

    Article  Google Scholar 

  • Wulff, J. L., 1997b. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology 129: 41–52.

    Article  Google Scholar 

  • Wulff, J. L., 2005. Trade-offs in resistance to competitors and predators, and their effects on the diversity of tropical marine sponges. The Journal of Animal Ecology 74: 313–321.

    Article  Google Scholar 

  • Wulff, J. L., 2006a. Ecological interactions of marine sponges. Canadian Journal of Zoology 84: 146–166.

    Article  Google Scholar 

  • Wulff, J. L., 2006b. Sponge systematics by starfish: predators distinguish cryptic sympatric species of Caribbean fire sponges, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biological Bulletin 211: 83–94.

    Article  Google Scholar 

  • Wulff, J. L., 2008a. Collaboration among sponge species increases sponge diversity and abundance in a seagrass meadow. Marine Ecology 29: 193–204.

    Article  Google Scholar 

  • Wulff, J. L., 2008b. Life-history differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. The American Naturalist 171: 597–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Hill .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 5.44 mb)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ramsby, B., Massaro, A., Marshall, E., Wilcox, T., Hill, M. (2011). Epibiont–basibiont interactions: examination of ecological factors that influence specialization in a two-sponge association between Geodia vosmaeri (Sollas, 1886) and Amphimedon erina (de Laubenfels, 1936). In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_27

Download citation

Publish with us

Policies and ethics