Skip to main content

Experimental silicon demand by the sponge Hymeniacidon perlevis reveals chronic limitation in field populations

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:
Ancient Animals, New Challenges

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

Abstract

Dissolved silicon (DSi) is a key marine nutrient. Sponges and diatoms are relevant DSi consumers, but sponges appear to have a less efficient uptake system that requires higher ambient DSI concentrations for maximum uptake. We experimentally tested whether a sponge adapted to live at the intertidal (Hymeniacidon perlevis) also shows such a need for high DSi. Under laboratory conditions, sponges were exposed to both the natural DSi concentration (10 μM) and much higher levels (25, 40, and 70 μM) for 36 h, being water samples taken at 6 h intervals to infer DSi uptake. Uptake rates shifted over time (particularly in high DSi treatments) and showed moderate inter-individual variability. Average DSi uptake rate at 70 μM was twice higher than those at 40 and 25 μM, which in turn were not significantly different from each other, but were twice higher than the uptake rate at 10 μM. Therefore, H. perlevis needs, for efficient uptake, ambient DSi concentrations two to four times higher than the maximum available in its natural habitat. From an eco-physiological point of view, it means that the skeletal growth in the populations of H. perlevis is chronically limited by DSi availability, a limitation that may favor sponge evolution toward skeletal slimming.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bavestrello, G., M. Bonito & M. Sarà, 1993. Silica content and spicular size variation during an annual cycle in Chondrilla nucula Schmidt (Porifera, Demospongiae) in the Ligurian Sea. Scientia Marina 57: 421–425.

    Google Scholar 

  • Chu, J. W. F., M. Maldonado, G. Yahel & S. P. Leys, 2011. Glass sponge reefs as a silicon sink. Marine Ecology Progress Series 441: 1–14.

    Google Scholar 

  • Ehrlich, H., 2011. Silica biomineralization in Sponges. In Reitner, J. & V. Thiel (eds), Encyclopedia of Geobiology. Springer, Berlin: 796–808.

    Google Scholar 

  • Fröhlich, H. & D. Barthel, 1997. Silica uptake on the marine sponge Halichondria panicea in Kirl Bight. Marine Biology 128: 115–125.

    Article  Google Scholar 

  • Fu, W., L. Sun, X. Zhang & W. Zhang, 2006. Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. Biotechnology and Bioengineering 93: 1112–1122.

    Article  CAS  Google Scholar 

  • Fu, W., Y. Wu, L. Sun & W. Zhang, 2007. Efficient bioremediation of total organic carbon (TOC) in integrated aquaculture system by marine sponge Hymeniacidon perleve. Biotechnology and Bioengineering 97: 1387–1397.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Wiley, Nürnberg.

    Google Scholar 

  • Harper, H. E. & A. H. Knoll, 1975. Silica, diatoms and Cenozoic radiolarian evolution. Geology 3: 175–177.

    Article  Google Scholar 

  • Krasko, A., B. Lorenz, R. Batel, H. C. Schröder, I. M. Müller & W. E. G. Müller, 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry 267: 4878–4887.

    Article  CAS  Google Scholar 

  • Lazarus, D. B., B. Kotrc, G. Wulf & D. N. Schmidt, 2009. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proceedings of the National Academy of Sciences, USA 106: 9333–9338.

    Article  CAS  Google Scholar 

  • Maldonado, M., 2009. Embryonic development of verongid demosponges supports independent acquisition of spongin skeletons as alternative to the siliceous skeleton of sponges. Biological Journal of the Linnean Society 97: 427–447.

    Article  Google Scholar 

  • Maldonado, M., M. C. Carmona, M. J. Uriz & A. Cruzado, 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401: 785–788.

    Article  CAS  Google Scholar 

  • Maldonado, M., M. C. Carmona, Z. Velásquez, A. Puig, A. Cruzado, A. López & C. M. Young, 2005. Siliceous sponges as a silicon sink: An overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnology and Oceanography 50: 799–809.

    Article  CAS  Google Scholar 

  • Maldonado, M., A. Riesgo, A. Bucci & K. Rützler, 2010a. Revisiting silicon budgets at a tropical continental shelf: Silica standing stocks in sponges surpass those in diatoms. Limnology and Oceanography 55: 2001–2010.

    Article  CAS  Google Scholar 

  • Maldonado, M., X. Zhang, X. Cao, L. Xue, H. Cao & W. Zhang, 2010b. Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Marine Ecology Progress Series 403: 75–89.

    Article  Google Scholar 

  • Maldonado, M., L. Navarro, A. Grasa, A. González & I. Vaquerizo, 2011. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins. Nature. Scientific Reports 1: 1–8.

    Google Scholar 

  • Reincke, T. & D. Barthel, 1997. Silica uptake kinetics of Halichondria panicea in Kiel Bight. Marine Biology 129: 591–593.

    Article  CAS  Google Scholar 

  • Ribes, M., R. Coma & J. M. Gili, 1999. Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the Northwestern Mediterranean Sea. Journal of Plankton Research 21: 1077–1100.

    Article  Google Scholar 

  • Sarmiento, J. & N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton.

    Google Scholar 

  • Schröder, H.-C., S. Perović-Ottstadt, M. Rothenberger, M. Wiens, H. Schwertner, R. Batel, M. Korzhev, I. M. Müller & W. E. G. Müller, 2004. Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochemical Journal 381: 665–673.

    Article  Google Scholar 

  • Shortis, M., E. Harvey & D. Abdo, 2009. A Review of Underwater Stereo-image Measurement for Marine Biology and Ecology Applications Oceanography and Marine Biology Oceanography and Marine Biology—An Annual Review. CRC Press, Boca Raton: 257–292.

    Google Scholar 

  • Thomassen, S. & H. U. Riisgård, 1995. Growth and energetics of the sponge Halichondria panicea. Marine Ecology Progress Series 128: 239–246.

    Article  Google Scholar 

  • Weissenfels, N. & H. W. Landschoff, 1977. Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zoologische Jahrbücher 98: 355–371.

    Google Scholar 

  • Wilkinson, C. R. & J. Vacelet, 1979. Transplantation of marine sponges to different conditions of light and current. Journal of Experimental Marine Biology and Ecology 37: 91–104.

    Article  Google Scholar 

  • Xue, L. M. & W. Zhang, 2009. Growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis (Demospongiae) under controlled conditions. Marine Biotechnology 11: 640–649.

    Article  CAS  Google Scholar 

  • Zhang, J., G. S. Zhang & S. M. Liu, 2005. Dissolved silicate in coastal marine rainwaters: Comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production. Journal of Geophysical Research 110: D16304.

    Article  Google Scholar 

  • Zhang, J., S. M. Liu, J. L. Ren, Y. Wu & G. L. Zhang, 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography 74: 449–478.

    Article  Google Scholar 

  • Zhao, Q. Y., M. C. Deng, C. Y. Qu, X. J. Yu, M. F. Jin & W. Zhang, 2004. Elemental and total amino acid composition of two intertidal sponges in Yellow Sea. Marine Science 28: 27–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maldonado, M., Cao, H., Cao, X., Song, Y., Qu, Y., Zhang, W. (2011). Experimental silicon demand by the sponge Hymeniacidon perlevis reveals chronic limitation in field populations. In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_21

Download citation

Publish with us

Policies and ethics