Skip to main content

Diversity patterns and zoogeography of the Northeast Atlantic and Mediterranean shallow-water sponge fauna

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

Abstract

Recognizing and understanding present-day biodiversity and biogeographical patterns and how these relate to contemporary and past climate is pivotal to predict the effect of future climate on marine biodiversity and promote adequate conservation policies. Sponges constitute an important and dominant component of the marine benthos and are therefore an excellent model group for such investigations. In this study, we assessed the diversity patterns and the zoogeographical affinities of the Northeast Atlantic and Mediterranean shallow-water demosponge assemblages. Data on the distribution of 745 species throughout 28 areas was compiled from the literature and used to build a presence/absence matrix. Diversity patterns were assessed from estimates of species richness (S) and taxonomic distinctness (AvTD). The Mediterranean Sea proved to be more diverse both in terms of species richness and taxonomic distinctness (S = 539, AvTD = 94.74) than the Northeast Atlantic (S = 480, AvTD = 92.42) and the two regions together were found to constitute a diversity hotspot harbouring approximately 11% of the global demosponge diversity. We found an Atlantic N–S and a Mediterranean NW–SE gradient of increasing taxonomic distinctness that is strongly correlated to both contemporary (R 2 = 0.5667; P < 0.01) and historical values (R 2 = 0.7287; P < 0.01) of sea surface temperature (SST) at the Last Glacial Maximum (LGM). The zoogeographical affinities examined through classification (cluster analysis) and ordination (non-metric multidimensional scaling, nMDS) based on the Bray–Curtis similarity index, revealed the presence of three groups approximately corresponding to the Northern European Seas, Lusitanian and Mediterranean provinces outlined in the ‘Marine Ecoregions of the World’ (MEOW) classification system. Geographical distance and oceanographic circulation were shown to constitute important factors in shaping the zoogeographical affinities among areas. The vast majority of the species occurring in the Northeast Atlantic and the Mediterranean (67 and 57%, respectively) was shown to have extremely restricted geographical ranges, as single-area or narrow-range (2–3 areas) endemics, which raises some concerns regarding their conservation.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, R. G., D. Moss & B. E. Picton, 1992. Sponges of the British Isles (Sponge V): A Colour Guide and Working Document. Marine Conservation Society: 175 pp.

    Google Scholar 

  • Ambar, I. & A. Fiúza, 1994. Some features of the Portugal Current System: a poleward slope undercurrent, an upwelling-related summer southward flow and an autumn–winter poleward coastal surface current. In Katsaros, K., A. Fiúza & I. Ambar (eds), Proceedings of the Second International Conference on Air–Sea Interaction and on Meteorology and Oceanography of the Coastal Zone. American Meteorological Society, Lisbon: 286–287.

    Google Scholar 

  • Araújo, M. B., D. Nogués-Bravo, J. A. F. Diniz-Filho, A. M. Haywood, P. J. Valdes & C. Rahbek, 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31: 8–15.

    Google Scholar 

  • Bell, J. J., 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79: 341–353.

    Google Scholar 

  • Bell, J. J. & D. K. A. Barnes, 2000. A sponge diversity centre within a marine island. Hydrobiologia 440: 55–64.

    Google Scholar 

  • Bianchi, C. N., 2007. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580: 7–21.

    Google Scholar 

  • Borley, H. J. H., 1931. Some additions to the sponge fauna of Plymouth. Journal of the Marine Biological Association of the United Kingdom 17: 839–846.

    Google Scholar 

  • Borojevic, R., L. Cabioch & C. Lévi, 1968. Inventaire de la faune marine de Roscoff: Spongiaires. Cahiers de Biologie Marine 9: 1–44.

    Google Scholar 

  • Boury-Esnault, N. & M. T. Lopes, 1985. Les Démosponges littorales de l’archipel des Açores. Annales de l’Institute Océanographique 61: 149–225.

    Google Scholar 

  • Bowen, D. Q., F. M. Phillips, A. M. McCabe, P. C. Knutz & G. A. Sykes, 2002. New data for the Last Glacial Maximum in Great Britain and Ireland. Quaternary Science Reviews 21: 89–101.

    Google Scholar 

  • Burton, M., 1930. Additions to the sponge fauna at Plymouth. Journal of the Marine Biological Association of the United Kingdom 16: 489–507.

    Google Scholar 

  • Burton, M., 1957. Phylum Porifera. In Wilson, D. P. (ed.), Plymouth Marine Fauna, 3rd ed. Marine Biological Association of the United Kingdom, Plymouth: 26–36.

    Google Scholar 

  • Burton, M., 1963. Porifera. In Bruce, J. R., J. S. Colman & N. S. Joes (eds), Marine Fauna of the Isle of Man and its Surrounding Seas. Memoir No. 36. Liverpool University Press, Liverpool: 42–47.

    Google Scholar 

  • Cabioch, L., 1968. Contribution à la conaissance de la fauna des spongiaires de la manche occidentale. Démosponges de la région de Roscoff. Cahiers de Biologie Marine 9: 211–246.

    Google Scholar 

  • Cabioch, L., 1973. Additions a l’inventaire de la faune marine de roscoff: Spongiaires. Travaux Station Biologique Roscoff 31: 5–6.

    Google Scholar 

  • Cabioch, L. & R. Glaçon, 1975. Distribution des peuplements benthiques en Manche orientale, de la baie de Somme au Pas de Calais. Compte Rendu de l’Académie des Sciences de Paris série D 280: 491–494.

    Google Scholar 

  • Carballo, J. L., S. Naranjo & J. C. Garcia-Gomez, 1997. Where does the Mediterranean Sea begin? Zoogeographical affinities of the littoral sponges of the Straits of Gibraltar. Journal of Biogeography 24: 223–232.

    Google Scholar 

  • Chevolot, M., G. Hoarau, A. Rijnsdorp, W. Stam & J. Olsen, 2006. Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Molecular Ecology 15: 3693–3705.

    CAS  Google Scholar 

  • Clark, P. U. & A. C. Mix, 2002. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21: 1–7.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1999. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21–29.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001a. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001b. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265–278.

    Google Scholar 

  • CLIMAP Project Members, 1976. The surface of the ice-age earth. Science 191: 1131–1144.

    Google Scholar 

  • CLIMAP Project Members, 1981. Seasonal Reconstruction of the Earths Surface at the Last Glacial Maximum. Geological Society of America, Map and Chart Series, 36.

    Google Scholar 

  • CLIMAP Project Members, 1984. The last interglacial ocean. Quaternary Research 21: 123–224.

    Google Scholar 

  • Cristobo, F. J., 1997. Esponjas del Orden Poecilosclerida (Porifera: Demospongiae) de la Ría de Ferrol (NW de España). PhD thesis, Universidad de Santiago de Compostela.

    Google Scholar 

  • Cruz, T., 1980. Contribucion al estudio de los espongiarios de las Islas Canarias. Demosponjas (Homosclerophorida, Astrophorida y Hadromerida) del litoral de Tenerife. Memoria para aspirar al grado de licenciado, Universidad de La Laguna.

    Google Scholar 

  • Cruz, T., 1984. Espongiarios. In Estudio del Bentos Marino del Archipielago Canario. Catalogo preliminar de los invertebrados marinos bentonicos de Canarias.

    Google Scholar 

  • Cruz, T., 2002. Esponjas Marinas de Canarias. Banco de datos de Biodiversidad de Canarias. Gobierno de Canarias: 258 pp.

    Google Scholar 

  • Cruz, T. & J. J. Bacallado, 1982. Contribucion al conocimiento de los espongiarios de las Islas Canarias. I – Demosponjas Homosclerophorida y Astrophorida del Litoral de Tenerife. Boletin del Instituto Espanol de Oceanografia 6: 75–87.

    Google Scholar 

  • Cruz, T. & J. J. Bacallado, 1983. Esponjas perforantes (Porifera, Clionidae) de Tenerife, Islas Canarias. Vieraea 12: 37–48.

    Google Scholar 

  • Cruz, T. & J. J. Bacallado, 1984a. Contribucion al conocimiento de los espongiarios de las Islas Canarias. II – Demosponjas Hadromerida del Litoral de Tenerife. Servicio Publicaciones Universidad La Laguna: 63–73.

    Google Scholar 

  • Cruz, T. & J. J. Bacallado, 1985a. Contribucion al conocimiento de los espongiarios de las Islas Canarias: demosponjas de los fondos de Dendrophyllia ramea en Tenerife. Anales Facultad de Ciencias 10: 71–98.

    Google Scholar 

  • Cruz, T. & J. J. Bacallado, 1985b. Introduccion a los poblamientos de espongiarios de las Islas Canarias. Proceedings of the IV Simposio Iberico Bentos Marino: 141–150.

    Google Scholar 

  • de Voogd, N. J. & D. F. R. Cleary, 2007. Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. Marine & Freshwater Research 58: 240–249.

    Google Scholar 

  • de Voogd, N. J., D. F. R. Cleary, B. W. Hoeksema, A. Noor & R. W. M. Van Soest, 2006. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Marine Ecology Progress Series 309: 131–142.

    Google Scholar 

  • De Weerdt, W. & R. W. M. Van Soest, 1986. Marine shallow-water Haplosclerida (Porifera) from the South-Eastern part of the North Atlantic Ocean. Zoologische Verhandelingen 225: 1–49.

    Google Scholar 

  • Descatoire, A., 1966. Sur quelques Démosponges de l’Archipel de Glénan. Cahiers de Biologie Marine 7: 231–246.

    Google Scholar 

  • Descatoire, A., 1969. Les peuplements sessiles de l’Archipel de Glénan de l’infralittoral rocheux. II. Notes systématiques a propos de l’inventaire des Spongiaires. Vie et Millieu 20: 9–30.

    Google Scholar 

  • Domingues, V. S., R. S. Santos, A. Brito & V. C. Almada, 2006. Historical population dynamics and demography of the eastern Atlantic pomacentrid Chromis limbata (Valenciennes, 1833). Molecular Phylogenetics and Evolution 40: 139–147.

    CAS  Google Scholar 

  • Domingues, V. S., R. S. Santos, A. Brito, M. Alexandrou & V. C. Almada, 2007a. Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the Northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). Journal of Experimental Marine Biology and Ecology 346: 102–113.

    CAS  Google Scholar 

  • Domingues, V. S., C. Faria, S. Stefanni, R. S. Santos, A. Brito & V. C. Almada, 2007b. Genetic divergence in the Atlantic-Mediterranean Montagu’s blenny, Coryphoblennius galerita (Linnaeus 1758) revealed by molecular and morphological characters. Molecular Ecology 16: 3592–3605.

    CAS  Google Scholar 

  • Domingues, V. S., S. Stefanni, A. Brito, R. S. Santos & V. C. Almada, 2008. Phylogeography and demography of the Blenniid Parablennius parvicornis and its sister species P. sanguinolentus from the Northeastern Atlantic Ocean and the western Mediterranean Sea. Molecular Phylogenetics and Evolution 46: 397–402.

    Google Scholar 

  • Ferrer-Hernández, F., 1914. Esponjas del Cantabrico. Parte 2. III. Myxospongida. IV. Tetraxonida. V. Triaxonida. Trabajos del Museo Nacional de Ciencias Naturales 17: 1–46.

    Google Scholar 

  • Ferrer-Hernández, F., 1918. Esponjas del litoral de Asturias. Trabajos del Museo Nacional de Ciencias Naturales 36: 1–39.

    Google Scholar 

  • Ferrer-Hernández, F., 1922. Más datos para el conocimiento de las esponjas de las costas españolas. Boletin de Pescas 7: 247–272.

    Google Scholar 

  • Hanitsch, R., 1895. Notes on a collection of sponges from the west coast of Portugal. Transactions Liverpool Biological Society 9: 205–219.

    Google Scholar 

  • Harley, C. D. G., A. R. Hughes, K. M. Hultgreen, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek & S. L. Williams, 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Google Scholar 

  • Hayes, A., M. Kucera, N. Kallel, L. Sbaffi & E. J. Rohling, 2005. Glacial Mediterranean Sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews 24: 999–1016.

    Google Scholar 

  • Hewitt, G. M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.

    Google Scholar 

  • Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Google Scholar 

  • Hewitt, G. M., 2000. The genetic legacy of the Quaternary Ice Ages. Nature 405: 907–913.

    CAS  Google Scholar 

  • Hewitt, G. M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions Royal Society B 359: 183–195.

    CAS  Google Scholar 

  • Hiscock, K., S. Stone & J. D. George, 1984. The marine fauna of Lundy: Porifera (Sponges). Report of the Lundy Field Society 34: 16–35.

    Google Scholar 

  • Hoarau, G., J. A. Coyer, J. H. Veldsink, W. T. Stam & J. L. Olsen, 2007. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Molecular Ecology 16: 3606–3616.

    CAS  Google Scholar 

  • Hooper, J. N. A. & J. A. Kennedy, 2002. Small-scale patterns of sponge biodiversity (Porifera) on Sunshine Coast reefs, eastern Australia. Invertebrate Systematics 16: 637–653.

    Google Scholar 

  • Hooper, J. N. A. & R. W. M. Van Soest, 2002. Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Hsü, K. J., W. B. F. Ryan & M. B. Cita, 1973. Late Miocene desiccation. Nature 242: 240–244.

    Google Scholar 

  • Jansson, R., 2003. Global patterns in endemism explained by past climatic change. Proceedings of the Royal Society London B 270: 583–590.

    Google Scholar 

  • Johnson, J. Y., 1899. Notes on some sponges belonging to the Clionidae obtained at Madeira. Journal of the Royal Microscopical Society 9: 461–463.

    Google Scholar 

  • Kefalas, E. & J. Castritsi-Catharios, 2007. Taxonomy of some sponges (Porifera: Demospongiae) collected from the Aegean Sea and description of a new species. Journal of the Marine Biological Association of the United Kingdom 87: 1527–1538.

    Google Scholar 

  • Kefalas, E., G. Tsirtsis & J. Castritsi-Catharios, 2003. Distribution and ecology of Demospongiae from the circalittoral of the islands of the Aegean Sea (Eastern Mediterranean). Hydrobiologia 499: 125–134.

    Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Solé-Cava, 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53: 1414–1422.

    Google Scholar 

  • Krijgsman, W., F. J. Hilgen, I. Raffi, F. J. Sierro & D. S. Wilson, 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655.

    CAS  Google Scholar 

  • Lambeck, K. & J. Chappell, 2001. Sea level change through the last glacial cycle. Nature 292: 679–686.

    CAS  Google Scholar 

  • Lambeck, K., T. M. Esat & E. K. Potter, 2002. Links between climate and sea levels for the past three million years. Nature 419: 199–206.

    CAS  Google Scholar 

  • Lévi, C., 1950. Remarques sur la faune des Spongiaires de Roscoff. Archives de Zoologie expérimentale et générale 87: 10–21.

    Google Scholar 

  • Lévi, C. & J. Vacelet, 1958. Éponges récoltées dans l’Atlantique Oriental par le “Président Théodore Tissier” (1955–1956). Recueil des Travaux de l’Institut des Pêches maritimes 22: 225–246.

    Google Scholar 

  • Lopes, M. T., 1989. Demosponjas intertidais da Costa Portuguesa. PhD thesis, Universidade de Lisboa.

    Google Scholar 

  • Lopes, M. T., 1995. Littoral sponges from Selvagens Islands. Boletim do Museu Municipal do Funchal 4: 387–394.

    Google Scholar 

  • Lopes, M. T. & N. Boury-Esnault, 1981. Contribution a la connaissance des eponges cornees de la cote de l’Arrabida et de l’Algarve. Arquivos do Museu Bocage 1: 95–109.

    Google Scholar 

  • Maggs, C. A., R. Castilho, D. Foltz, C. Henzler, M. T. Jolly, J. Kelly, J. Olsen, K. E. Perez, W. Stam, R. Vainola, F. Viard & J. Wares, 2008. Evaluating signatures of glacial refugia for North Alantic benthic marine taxa. Ecology 89: 108–122.

    Google Scholar 

  • Maldonado, M., 2006. The ecology of sponge larvae. Canadian Journal of Zoology 84: 175–194.

    Google Scholar 

  • Maldonado, M. & M. J. Uriz, 1995. Biotic affinities in a transitional zone between the Atlantic and the Mediterranean: a biogeographical approach based on sponges. Journal of Biogeography 22: 89–110.

    Google Scholar 

  • Mariani, S., M. J. Uriz & X. Turon, 2005. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research 27: 249–262.

    Google Scholar 

  • Mariani, S., M. J. Uriz, X. Turon & T. Alcoverro, 2006. Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component. Oecologia 149: 174–184.

    Google Scholar 

  • Moss, D. L., 1992. A summary of the Porifera collected during “Expedition Azores 1989”. Arquipélago, Life and Earth Sciences 10: 45–53.

    Google Scholar 

  • Munro, M. H. G., J. W. Blunt, E. J. Dumdei, S. J. H. Hickford, R. E. Lill, S. Li, C. N. Battershill & A. R. Duckworth, 1999. The discovery and development of marine compounds with pharmaceutical potential. Journal of Biotechnology 70: 15–25.

    CAS  Google Scholar 

  • Mustapha, K. B., S. Zarrouk, A. Souissi & A. El Abed, 2003. Diversite des demosponges Tunisiennes. Bulletin Institut National Sciences et Technologie de la Mer de Salammbô 30: 55–78.

    Google Scholar 

  • Naveiro, A., 2002. Poriferos de la costa da Arrábida (Portugal): Classe Demospongiae. Memoria para optar al grado de licenciado, Universidad de Santiago de Compostela.

    Google Scholar 

  • Pansini, M. & C. Longo, 2003. A review of the Mediterranean Sea sponge biogeography with, in appendix, a list of the demosponges hitherto recorded from this sea. Biogeographia 24: 59–90.

    Google Scholar 

  • Patarnello, T., F. M. A. Volckaert & R. Castilho, 2007. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographic break? Molecular Ecology 16: 4426–4444.

    Google Scholar 

  • Pestana, R., 2002. Sistemática e ecologia de esponjas de substratos rochosos marinhos verticais e inclinados da costa Sul da Madeira. Tese de licenciatura, Universidade da Madeira.

    Google Scholar 

  • Pflaumamm, U., M. Sarnthein, M. Chapman, L. d’Abreu, B. Funnell, M. Huels, T. Kiefer, M. Maslin, H. Schulz, J. Swallow, S. van Kreveld, M. Vautravers, E. Vogelsang & M. Weinelt, 2003. Glacial North Atlantic: sea surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18: 10–28.

    Google Scholar 

  • Picton, B. E. & C. Goodwin, 2007. Sponge biodiversity of Rathlin Island, Northern Ireland. Journal of the Marine Biological Association of the United Kingdom 87: 1441–1458.

    Google Scholar 

  • Pires, F., 2007. Padrões de distribuição e taxonomia para os Porifera da região central do Algarve. Tese de mestrado, Universidade do Algarve.

    Google Scholar 

  • Preciado, I., 2002. Desmosponjas litorales del entorno de la Isla de Mouro (Santander, Mar Cantábrico): Taxonomia y Ecologia. PhD thesis, Facultad de Ciencias de la Universidad Autónoma de Madrid, Spain.

    Google Scholar 

  • Provan, J., R. Wattier & C. Maggs, 2005. Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Molecular Ecology 14: 793–803.

    CAS  Google Scholar 

  • Reverdin, G., P. P. Niiler & H. Valdimarsson, 2003. North Atlantic Ocean surface currents. Journal of Geophysical Research 108(C1): 3002.

    Google Scholar 

  • Riesgo, A. & M. Maldonado, 2008. Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebrate Biology 127: 357–367.

    Google Scholar 

  • Rouchy, J. M. & A. Caruso, 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology 188: 35–67.

    Google Scholar 

  • Samaai, T., 2006. Biodiversity “hotspots”, patterns of richness and endemism, and distribution of marine sponges in South Africa based on actual and interpolation data: a comparative approach. Zootaxa 1358: 1–37.

    Google Scholar 

  • Sarà, M. & J. Vacelet, 1973. Écologie des Démosponges. In Grassé, P. (ed.), Traité de Zoologie, Spongiaires. Masson et Cie, Paris: 462–576.

    Google Scholar 

  • Solórzano, M. R., 1991. Inventario dos Poríferos do Litoral Galego (Porifera). Caderno da Área de Ciencias Biolóxicas 7: 1–54.

    Google Scholar 

  • Spalding, M. D., H. E. Fox, G. R. Aleen, N. Davidson, Z. A. Ferdaña, M. Finlayson, B. Halpern, M. A. Jorge, A. Lombana, S. A. Lourie, K. D. Martin, E. McManus, J. Molnar, C. A. Recchia & J. Robertson, 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583.

    Google Scholar 

  • Tendal, O. S., T. Brattegard & H. T. Rapp, 2001. Phylum Porifera. In Brattegard, T. & T. Holthe (eds), Distribution of Marine, Benthic Macro-organisms in Norway. A Tabulated Catalogue. Research Report for DN 2001–3. Directorate for Nature Management: 36–51.

    Google Scholar 

  • Tintore, J., P. E. La Violette, I. Blade & A. Cruzado, 1988. A study of an intense density front in the Eastern Alboran Sea: the Almeria-Oran front. Journal of Physical Oceanography 18: 1384–1397.

    Google Scholar 

  • Topsent, E., 1892. Contribution á l’étude des Spongiaires de l’Atlantique Nord (Golfe de Gascogne, Terre-Neuve, Açores). Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 2: 1–165.

    Google Scholar 

  • Topsent, E., 1899. Documents sur la faune des Spongiaires des côtes de Belgique. Archives de Biologie 16: 105–115.

    Google Scholar 

  • Topsent, E., 1904. Spongiaires des Açores. Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 25: 1–280.

    Google Scholar 

  • Topsent, E., 1928. Spongiaires de l’Atlantique et de la Méditerranée provenant des croisières de Prince Albert 1er de Monaco. Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 74: 1–376.

    Google Scholar 

  • Uriz, M. J., X. Turon & S. Mariani, 2008. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Marine Ecology 29: 280–297.

    Google Scholar 

  • Vacelet, J., G. Bitas, S. Carteron, H. Zibrowius & T. Perez, 2007. Five new sponge species (Porifera: Demospongiae) of subtropical or tropical affinities from the coast of Lebanon (eastern Mediterranean). Journal of the Marine Biological Association of the United Kingdom 87: 1539–1552.

    Google Scholar 

  • Van Soest, R. W. M., 1993a. Distribution of sponges on the Mauritanian continental shelf. Hydrobiologia 258: 95–106.

    Google Scholar 

  • Van Soest, R. W. M., 1993b. Affinities of the marine demosponge fauna of the Cape Verde Islands and Tropical West Africa. Courier Forschungsinstitute Senckenberg 159: 205–219.

    Google Scholar 

  • Van Soest, R. W. M., 1994. Demosponge distribution patterns. In Van Soest, R. W. M., Th. M. G. Van Kempen & J. C. Braekman (eds), Sponges in Time and Space. Balkema, Rotterdam: 213–223.

    Google Scholar 

  • Van Soest, R. W. M. & S. Weinberg, 1980. A note on the sponges and octocorals from Sherkin Island and Lough Hyne, Co. Cork. Irish Naturalists Journal 20: 1–14.

    Google Scholar 

  • Van Soest, R. W. M., J. D. Guiterman & M. Sayer, 1983. Sponges from Roaringwater Bay and Lough Hyne. Journal of Sherkin Island 1: 35–49.

    Google Scholar 

  • Van Soest, R. W. M., B. E. Picton & C. Morrow, 2000. Sponges of the North East Atlantic. World Biodiversity Database CD-ROM Series, ETI. University of Amsterdam, The Netherlands.

    Google Scholar 

  • Van Soest, R. W. M., D. F. R. Cleary, M. J. de Kluijver, M. S. S. Lavaleye, C. Maier & F. C. van Duyl, 2007a. Sponge diversity and community composition in Irish bathyal coral reefs. Contributions to Zoology 76: 121–142.

    Google Scholar 

  • Van Soest, R. W. M., M. J. Kluijver, P. H. Van Bragt, M. Faasse, R. Nijland, E. J. Beglinger, W. H. De Weerdt & N. J. de Voogd, 2007b. Sponge invaders in Dutch coastal waters. Journal of the Marine Biological Association of the United Kingdom 87: 1733–1748.

    Google Scholar 

  • Van Soest, R. W. M, N. Boury-Esnault, J. N. A. Hooper, K. Rützler, N. J. de Voogd, B. Alvarez, E. Hajdu, A. B. Pisera, J. Vacelet, R. Manconi, C. Schoenberg, D. Janussen, K. R. Tabachnick & M. Klautau, 2009. World Porifera Database [available online at http://www.marinespecies.org/porifera]. Accessed 15 Jan 2009.

  • Voultsiadou, E., 2005. Demosponge distribution in the Eastern Mediterranean: a NW-SE gradient. Helgoland Marine Research 59: 237–251.

    Google Scholar 

  • Voultsiadou, E., 2009. Reevaluating sponge diversity and distribution in the Mediterranean Sea. Hydrobiologia 629: 1–12.

    Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1995. New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129: 301–305.

    Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1998. Taxonomic distinctness and environmental assessment. Journal of Applied Ecology 35: 532–543.

    Google Scholar 

  • Xavier, J. R., 2003. Esponjas marinhas (Porifera: Demospongiae e Calcarea) do litoral de São Miguel – Açores: abordagem taxonómica. Tese de licenciatura, Universidade dos Açores.

    Google Scholar 

  • Xavier, J. R. & R. W. M. Van Soest, 2007. Demosponge fauna of Ormonde and Gettysburg Seamounts (Gorringe Bank, Northeast Atlantic): diversity and zoogeographical affinities. Journal of the Marine Biological Association of the United Kingdom 87: 1643–1653.

    Google Scholar 

  • Xavier, J. R., R. W. M. Van Soest, J. A. J. Breeuwer, A. M. F. Martins & S. B. J. Menken, 2010a. Phylogeography of the poecilosclerid sponge Phorbas fictitius: genetic structure and refugia at oceanic islands. Contributions to Zoology 79: 119–129.

    Google Scholar 

  • Xavier, J. R., P. G. Rachello-Dolmen, F. Parra-Velandia, C. H. L. Schönberg, J. A. J. Breeuwer & R. W. M. Van Soest, 2010b. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution 56: 13–20.

    CAS  Google Scholar 

  • Yokoyama, Y., K. Lambeck, P. Deckker, P. Johnston & L. K. Fifield, 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406: 713–716.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana R. Xavier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 The Author(s)

About this chapter

Cite this chapter

Xavier, J.R., Van Soest, R.W.M. (2011). Diversity patterns and zoogeography of the Northeast Atlantic and Mediterranean shallow-water sponge fauna. In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_11

Download citation

Publish with us

Policies and ethics