Skip to main content

Novel Genes from Wild Barley Hordeum spontaneum for Barley Improvement

  • Conference paper
  • First Online:
Advance in Barley Sciences

Abstract

Narrowing genetic basis is the bottleneck for modern plant improvement. Genetic variation in wild barley Hordeum spontaneum is much greater than that of either cultivated or landrace H. vulgare gene pool. It represents a valuable but underutilised gene pool for barley improvement as no biological isolation barriers exist between H. spontaneum and cultivated barley. Novel sources of new genes were identified from H. spontaneum for yield, quality, disease resistance and abiotic tolerance. Quantitative trait loci (QTLs) were mapped to all barley chromosomes. A QTL on chromosome 4H from the wild barley consistently increased yield by 7.7% across six test environments. Wild barley H. spontaneum was demonstrated as key genetic resource for drought and salinity tolerance. Two QTLs on chromosomes 2H and 5H increased grain yield by 12–22% under drought conditions. Several QTL clusters were present on chromosomes 1H, 2H, 4H, 6H and 7H from H. spontaneum for drought and salinity tolerance. Numerous candidate genes were identified to associate with tolerance to drought or salinity, and some of the candidate genes co-located with the QTLs for drought tolerance. QTLs/genes for resistance to powdery mildew, leaf rust and scald were mapped to all chromosomes. Scald resistance was found in at least five chromosome locations (1HS, 3H, 6HS, 7HL and 7HS) from H. spontaneum, and simple molecular markers were developed to accelerate transferring of these genes into cultivated barley. Novel beta-amylase allele from H. spontaneum was used to improve barley malting quality. Advanced backcross QTL provides an efficiency approach to transfer novel genes from H. spontaneum to cultivated barley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, D. C., Brown, A. H. D., & Burdon, J. J. (1992). Genes for scald-resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica, 61, 225–231.

    Article  CAS  Google Scholar 

  • Abbott, D. C., Lagudah, E. S., & Brown, A. H. D. (1995). Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. The Journal of Heredity, 86, 152–154.

    PubMed  CAS  Google Scholar 

  • Able, J. A., Langridge, P., & Milligan, A. S. (2007). Capturing diversity in the cereals: many options but little promiscuity. Trends in Plant Science, 12, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Ahokas, H., & Naskali, L. (1990). Geographic variation of α-amylase, β-amylase, β-glucanase, pullulanase and chitinase activity in germinating Hordeum spontaneum barley from Israel and Jordan. Genetica, 82, 73–78.

    Article  CAS  Google Scholar 

  • Ahokas, H., & Poukkula, M. (1999). Malting enzyme activities, grain protein variation and yield potentials in the displaced genetic resources of barley landraces of Finland. Genetic Resources and Crop Evolution, 46, 251–260.

    Article  Google Scholar 

  • Ahokas, H., Uutela, P., Erkkilä, M. J., & Vähämiko, S. (1996). Another source of genes with high beta-amylase activity in barley grain: Finnish landraces. Barley Genetics Newsletter, 25, 36–40.

    Google Scholar 

  • Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89, 925–940.

    Article  PubMed  Google Scholar 

  • Backes, G., Madsen, L. H., Jaiser, H., Stougaard, J., Herz, M., Mohler, V., & Jahoor, A. (2003). Localization of genes for resistance against Blumeria graminis f. sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp.spontaneum) line. Theoretical and Applied Genetics, 106, 353–363.

    PubMed  CAS  Google Scholar 

  • Batchu, A. K., Zimmemann, D., Schulze-Lefert, P., & Koprek, T. (2006). Correlation between hordatine accumulation, environmental factors and genetic diversity in wild barley (Hordeum spontaneum C. Koch). Genetica, 127, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., & Ceccarelli, S. (2003). QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’  ×  H. spontaneum 41–1. Theoretical and Applied Genetics, 107(7), 1215–1225.

    Article  PubMed  CAS  Google Scholar 

  • Bilgic, H., Steffenson, B. J., & Hayes, P. (2005). Comprehensive genetic analyses reveal differential expression of spot blotch resistance in four populations of barley. Theoretical and Applied Genetics, 111(7), 1238–1250.

    Article  PubMed  CAS  Google Scholar 

  • Bjørnstad, A., Patil, V., Tekauz, A., Maroy, G., Skinnes, H., Jensen, A., Magnus, H., & Mackey, J. (2002). Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers and differential isolates. Phytopathology, 92, 710–720.

    Article  PubMed  Google Scholar 

  • Borovkova, I. G., Jin, Y., Steffenson, B. J., Kilian, A., Blake, T. K., & Kleinhofs, A. (1997). Identification and mapping of leaf rust resistance gene in barley line Q21861. Genome, 40, 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Borovkova, I. G., Jin, Y., & Steffenson, B. J. (1998). Chromosomal location and genetic relationship of the leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology, 88, 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D. E. (1978). The origin and classification of barleys. In D. E. Briggs (Ed.), Barley (pp. 76–88). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Brunner, S., Keller, B., & Feuillet, C. (2000). Molecular mapping of the Rph7 leaf rust resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 101, 783–788.

    Article  CAS  Google Scholar 

  • Cattivelli, L., Baldi, P., Crosatti, C., Fonzo, N. D., Faccioli, P., Grossi, M., Am, Mastrangelo, Pecchioni, N., & Stanca, A. M. (2002). Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48(5–6), 649–665.

    Article  CAS  Google Scholar 

  • Ceccarelli, S., Grando, S., & Impiglia, A. (1998). Choice of selection strategy in breeding barley for stress environments. Euphytica, 103, 307–318.

    Article  Google Scholar 

  • Chalmers, K. J., Waugh, R., Watters, J., Forster, B. P., Nevo, E., Abbott, R. J., & Powell, W. (1992). Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theoretical and Applied Genetics, 84, 313–322.

    Article  Google Scholar 

  • Choi, D. W., & Close, T. J. (2000). A newly identified barley gene, Dhn12, encoding YSK2 DHN, is on chromosome 6H and has embryo-specific expression. Theoretical and Applied Genetics, 100, 1274–1278.

    Article  CAS  Google Scholar 

  • Choi, D. W., Zhu, B., & Close, T. J. (1999). The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allelic types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theoretical and Applied Genetics, 98, 1234–1247.

    Article  CAS  Google Scholar 

  • Chojecki, J., Barnes, S., & Dunlop, A. (1989). A molecular marker for vernalization requirement in barley. In T. Helentjaris & B. Burr (Eds.), Development and application of molecular markers to problems in plant genetics (pp. 145–148). Cold Spring Harbour: Cold Spring Harbour Laboratory.

    Google Scholar 

  • Clifford, B. C. (1985). Barley leaf rust. In A. P. Roelfs & W. R. Bushnell (Eds.), Cereal rust. Diseases, distribution, epidemiology, and control (Vol. 2, pp. 173–205). New York: Academic.

    Google Scholar 

  • Close, T. J., Choi, D. W., Venegas, M., Salvi, S., Tuberosa, R., Ryabushkina, N., Turuspekov, Y., & Nevo, E. (2000, October 22–27). Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN 4. In 8th International Barley Genetics Symposium, Adelaide, SA, South Australia.

    Google Scholar 

  • Crosatti, C., Nevo, E., Stanca, A. M., & Cattivelli, L. (1996). Genetic analysis of the accumulation of COR 14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theoretical and Applied Genetics, 93, 975–981.

    Article  CAS  Google Scholar 

  • Czembor, J. H. (2000). Resistance to powdery mildew in populations of barley landraces from Morocco. Australasian Plant Pathology, 29, 137–148.

    Article  Google Scholar 

  • Diab, A. A. (2006). Construction of barley consensus map showing chromosomal regions associated with economically important traits. African Journal of Biotechnology, 5, 235–248.

    CAS  Google Scholar 

  • Dyck, P. L., & Schaller, C. W. (1961). Association of two genes for scald resistance with a specific barley chromosome. Canadian Journal of Genetics and Cytology, 3, 165–169.

    Google Scholar 

  • Eglinton, J. K., Langridge, P., & Evans, D. E. (1998). Thermostability variation in alleles of barley Beta-amylase. Journal of Cereal Science, 28, 301–309.

    Article  CAS  Google Scholar 

  • Eglinton, J. K., Evans, D. E., Brown, A. H. D., Langridge, P., McDonald, G., Jefferies, S. P., & Barr, A. R. (2001, September 16–20). The use of wild barley (Hordeum vulgare ssp. spontaneum) in breeding for quality and adaptation. In Proceedings of the 10th Australian Barley Technical Symposium, Canberra, ACT, Australia.

    Google Scholar 

  • Ellis, R. P., Forster, B. P., Waugh, R., Bonar, N., Handley, L. L., Robinson, D., Gordon, D. C., & Powell, W. (1997). Mapping physiological traits in barley. The New Phytologist, 137, 149–157.

    Article  CAS  Google Scholar 

  • Ellis, R. P., Foster, B. P., Robinson, D., Handley, L. L., Gordon, D. C., Russell, J. R., & Powell, W. (2000). Wild barley: A source of genes for crop improvement in the 21st century? Journal of Experimental Botany, 51, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R. P., Forster, B. P., Gordon, D. C., Handley, L. L., Keith, R., Lawrence, P., Meyer, R. C., Powell, W., Robinson, D., Scrimgeour, C. M., Young, G. R., & Thomas, W. T. B. (2002). Phenotype/genotype associations of yield and salt tolerance in a barley mapping population segregating for two dwar.ng genes. Journal of Experimental Botany, 53, 1163–1176.

    Article  PubMed  CAS  Google Scholar 

  • Errkilä, M. J., Leah, R., Ahokas, H., & Cameron-Mills, V. (1998). Allele-dependent grain ß-amylase activity. Plant Physiology, 117, 679–685.

    Article  Google Scholar 

  • Evans, D. E., Wallace, W., Lance, R. C. M., & MacLead, L. C. (1997). Measurement of beta-amylase in malting barley (Hordeum vulgare L.)II. The effect of germination and kilning. Journal of Cereal Science, 26, 241–250.

    Article  CAS  Google Scholar 

  • Falak, I., Falk, D. E., Tinker, N. A., & Mather, D. E. (1999). Resistance to powdery mildew in a doubled haploid barley population and its association with marker loci. Euphytica, 107, 185–192.

    Article  CAS  Google Scholar 

  • Favatier, F., Bornman, L., Hightower, L. E., Gunther, E., & Polla, B. S. (1997). Variation in hsp gene expression and Hsp polymorphism: do they contribute to differential disease susceptibility and stress tolerance? Cell Stress Chaperones, 2, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Fetch, T. G., Steffenson, B. J., Jr., & Nevo, E. (2003). Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Disease, 87, 1439–1448.

    Article  Google Scholar 

  • Feuerstein, U., Brown, A. H. D., & Burdon, J. J. (1990). Linkage of rust resistance genes from wild barley (Hordeum spontaneum) with isozyme markers. Plant Breeding, 104, 318–324.

    Article  CAS  Google Scholar 

  • Forster, B. P., Phillips, M. S., Miller, T. E., Baird, E., & Powell, W. (1990). Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity, 65, 99–107.

    Article  Google Scholar 

  • Forster, B. P., Russel, J. R., Ellis, R. P., Handley, L. L., Hackett, C. A., Nevo, E., Waugh, R., Gordon, D. C., Keith, R., & Powell, W. (1997). Locating genotypes and genes for abiotic stress tolerance in barley: A strategy using maps, markers and the wild species. New Phytologist, 137, 141–147.

    Google Scholar 

  • Franckowiak, J. D., Jin, Y., & Steffenson, B. J. (1997). Recommended allele symbols for leaf rust resistance genes in barley. Barley Genetics Newsletter, 27, 36–44.

    Google Scholar 

  • Freialdenhoven, A., Scherag, B., Hollricher, K., Collinge, D. B., Thordal-Christensen, H., & Schulze-Lefert, P. (1994). Nar-1 and Nar-2, two loci required for Mla12-specified race-specific resistance to powdery mildew in barley. The Plant Cell, 6, 983–994.

    PubMed  CAS  Google Scholar 

  • Garvin, D. F., Brown, A. H. D., & Burdon, J. J. (1997). Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theoretical and Applied Genetics, 94, 1086–1091.

    Article  CAS  Google Scholar 

  • Garvin, D. F., Brown, A. H. D., Raman, H., & Read, B. J. (2000). Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breeding, 119, 193–196.

    Article  CAS  Google Scholar 

  • Genger, R. K., Brown, A. H. D., Knogge, W., Nesbitt, K., & Burdon, J. J. (2003a). Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica, 134, 149–159.

    Article  CAS  Google Scholar 

  • Genger, R. K., Williams, K. J., Raman, H., Read, B. J., Wallwork, H., Burdon, J. J., & Brown, A. H. D. (2003b). Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp spontaneum: parallels between cultivated and wild barley. Australian Journal of Agricultural Research, 54, 1335–1342.

    Article  CAS  Google Scholar 

  • Goodwin, S. B., Allard, R. W., & Webster, R. K. (1990). A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology, 80, 1330–1336.

    Article  Google Scholar 

  • Graner, A., Streng, S., Drescher, A., Jin, Y., Borovkova, I., & Steffenson, B. J. (2000). Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant Breeding, 119, 389–392.

    Article  CAS  Google Scholar 

  • Griffey, C. A., Das, M. K., Baldwin, R. E., & Waldenmaier, C. M. (1994). Yield losses in winter barley resulting from a new race of Puccinia hordei in North America. Plant Disease, 78, 256–260.

    Article  Google Scholar 

  • Grime, K. H., & Briggs, D. E. (1996). The release of bound β-amylase by macromolecules. The Journal of the Institute of Brewing & Distilling, 102, 261–270.

    CAS  Google Scholar 

  • Grønnerød, S., Marøy, A. G., MacKey, J., Tekauz, A., Penner, G. A., & Bjørnstad, A. (2002). Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica, 126, 235–250.

    Article  Google Scholar 

  • Hackett, C. A., Ellis, R. P., Forster, B. P., McNicol, J. W., & Macaulay, M. (1992). Statistical analysis of a linkage experiment in barley involving quantitative trait loci for height and ear-emergence time and two genetic markers on chromosome 4. Theoretical and Applied Genetics, 85, 120–126.

    Article  Google Scholar 

  • Halterman, D., Zhou, F. S., Wei, F., Wise, R. P., & Schulze-Lefert, P. (2001). The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. The Plant Journal, 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J. R. (1976). Barley. In N. W. Simmonds (Ed.), Evolution of crop plants (Plant sciences, Vol. 13, pp. 97–119). London: Longman.

    Google Scholar 

  • Heun, M. (1992). Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome, 35, 1019–1025.

    Article  CAS  Google Scholar 

  • Ivandic, V., Walther, U., & Graner, A. (1998). Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theoretical and Applied Genetics, 97, 1235–1239.

    Article  CAS  Google Scholar 

  • Ivandic, V., Hackett, C. A., Zhang, Z. J., Staub, J. E., Nevo, E., Thomas, W. T. B., & Forster, B. P. (2000). Phenotypic responses of wild barley to experimentally imposed water stress. Journal of Experimental Botany, 51, 2021–2029.

    Article  PubMed  CAS  Google Scholar 

  • Jahoor, A., & Fischbeck, G. (1993). Identification of new genes for mildew resistance of barley at the Mla locus in lines derived from Hordeum spontaneum. Plant Breeding, 110, 116–122.

    Article  Google Scholar 

  • Jin, Y., Statler, G. D., Franckowiak, J. D., & Steffenson, B. J. (1993). Linkage between leaf rust resistance genes and morphological markers in barley. Phytopathology, 83, 230–233.

    Article  Google Scholar 

  • Jin, Y., Steffenson, B. J., & Bockelman, H. E. (1995). Evaluation of cultivated and wild barley for resistance to pathotypes of Puccinia hordei with wide virulence. Genetic Resources and Crop Evolution, 42, 1–6.

    Article  Google Scholar 

  • Jørgensen, J. H. (1993). Durability of resistance in the pathosystems: barley-powdery mildew. In T. H. Jacobs & J. E. Parlevliet (Eds.), Durability of disease resistance (pp. 159–176). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Jørgensen, J. H. (1994). Genetic of powdery mildew resistance in barley. Critical Reviews in Plant Sciences, 13, 97–119.

    Article  Google Scholar 

  • Kaneko, T., Kihara, M., Ito, K., & Takeda, K. (2000). Molecular and chemical analysis of β-amylase-less mutant barley in Tibet. Plant Breeding, 119, 383–387.

    Article  CAS  Google Scholar 

  • Kicherer, S., Backes, G., Walther, U., & Jahoor, A. (2000). Localizing QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 100, 881–888.

    Article  CAS  Google Scholar 

  • Kintzios, S., Jahoor, A., & Fischbeck, G. (1995). Powdery mildew resistance genes Mla29 and Mla32 in H. spontaneum derived winter barley lines. Plant Breeding, 114, 265–266.

    Article  Google Scholar 

  • Laurie, D. A., Pratchett, N., Bezant, J. H., & Snape, J. W. (1995). RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley cross. Genome, 38, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. D., Lance, R., Tarr, A., Broughton, S., Harasymow, S., Appels, R., & Jones, M. (2004, June). Improvement of barley malting quality using a gene from Hordeum spontaneum. In VI International Barley Genetic Symposium, Brno, Czech Republic.

    Google Scholar 

  • Liviero, L., Maestri, E., Gulli, M., Nevo, E., & Marmiroli, N. (2002). Ecogeographic adaptation and genetic variation in wild barley: Application of molecular markers targeted to environmentally regulated genes. Genetic Resources and Crop Evolution, 49, 133–144.

    Article  Google Scholar 

  • Mammadov, J. A., Zwonitzer, J. C., Biyashev, R. M., Griffey, C. A., Jin, Y., Steffenson, B. J., & Saghai Maroof, M. A. (2003). Molecular mapping of leaf rust resistance gene Rph5 in barley. Crop Science, 43, 388–393.

    Article  CAS  Google Scholar 

  • Manisterski, J., Treeful, L., Tomerlin, J. R., Anikster, Y., Moseman, J. G., Wahl, I., & Wilcoxson, R. D. (1986). Resistance of wild barley accessions from Israel to leaf rust collected in the USA and Israel. Crop Science, 26, 727–730.

    Article  Google Scholar 

  • Mano, Y., & Takeda, K. (1995). Varietal variation and effects of some major genes on salt tolerance in barley seedlings. Bulletin of the Research Institute for Bioresources Okayama University, 3, 71–81.

    Google Scholar 

  • Mano, Y., & Takeda, K. (1997). Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 94, 263–272.

    Article  Google Scholar 

  • Mano, Y., & Takeda, K. (1998). Genetic resources of salt tolerance in wild Hordeum species. Euphytica, 103, 137–141.

    Article  Google Scholar 

  • Mano, Y., Nakazumi, H., & Takeda, K. (1996). Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breeding Science, 46, 227–233.

    Google Scholar 

  • Matre, D. E. (1982). Compendium of barley diseases. St Paul: American Phytopathological Society Press.

    Google Scholar 

  • Matus, I. A., & Hayes, P. M. (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 45, 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, M. E., & Hathcock, B. R. (1969). Linkage of the Pa4 and Mla loci in barley. Crop Science, 9, 822.

    Article  Google Scholar 

  • McDonald, B. A., Zhan, J., & Burdon, J. J. (1999). Genetic structure of Rhynchosporium secalis in Australia. Phytopathology, 89, 639–645.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, P. L., Lundy, K. E., & Clegg, M. T. (2003). Distinct geographic patterns of genetic diversity is maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proceedings of the National Academy of Sciences, 100, 10812–10817.

    Article  CAS  Google Scholar 

  • Moseman, J. G., Nevo, E., & El-Morshidy, M. A. (1990). Reactions of Hordeum spontaneum to infection with two cultures of Puccinia hordei from Israel and United States. Euphytica, 49, 169–175.

    Article  Google Scholar 

  • Nevo, E. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum in the fertile crescent. In P. R. Shewry (Ed.), Barley genetics, biochemistry, molecular biology and biotechnology (pp. 19–43). Wallingford: CAB International.

    Google Scholar 

  • Nevo, E., Baum, B., Beiles, A., & Johnson, D. A. (1998). Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum in the Fertile Crescent. Genetic Resources and Crop Evolution, 45, 151–159.

    Article  Google Scholar 

  • Nuccio, M. L., Rhodes, D., McNeil, S. D., & Hanson, A. D. (1999). Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology, 2, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Pakniyat, H., Powell, W., Baird, E., Handly, L. L., Robinson, D., Scrimgeour, C. M., Nevo, E., Hackett, C. A., Caligari, P. D. S., & Forster, B. P. (1997). AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome, 40, 332–341.

    Article  PubMed  CAS  Google Scholar 

  • Pan, A., Hayes, P. M., Chen, F., Chen, T. H. H., Blake, T., Wright, S., Karsai, I., & Bedo, Z. (1994). Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 89, 900–910.

    Article  CAS  Google Scholar 

  • Père de la Vega, M. (1996). Plant genetic adaptedness to climatic and edaphic environment. Euphytica, 92, 27–38.

    Article  Google Scholar 

  • Peterhänsel, C., Freialdenhoven, A., Kurth, J., Kolsch, R., & Schulze-Lefert, P. (1997). Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. The Plant Cell, 9, 1397–1409.

    PubMed  Google Scholar 

  • Pickering, R., Ruge-Wehling, B., Johnston, P. A., Schweizer, G., Ackermann, P., & Wehling, P. (2006). The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breeding, 125(6), 576–579.

    Article  CAS  Google Scholar 

  • Pillen, K., Zacharias, A., & Leon, J. (2003). Advanced backcross QTL analysis in barley (Hordeum vulgare L). Theoretical and Applied Genetics, 107, 340–352.

    Article  PubMed  CAS  Google Scholar 

  • Qi, X., Niks, R. E., Stam, P., & Lindhout, P. (1998). Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics, 96, 1205–1215.

    Article  CAS  Google Scholar 

  • Qi, X., Fekadu, F., Sijtsma, D., Niks, R. E., Lindhout, P., & Stam, P. (2000). The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Molecular Breeding, 6, 1–9.

    Article  CAS  Google Scholar 

  • Richter, K., Schondelmaier, J., & Jung, C. (1998). Mapping of quantitative traits loci affecting Drechslera teres resistance in barley with molecular markers. Theoretical and Applied Genetics, 97, 1225–1234.

    Article  CAS  Google Scholar 

  • Rodríguez, E. M., Svensson, J. T., Malatrasi, M., Choi, D. W., & Close, T. J. (2005). Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theoretical and Applied Genetics, 110, 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Saghai Maroof, M. A., Zhang, Q., & Biyashev, R. M. (1994). Molecular marker analysis of powdery mildew resistance in barley. Theoretical and Applied Genetics, 88, 733–740.

    Article  Google Scholar 

  • Schiiller, C., Backes, G., Fischbeck, G., & Jahoor, A. (1992). RFLP markers to identify the alleles on the Mla locus conferring powdery mildew resistance in barley. Theoretical and Applied Genetics, 84, 330–338.

    Google Scholar 

  • Schönfeld, M., Ragni, A., Fischbeck, G., & Jahoor, A. (1996). RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theoretical and Applied Genetics, 93, 48–56.

    Article  Google Scholar 

  • Schweizer, G. F., Baumer, M., Daniel, G., Rugel, H., & Röder, M. S. (1995). RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theoretical and Applied Genetics, 90, 920–924.

    Article  CAS  Google Scholar 

  • Shtaya, M. J. Y., Marcel, T. C., Sillero, J. C., Niks, R. E., & Rubiales, D. (2006). Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica, 151, 421–429.

    Article  Google Scholar 

  • Smith, T. A., & Best, G. R. (1978). Distribution of the hordatines in barley. Phytochemistry, 17, 1093–1098.

    Article  CAS  Google Scholar 

  • Søgaard, B., & von Wettstein-Knowles, P. (1987). Dissection of the cer-cqu locus. In S. Yasuda & T. Konishi (Eds.), Barley genetics V (pp. 161–167). Okayama: Sanyo Press Co.

    Google Scholar 

  • Steffenson, B. J., Jin, Y., & Griffey, C. A. (1993). Pathotypes of Puccinia hordei with virulence for the barley leaf rust resistance gene Rph7 in the United States. Plant Disease, 77, 867–869.

    Article  Google Scholar 

  • Steffenson, B. J., Hayes, P. M., & Kleinhofs, A. (1996). Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theoretical and Applied Genetics, 92, 552–558.

    Article  CAS  Google Scholar 

  • Suprunova, T., Krugman, T., Fahima, T., Chen, I., Shams, I., Korol, A., & Nevo, E. (2004). Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell & Environment, 27, 1297–1308.

    Article  CAS  Google Scholar 

  • Tan, B. H. (1978). Verifying the genetic relationships between three leaf rust resistance genes in barley. Euphytica, 27, 317–323.

    Article  Google Scholar 

  • Teulat, B., Merah, O., Sirault, X., Borries, C., Waugh, R., & This, D. (2002). QTLs for grain carbon-isotope discrimination in field-grown barley. Theoretical and Applied Genetics, 106, 118–126.

    PubMed  CAS  Google Scholar 

  • Teulat, B., Zoumarou-Wallis, N., Rotter, B., Ben Salem, M., Bahri, H., & This, D. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theoretical and Applied Genetics, 108, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Teulat-Merah, B., Rotter, B., Francois, S., Borries, C., Souyris, I., & This, D. (2000). Stable QTL for plant water status, osmotic adjustment and co-location with QTLs for yield components in a Mediterranean barley progeny. Barley Genetics, 8, 246–248.

    Google Scholar 

  • Thacker, S. P., Ramamurthy, V., & Kothari, R. M. (1992). Characterisation of barley ß-amylase for application in maltose production. Starch, 44, 339–341.

    Article  CAS  Google Scholar 

  • Toubia-Rahme, H., Johnston, P. A., Pickering, R. A., & Steffenson, B. J. (2003). Inheritance and chromosomal location of Septoria passerinii resistance introgressed from Hordeum bulbosum into Hordeum vulgare. Plant Breeding, 122, 405–409.

    Article  Google Scholar 

  • Tuleen, N. A., & McDaniel, M. E. (1971). Location of genes Pa and Pa5. Barley Newsletter, 15, 106–107.

    Google Scholar 

  • van Zee, K., Chen, F. Q., Hayes, P. M., Close, T. J., & Chen, T. H. H. (1995). Cold-specific induction of a dehydrin gene family member in barley. Plant Physiology, 108, 1233–1239.

    PubMed  Google Scholar 

  • von Korff, M., Wang, H., Leon, J., & Pillen, K. (2005). AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theoretical and Applied Genetics, 111, 583–590.

    Article  CAS  Google Scholar 

  • Wallwork, H. (2000a). Cereal stem and crown diseases. Kingston: Grains Research and Development Corporation.

    Google Scholar 

  • Wallwork, H. (2000b). Cereal leaf and stem diseases. Kingston: Grains Research and Development Corporation.

    Google Scholar 

  • Walther, U., & Lehmann, C. O. (1980). Resistenzeigenschaften im Gerstenund Weizensortiment Gatersleben. 24. Prüfung von Sommerund Wintergersten auf ihr Verhalten gegenüber Zwergrost (Puccinia hordei Otth). Kulturpflanze, 28, 227–238.

    Article  Google Scholar 

  • Williams, K. J. (2003). The molecular genetics of disease resistance in barley. Australian Journal of Agricultural Research, 54, 1065–1079.

    Article  CAS  Google Scholar 

  • Young, N. D. (1996). QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology, 34, 479–501.

    Article  PubMed  CAS  Google Scholar 

  • Yun, S. J., Gyenis, L., Hayes, P. M., Matus, I., Smith, K. P., Steffenson, B. J., & Muehlbauer, G. J. (2005). Quantitative trait loci for multiple disease resistance in wild barley. Crop Science, 45, 2563–2572.

    Article  CAS  Google Scholar 

  • Zhang, Q., Webster, R. K., & Allard, R. W. (1987). Geographical distribution and associations between resistance to four races of Rhynchosporium secalis. Phytopathology, 77, 352–357.

    Article  Google Scholar 

  • Zhang, W. S., Li, X., & Liu, J. B. (2007). Genetic variation of Bmy1 alleles in barley (Hordeum vulgare L.) investigated by CAPS analysis. Theoretical and Applied Genetics, 114, 1039–1050.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F. S., Kurth, J. C., Wei, F., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, R., Wise, R., & Schulze-Lefert, P. (2001). Cell-autonomous expression of barley Mla1 confers race- specific resistance to the powdery mildew fungus via a Rar1-independent signalling pathway. The Plant Cell, 13, 337–350.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (30630047) and Department of Agriculture and Food Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfa Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gong, X., Li, C., Zhang, G., Yan, G., Lance, R., Sun, D. (2013). Novel Genes from Wild Barley Hordeum spontaneum for Barley Improvement. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_6

Download citation

Publish with us

Policies and ethics