Skip to main content

“Deep Phenotyping” of Early Plant Response to Abiotic Stress Using Non-invasive Approaches in Barley

  • Conference paper
  • First Online:
Book cover Advance in Barley Sciences

Abstract

The basic mechanisms of yield maintenance under drought conditions are far from being understood. Pre-symptomatic water stress recognition would help to get insides into complex plant mechanistic basis of plant response when confronted to water shortage conditions and is of great relevance in precision plant breeding and production. The plant reactions to drought stress result in spatial, temporal and tissue-specific pattern changes which can be detected using non-invasive sensor techniques, such as hyperspectral imaging. The “response turning time-point” in the temporal curve of plant response to stress rather than the maxima is the most relevant time-point for guided sampling to get insights into mechanistic basis of plant response to drought stress. Comparative hyperspectral image analysis was performed on barley (Hordeum vulgare) plants grown under well-watered and water stress conditions in two consecutive years. The obtained massive, high-dimensional data cubes were analysed with a recent matrix factorization technique based on simplex volume maximization of hyperspectral data and compared to several drought-related traits. The results show that it was possible to detect and visualize the accelerated senescence signature in stressed plants earlier than symptoms become visible by the naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen, A., Schnell, J., & Miki, B. (2010). Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics, 11, 69. doi:10.1186/1471-2164-11-69.

    Article  PubMed  Google Scholar 

  • Aldakheel, Y. Y., & Danson, F. M. (1997). Spectral reflectance of dehydrating leaves: Measurements and modelling. International Journal of Remote Sensing, 18(17), 3683–3690.

    Article  Google Scholar 

  • Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Furbank, R. T., Cammerer, S., Sheehy, J., & Edwards, G. (2009). C4Rice: A challenge for plant phenomics. Functional Plant Biology, 36(11), 845–865.

    Article  Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., von Korff, M., Varshney, R. K., Graner, A., & Valkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60, 3531–3544.

    Article  PubMed  CAS  Google Scholar 

  • Kersting, K., Wahabzada, M., Roemer, C., Thurau, C., Ballvora, A., Rascher, U., Leon, J., Bauckhage, C., Pluemer, L. (2012) Simplex distributions for embedding data matrices over time. In I. Davidson & C. Domeniconi (Eds.), Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA

    Google Scholar 

  • Lebreton, C., Lazic-Jancic, V., Steed, A., Pekic, S., & Quarrie, S. A. (1995). Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. Journal of Experimental Botany, 46, 853–865.

    Article  CAS  Google Scholar 

  • Malenovský, Z., Mishra, K. B., Zemek, F., Rascher, U., & Nedbal, I. (2009). Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of Experimental Botany, 60, 2987–3004.

    Article  PubMed  Google Scholar 

  • McKay, J. K., Richards, J. H., Sen, S., Mitchell-Olds, T., Sandra Boles, S., Stahl, E. A., Wayne, T., & Juenger, T. E. (2008). Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new mapping population, Kas-1x TSU-1. Evolution, 62, 3014–3026.

    Article  PubMed  Google Scholar 

  • Nguyen, T. T. T., Klueva, N., Chamareck, V., Aarti, A., Magpantay, G., Millena, A. C. M., Pathan, M. S., & Nguyen, H. T. (2004). Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Molecular Genetic & Genomics, 272, 35–46.

    CAS  Google Scholar 

  • Passioura, J. B. (2002). Environmental biology and crop improvement. Functional Plant Biology, 29, 537–554.

    Article  Google Scholar 

  • Penuelas, J., Pinol, J., Ogaya, R., & Filella, I. (1997). Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Internat Journal of Remote Sensing, 18(13), 2869–2875.

    Article  Google Scholar 

  • Pinnisi, E. (2008). The blue revolution, drop by drop, gene by gene. Science, 320, 171–173.

    Article  Google Scholar 

  • Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133, 1755–1767.

    Article  PubMed  CAS  Google Scholar 

  • Rascher, U., Nichol, C. L., Small, C., & Hendricks, L. (2007). Monitoring spatio-temporal dynamics of photosynthesis with a portable hyperspectral imaging system. Photogrammetric Engineering and Remote Sensing, 73, 45–56.

    Google Scholar 

  • Rascher, U., Damm, A., van der Linden, S., Okujeni, A., Pieruschka, R., Schickling, A., & Hostert, P. (2010). Sensing of photosynthetic activity of crops. In E.-C. Oerke et al. (Eds.), Precision crop protection – The challenge and use of heterogeneity. Dordrecht/Heidelberg/London/New York: Springer.

    Google Scholar 

  • Rascher, U., Blossfeld, S., Fiorani, F., Jahnke, S., Jansen, M., Kuhn, A. J., Matsubara, S., Märtin, L. L. A., Merchant, A., Metzner, R., Müller-Linow, M., Nagel, K. A., Pieruschka, R., Pinto, F., Schreiber, C. M., Temperton, V. M., Thorpe, M. R., Van Dusschoten, D., Van Volkenburgh, E., Windt, C. W., & Schurr, U. (2011). Non-invasive approaches for phenotyping of enhanced performance traits in bean. Functional Plant Biology, 38, 968–983.

    Article  CAS  Google Scholar 

  • Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. G., Spielmeyer, W., & Dolferus, R. (2010). Breeding for improved water productivity in temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 37(2), 85–97.

    Article  Google Scholar 

  • Sakma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional analysis of an arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Physiology, 18, 1292–1309.

    Google Scholar 

  • Schreiber, A. W., Sutton, T., Caldo, R. A., Kalashyan, E., Lovell, B., Mayo, G., Muehlbauer, G. J., Druka, A., Waugh, R., Wise, R. P., Langridge, P., & Baumann, U. (2009). Comparative transcriptomics in the Triticeae. BMC Genomics, 10, 285. doi:10.1186/1471-2164-10-285.

    Article  PubMed  Google Scholar 

  • Schulte, D., Close, T. J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G., Sato, K., Schulman, A. H., Waugh, R., Wise, R. P., & Stein, N. (2009). The international barley sequencing consortium–at the threshold of efficient access to the barley genome. Plant Physiology, 149, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Talamé, V., Ozturk, N. Z., Bohnert, H. J., & Tuberosa, R. (2007). Barley transcript profiles underde hydration shock and drought stress treatments: A comparative analysis. Journal of Experimental Botany, 58, 229–240.

    Article  PubMed  Google Scholar 

  • Tardieu, T., & Schurr, U. (2009). White paper on plant phenotyping. In EPSO Workshop on Plant Phenotyping, Jülich. Germany.

    Google Scholar 

  • Tondelli, A., Francia, E., Barabaschi, D., Aprile, A., Skinner, J. S., Stockinger, E. J., Stanca, A. M., & Pecchioni, N. (2006). Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theoretical and Applied Genetics, 112, 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Tran, L. S. P., Nakashim, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M.,Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive ­cis-element in the early responsive to dehydration stress Promoter. Plant Cell, 16, 2481–2498.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, A., Kathiresan, A., Inada, M., Narita, Y., Nakamura, T., Weiming Shi, W., Tetsuko Takabe, T., & Bennett, J. (2004). Osmotic stress in barley regulates expression of a different set of genes than salt stress does. Journal of Experimental Botany, 55, 2213–2218.

    Article  PubMed  CAS  Google Scholar 

  • Ustin, S., & Gamon, J. A. (2010). Remote sensing of plant functional types. New Phytologist, 186, 795–816.

    Article  PubMed  Google Scholar 

  • Xiong, L., Wang, R., Mao, G., & Koczan, J. M. (2006). Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiology, 142, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried in frame of a research programme funded by BMBF with project number 315309/ CROP.SENSe. The authors would like to thank Merle Noschinski for excellent technical assistance, Henrik Schumann, Melanie Herker and Sfefan Teutsch for their support with hyperspectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agim Ballvora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ballvora, A. et al. (2013). “Deep Phenotyping” of Early Plant Response to Abiotic Stress Using Non-invasive Approaches in Barley. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_26

Download citation

Publish with us

Policies and ethics